Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/1686
Title: Developing Turbulent Flow in Pipes and Analysis of Entrance Region
Authors: Canlı, Eyüb
Bilir, Ali Şefik
Bilir, Şefik
Issue Date: 2021
Abstract: Turbulent flows have complex structures due to its nature and its’ analyses are hard either by numerical or experimental means. Hydrodynamic development of turbulent flow is also complex. In this study, velocity and turbulence distributions in hydrodynamic entrance length of pipes are investigated numerically depending on axial and radial locations. Implications of these distributions are qualitatively evaluated in terms of heat transfer. Literature was surveyed for a single empirical expression that provides velocity profile directly according to Reynolds number, radial and axial locations. Requisite for computational fluid dynamics in hydrodynamic entry length of pipes is stressed by assessing turbulence magnitudes in radial and axial directions. Definition of the development length and effects of the definition in respect of heat transfer are discussed. An axisymmetric pipe entrance region was analyzed by means of a commercial CFD code with nondimensional parameters. Therefore, dimensional parameters reduce into one dimensionless independent parameter, i.e. Reynolds number. Four different Reynolds numbers that are 5x103 , 1x104 , 5x104 , 1x105 were used in calculations. k-? turbulence model and standard wall functions were used for turbulence modeling. Hydrodynamic entry length, velocity and turbulence values are presented by means of axial and radial profiles. According to the obtained results, two different directions of radial velocity component values exist in the hydrodynamic entry length that would lead to different radial thermal convection effects. It is found that simultaneously developing velocity profiles and turbulence quantities leads to a characteristic centerline velocity profile. Also, it is seen that a good resolution in hydrodynamic entrance length can be easily achieved by computational fluid dynamics. A detailed composition of hydrodynamic turbulent entrance length analysis, its physical explanations due to simultaneously developing hydrodynamic boundary layers and turbulence production, definition aspects of the entrance length in terms of heat transfer and literature survey for analytical solution of the region are provided.
URI: https://doi.org/10.21541/apjes.818717
https://app.trdizin.gov.tr/makale/TkRZNE56VTRPQT09
https://hdl.handle.net/20.500.13091/1686
ISSN: 2147-4575
2147-4575
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections

Files in This Item:
File SizeFormat 
f8a8183e-28db-4024-acdd-a0014163eee4.pdf5.73 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

58
checked on Feb 6, 2023

Download(s)

48
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.