Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/1135
Title: Yere Nüfuz Eden Radar B Tarama Görüntülerinin Az Parametreye Sahip Konvolüsyonel Sinir Ağı İle Değerlendirilmesi
Other Titles: Evaluation of Ground Penetrating Radar B Scan Images via Convolutional Neural Network with Low Parameters
Authors: Özkaya, Umut
Seyfi, Leventl
Issue Date: 2021
Abstract: Bu çalışmada, Yere Nüfuz eden Radar (YNR) B tarama görüntülerinin analizi için az parametre sayısına sahip K-En Yakın Komşuluk (K-EYK) algoritma tabanlı bir Konvolüsyonel Sinir Ağı (KSA) yapısı önerilmiştir. Önerilen KSA yapısı içerisinde farklı filtre boyutuna ve sayına sahip beşer adet konvolüsyon katmanı bulunmaktadır. Aynı zamanda blok adı verilen yapı ile önerilen KSA modelinin yapısı daha da görselleştirilmiştir. Karşılaştırmalı analiz çerçevesinde önerilen KSA modeli ön eğitimli KSA modelleri ile beraber değerlendirilmiştir. Analiz metrikleri olarak doğruluk, keskinlik, duyarlılık ve F1 skoru kullanılmıştır. Önerilen KSA yapısı, YNR cihazı tespitinde %97.16 doğruluk, %97.31 keskinlik, %97.04 duyarlılık ve %97.18 F1 skoru; tarama frekansı tespitinde %94.88 doğruluk, %95.02 keskinlik, %95.49 duyarlılık ve %95.24 F1 skoru; toprak çeşidi tespitinde %90.63 doğruluk, %90.50 keskinlik, %90.83 duyarlılık ve %90.66 F1 skoru metrik değerlerine sahiptir. Önerilen KSA yapısı YNR cihaz tespiti ve tarama frekansı tespitinde en yüksek performansı gösterirken toprak çeşidi tespitinde ön eğitimli KSA yapıları ile beraber en yüksek üçüncü performansı sergilemiştir. Karşılaştırmalı analizler önerilen KSA yapısının düşük parametre sayısı ile yüksek sınıflama yüzdesi elde ettiğini göstermiştir.
In this study, a K-Nearest Neighborhood (KNN) algorithm based Convolutional Neural Network (CNN) structure with low number of parameters was proposed for the analysis of Ground Penetrating Radar (GPR) B scan images. Within proposed CNN structure, there are five convolution layers with different filter sizes and numbers. At the same time, the structure of proposed CNN model with the structure called block is further visualized. The proposed CNN model within the framework of comparative analysis was evaluated together with pre-trained CNN models. Accuracy, precision, recall and F1 score were used as classification metrics. Proposed CNN structure obtained performance with 97.16% accuracy, 97.31% precision, 97.04% recall and 97.18% F1 score for detection of GPR device; 94.88% accuracy, 95.02% precision, 95.49% recall and 95.24% F1 score to classify scanning frequency; 90.63% accuracy, 90.50% precision, 90.83% recall and 90.66% F1 score metric values to determine soil type. While proposed CNN structure showed the highest performance in GPR device detection and scanning frequency determination, it showed the third highest performance together with the pre-trained CNN structures in soil type determination. Comparative analysis has shown that the proposed CNN structure achieves a high classification performance with a low number of parameters.
URI: https://doi.org/10.29128/geomatik.703218
https://app.trdizin.gov.tr/makale/TkRFM05USTRPQT09
https://hdl.handle.net/20.500.13091/1135
ISSN: 2564-6761
2564-6761
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
27ad91e3-400c-4f37-adca-a44733762fcc.pdf1.18 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

78
checked on May 22, 2023

Download(s)

28
checked on May 22, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.