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In the literature, most studies focus on designing new methods inspired by biological processes, however
hybridization of methods and hybridization way should be examined carefully to generate more suitable
optimization methods. In this study, we handle Particle Swarm Optimization (PSO) and an efficient oper-
ator of Artificial Bee Colony Optimization (ABC) to design an efficient technique for continuous function
optimization. In PSO, velocity and position concepts guide particles to achieve convergence. At this point,
variable and stable parameters are ineffective for regenerating awkward particles that cannot improve
their personal best position (Ppes). Thus, the need for external intervention is inevitable once a useful par-
ticle becomes an awkward one. In ABC, the scout bee phase acts as external intervention by sustaining the
resurgence of incapable individuals. With the addition of a scout bee phase to standard PSO, Scout
Particle Swarm Optimization (ScPSO) is formed which eliminates the most important handicap of PSO.
Consequently, a robust optimization algorithm is obtained.

ScPSO is tested on constrained optimization problems and optimum parameter values are obtained for
the general use of ScPSO. To evaluate the performance, ScPSO is compared with Genetic Algorithm (GA),
with variants of the PSO and ABC methods, and with hybrid approaches based on PSO and ABC algorithms
on numerical function optimization. As seen in the results, SCPSO results in better optimal solutions than
other approaches. In addition, its convergence is superior to a basic optimization method, to the variants
of PSO and ABC algorithms, and to the hybrid approaches on different numerical benchmark functions.
According to the results, the Total Statistical Success (TSS) value of ScPSO ranks first (5) in comparison
with PSO variants; the second best TSS (2) belongs to CLPSO and SP-PSO techniques. In a comparison with
ABC variants, the best TSS value (6) is obtained by ScPSO, while TSS of BitABC is 2. In comparison with
hybrid techniques, ScPSO obtains the best Total Average Rank (TAR) as 1.375, and TSS of ScPSO ranks first
(6) again. The fitness values obtained by ScPSO are generally more satisfactory than the values obtained
by other methods. Consequently, ScCPSO achieve promising gains over other optimization methods; in
parallel with this result, its usage can be extended to different working disciplines.
© 2018 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Optimization methods are important algorithms required in
control, classification, communication and other fields. They
attempt to satisfy the requirements of convergence in achieving
optimal solutions. Especially in online (real-time) applications, fast
and successful convergence is required.
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Over time, optimization algorithms have come up short on con-
vergence performance. At the same time, two approaches (new
methods or a hybridization of some optimization methods) have
been taken to obtain better results. In this study, the second option
(hybridization) is pursued, and an efficient method is examined
with its operation conditions for benchmark function optimization.

Particle Swarm Optimization (PSO) is effective and superior to
many-newly developed optimization algorithms in different disci-
plines (Kennedy & Eberhart, 1995). However, standard PSO can be
made more effective and applicable with the addition of another
optimization algorithm, another algorithm component or inspired
formulas from it. In this way, hybrid or improved PSO architectures
are developed. In the literature, these modifications are required to
obtain better convergence; the structures are generally evaluated
using benchmark functions.

2288-4300/© 2018 Society for Computational Design and Engineering. Publishing Services by Elsevier.
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Eberhart and Shi (2000) modified the basic PSO algorithm to
obtain a Modified Particle Swarm Optimizer (Global PSO-w) which
includes the parameter of inertia weight. In their study, an opti-
mum value was found based on trials using Schaffer’s f6 function.
Concerning this, it was understood that the inertia weight is essen-
tial for higher performance. Clerc and Kennedy (2002) analyzed the
path of a particle in discrete time and continuous time. In particu-
lar, they examined constricted coefficients (Global PSO-cf) on
unconstrained-real valued benchmark functions. Thus, the impor-
tance and the effect of constricted coefficients were revealed.
Kennedy and Mendes (2002) presented the topological importance
of PSO (Local PSO-w, Local PSO-cf). Parsopoulos (2004) surveyed
Unified Particle Swarm Optimization (UPSO) for numerical opti-
mization and proved that UPSO is more effective than local and
global PSO variants. Liang, Qin, Suganthan, and Baskar (2006) used
the historical best information of all particles to update the veloc-
ity and obtained a Comprehensive Learning Particle Swarm Opti-
mizer (CLPSO). They also compared this method with PSO based
algorithms on multimodal test functions. Shin and Kita (2014)
improved PSO by using second personal best and second global
best particles in addition to global best and personal best values.
As a result, they obtained Second Personal-PSO (SP-PSO) and Sec-
ond Global-PSO (SG-PSO) structures. These algorithms were com-
pared with Global PSO-w, Global PSO-cf, Local PSO-w, Local PSO-
cf, UPSO and CLPSO on numerical benchmark functions. Their
experiments showed that SP-PSO was a robust and adequate algo-
rithm providing better convergence.

