Please use this identifier to cite or link to this item:
Title: Discrete tree seed algorithm for urban land readjustment
Authors: Koç, İsmail
Atay, Yılmaz
Babaoğlu, İsmail
Keywords: Swarm intelligence algorithms
Evolutionary algorithms
Hybrid approach
Spatial-based crossover and mutation operators
Efficient TSA
Urban land readjustment
Issue Date: 2022
Publisher: Pergamon-Elsevier Science Ltd
Abstract: Land readjustment and redistribution (LR) is an important approach used to realize development plans by converting rural lands to urban land and also providing urban infrastructure. The LR problem, which is a complex challenging real-world problem, is a discrete optimization problem because its structure is similar to TSP (Traveling Salesman Problem) and scheduling problems which are combinatorial optimization problems. Since classical mathematical methods are insufficient for solving NP (Nondeterministic Polynomial) optimization problems due to time limitations, meta-heuristic optimization algorithms are commonly utilized for solving these kinds of problems. In this paper, meta-heuristic algorithms including genetic, particle swarm, differential evolution, artificial bee, and tree seed algorithms are utilized for solving LR problems. The stated meta-heuristic algorithms are used by applying spatial-based crossover and mutation operators depending upon the LR problem on each algorithm. Moreover, a synthetic dataset is used to ensure that the quality of the solution obtained is acceptable to everyone, to prove an optimal solution easily. By utilizing the suggested spatial-based crossover and mutation operators, finding the ideal solution is aimed using the synthetic dataset. In addition, five different modifications on TSA (Tree-Seed Algorithm) are performed and used to solve LR problems. All the modified versions of TSA are carried out only by changing the mechanism of seed reproduction. The novel TSA approaches are respectively named as tcTSA (tournament current), tbTSA (tournament best), pbTSA (personal-best based), t2TSA (double tournament), and elTSA (elitism based). In the experimental studies, the hybrid approach, which includes the crossover and mutation operators, is successfully applied in all of the algorithms under equal conditions for a fair comparison. According to experimental results performed using the dataset, it can be clearly stated that especially t2TSA outperforms all the algorithms in terms of performance and time.
ISSN: 0952-1976
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
1-s2.0-S0952197622000665-main (1).pdf
  Until 2030-01-01
8.69 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Mar 25, 2023


checked on Jan 30, 2023

Page view(s)

checked on Mar 20, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.