Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/2253
Title: | Identifying the factors affecting students' academic achievement using machine learning algorithms | Other Titles: | Makine öğrenmesi algoritmaları kullanarak öğrencilerin akademik başarısını etkileyen faktörlerin tespit edilmesi | Authors: | Kodaz, Halife Kaya, Fatih Hüseyin |
Keywords: | Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol Computer Engineering and Computer Science and Control |
Issue Date: | 2022 | Publisher: | Konya Teknik Üniversitesi | Abstract: | Bu tez çalışmasında makine öğrenmesi algoritmaları kullanılarak öğrencilerin akademik başarısınıetkileyen faktörlerin tespit edilmesi amaçlanmaktadır. Araştırmada ilk veri seti olarak Hindistan'ın Assameyaletinde gerçekleştirilen bir araştırmadan elde edilen veriler kullanılmıştır. İkinci veri seti olarakPortekiz'in Alentejo bölgesinden 2005 yılında iki devlet okulundan anket ile toplanmış verilerkullanılmıştır. Çalışmada uygulama çerçevesi çapraz endüstri standart işlem modeli kapsamındageliştirilmiştir. Elde edilen sonuçlar, Doğruluk, F-1 Score sonuçları ile doğrulanmış ve karşılaştırılmıştır.Rastgele Orman, Aşırı Gradyan Güçlendirmesi ve Destek Vektör Makinaları ile sınıflandırma modellerioluşturarak öğrencilerin akademik başarısına etki eden önemli faktörler incelenmiştir. Buna göreöğrencilerin akademik başarısını etkileyen faktörlerin tespit edilmesinde Aşırı Gradyan Güçlendirmesi'ninen iyi sonuçlar verdiği görülmektedir. Ayrıca hesaplanan başarı ölçüleri ve tespit edilen faktörlerliteratürdeki benzer çalışmalar ile karşılaştırılmış ve önemli ölçüde benzerlik gösterdiği görülmüştür. The aim of this study was to identify the factors affecting students' academic achievement usingmachine learning algorithms. The first data covered in the study, the data obtained from a study conductedin the Assam state of India were used. The second data covers, data collected from two public schools in2005 from the Alentejo region of Portugal were used. The application framework in the study wasdeveloped under the cross industry standard process for data mining. Using classification models withRandom Forest, Extreme Gradient Boosting and Support Vector Machines, important factors affectingstudents' academic success were examined. The results obtained were verified and compared utilizingclassification Accuracy, F-1 Score results. By creating classification models with Random Forest, ExtremeGradient Reinforcement and Support Vector Machines, important factors affecting students' academicsuccess were examined. According to these results, it can be said that Extreme Gradient Boosting providesthe best results in identifying the factors affecting students' academic achievement. Besides these results, itwas predicted success scores and the identified factors were compared with similar studies in the literatureand it was seen that they showed significant similarity |
URI: | https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=5XiSE4yCP_gmnukpMEp65SpS_vWfggEC-TihFzTsy0hWPcHnc4yfyHmuCMJwuqWw https://hdl.handle.net/20.500.13091/2253 |
Appears in Collections: | Tez Koleksiyonu |
Files in This Item:
File | Size | Format | |
---|---|---|---|
717386.pdf | 3.54 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
126
checked on Mar 20, 2023
Download(s)
92
checked on Mar 20, 2023
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.