Mendes, Kennedy, and Neves (2004) modified the Canonical
Particle Swarm algorithm and designed the Fully Informed Parti-
cle Swarm in which all individuals were fully informed. They
also examined different topologies of Fully Informed PSO for
numerical function optimization. According to their study, ring
and square topologies achieved better results, and Fully
Informed PSO outperformed Canonical PSO on benchmark func-
tion optimization. Zhan, Zhang, Li, and Shi (2011) proposed an
orthogonal learning (OL) strategy for PSO in which the OL strat-
egy allowed the particles to fly in better directions. The OL strat-
egy was also applied to both global and local versions of PSO.
Consequently, the OLPSO-G and OLPSO-L algorithms were pro-
duced. Based on the results, OLPSO-L owned to the best perfor-
mance among its peers on benchmark function optimization.
Lukasik and Kowalski (2014) compared some effective tech-
niques (Fully Informed PSO, the Firefly algorithm and Glowworm
Swarm Optimization) on continuous function optimization. They
proved that Fully Informed PSO was the most effective and least-
computationally expensive method.

In addition to PSO variants, ABC based algorithms have a wide
range of use with regards to obtaining higher convergence.
Karaboga (2005) designed the ABC algorithm which is a stochastic
optimization method similar to PSO, but ABC utilizes the foraging
behaviours of honey bees to solve optimization problems. Accord-
ing to our experiments, the convergence of ABC is reliable, but the
speed of convergence is slow. ABC also has some limitations when
operating with some multimodal functions, and its stochastic nat-
ure slows down the convergence speed (Karaboga & Akay, 2009).
The reason for this is an improper balance between exploration
and exploitation (Zhu & Kwong, 2010). ABC is good at exploration
but poor at exploitation (Zhu & Kwong, 2010). In the literature,
handicaps (convergence speed, the trade-off between
exploration-exploitation, and convergence performance (arrival
to desired value)) were bypassed and the capability of ABC was
upgraded. Pampara and Engelbrecht (2011) proposed three kind
of binary based ABC algorithms: binary ABC (BinABC), angle mod-
ulated ABC (AMABC) and normalized ABC (normABC). These algo-
rithms were similar to ABC, but they needed to be transformed
from continuous space to discrete space, which translates into high

complexity. In Pampara and Engelbrecht (2011), techniques were
compared on unconstrained benchmark functions. Kashan,
Nahavandi, and Kashan (2012) designed a new artificial bee colony
algorithm (DisABC) for binary optimization. Differential expression
of this technique was executed in continuous space. At this time, it
is used in a two-phase heuristic to construct a complete solution in
binary space (Kashan et al., 2012). While doing this, Jaccard’s coef-
ficient of similarity/dissimilarity was used. For performance mea-
surements, DisABC was tested on benchmark function
optimization. Jia, Duan, and Khan (2014) generated a binary based
ABC algorithm (BitABC) using a bitwise operation for the move-
ments of employed and onlooker bees. In their study, BitABC was
compared with normABC, BinABC, DisABC and with Genetic Algo-
rithm (GA) on benchmark functions. Their results revealed that
BitABC was generally superior to the other methods and to GA with
regards to convergence performance. Karaboga and Gorkemli
(2014) designed the Quick Artificial Bee Colony (qABC) algorithm
which is a new version of the ABC algorithm. In their study, gABC
simulated the behaviour of onlooker bees more accurately, and the
performance of ABC was improved in terms of local searching
ability.

There are some studies touching on the hybridization of PSO
and ABC algorithms. EI-Abd (2011) used the update formula of
the employed bee phase (also the same as in the onlooker bee
phase) in the general PSO algorithm for continuous function opti-
mization, and named the algorithm as Hybridgs. According to the
experiments, the performance of Hybridgp was remarkable in com-
parison with ABC and PSO algorithms in terms of achieving better
results on unimodal functions. However, the performance of ABC
and other algorithms was better than Hybridg on multimodal func-
tions. Wang, Lv, Zhao, and Zhang (2012) designed a hybrid
approach to solve complex-constraint optimization problems,
and formed the structure based on this aim. The PSO algorithm
was utilized to choose the food sources for ABC. According to the
trials, the proposed PSO-ABC approach outperformed other
approaches, and reached better solutions. Yang and Pei (2013)
optimized the parameters of the PSO algorithm by using ABC,
and named the hybrid approach as HAP. According to the results,
the proposed method obtained better results than other methods
on travelling salesman problem. Kiran and Gunduz (2013) utilized
the global best solution of PSO and the best solution of ABC in order
to form a more robust optimization algorithm. Hybrid Approach
based on PSO and ABC (HPA) was tested on continuous optimiza-
tion problems. Concerning this, remarkable convergence was
obtained by HPA in comparison with other algorithms. Chun-
Feng, Kui, and Pei-Ping (2014) suggested a hybrid technique
(ABC-PS) based on ABC in which PSO is processed to find new solu-
tions. According to the results, ABC-PS outperformed the variants
of ABC in global optimization. Li, Wang, Yan, and Li (2015) com-
bined the local search in PSO with onlooker bee and scout bee
phases in ABC to solve high dimensional optimization problems.
According to the trials, the proposed method (PS-ABC) achieved
better performance than peer approaches on high dimensional
problems.

In this study, we improved the PSO algorithm with a necessary
part, the scout bee phase in ABC, which eliminated the most impor-
tant handicap of PSO. In contrast to other methods found in the lit-
erature, the hybridization of techniques is realized based on the
need of the PSO algorithm. As a result, we can prevent the hybrid
method from becoming cumbersome. A performance analysis of
the proposed method (Scout Particle Swarm Optimization-ScPSO)
is examined in unimodal, multimodal, separable, partially-
separable, non-separable, differentiable, non-differentiable,
scalable, shifted and rotated situations. A convergence analysis
of ScPSO was performed on continuous function optimization.
In addition, the optimum operating conditions of ScPSO are
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investigated, and the method is compared with variants of PSO,
with variants of ABC and with hybrid approaches based on PSO
and ABC methods that have proven to be efficient at global numer-
ical optimization.

To determine ScPSO parameters, general PSO parameters and
the parameter limit, are investigated over a wide range in which
the best convergence could be found. Hence, parameter selection
of ScPSO is defined for general use in various disciplines.

The ScPSO algorithm is first compared with Global PSO-w, Glo-
bal PSO-cf, Local PSO-w, Local PSO-cf, UPSO, CLPSO, SG-PSO and SP-
PSO on 8 numerical benchmark functions. Second, ScPSO is com-
pared with GA and with ABC based techniques (normABC, BinABC
and DisABC) on 8 benchmark functions. Third, ScPSO is compared
with the PSO- ABC based hybrid algorithms on 8 numerical bench-
mark functions. Thus, this is an attempt to determine whether
ScPSO is superior to other methods or not on global function
optimization.

2. Methods

The choice of optimization method plays an important role in
convergence, and the performance of these methods differs
depending on their approaches and formulas. In some cases, the
parameters and formulas can be deficient at achieving better
convergence.

Particle Swarm Optimization includes a handicap, which is the
absence of the regeneration of ineffective particles that cannot
improve their Ppes values. On the other hand, the ABC algorithm
contains a scout bee phase to eliminate the handicap of regenera-
tion. For this reason, we added the scout bee phase into Standard
PSO to upgrade its performance (Koyuncu & Ceylan, 2015). As a
result, a substantial structure (Scout Particle Swarm Optimization)
has been developed. In the study of Koyuncu and Ceylan (2015);
ScSPO was investigated for pattern classification and was com-
pared only with the basic PSO algorithm. Additionally, the optimal
operating conditions of ScPSO are unknown, and it is not clear
whether ScPSO is sufficient to challenge prior variants and hybrid
versions of PSO and ABC algorithms or not.

In this study, optimal operating conditions of ScPSO are investi-
gated using continuous function optimization. A convergence
speed comparison including the iteration number is applied to
ScPSO, and a three step evaluation strategy is used to obtain opti-
mal parameter values and ranges. ScPSO is then compared with
various algorithms on the convergence of numerical benchmark
problems to assess its performance. In this section, PSO and ABC
algorithms are first explained and then, ScPSO is examined in
detail.

2.1. Particle Swarm optimization

Particle Swarm Optimization is a swarm based algorithm
inspired by the foraging behaviours of birds (Ceylan & Koyuncu,
2016). During the imitation of foraging behaviours, PSO utilizes
the velocity and position phenomena for the update of its particles.
Additionally, the previous particle information is used in general
backpropagation processes (Koyuncu & Ceylan, 2013). In this man-
ner, a continuous progression towards the global optimum point is
provided. The flowchart of PSO is shown in Fig. 1 (Koyuncu &
Ceylan, 2015).

For the velocity update, some constants and variables that are
used are shown in Eq. (1): w (inertia weight), Vi(t) (former veloc-
ity), ¢; and c, (acceleration constants), r; and r, (random values
within [0,1]), Xi(t) (former position), Xppesiy(t) (individual best
position of i.th particle) and Xgp.q(t) (global best position of the

| Initialization of particles |

I Calculation of fitness

——

Minimum error

is reached ?

| Update of Ppest and Gpest |
v

Update of particles (positions) using Eq. (1-2)
Vit+1=.Vi(t)+c1ri(t). (Xppestiy(O)-Xi1)) +C2.72(0). (Xpest(D)-Xi(1)) - (1)
X(t+1)=X(t) + Vi(t+1) @

I Update of inertia weight |

t < maximum
iteration number

Fig. 1. Flowchart of PSO algorithm.

whole swarm). For the new position value, the old position (Xj(t))
and new velocity (V(t)) values are summed as in Eq. (2).

Vi(t+1) = @Vi(t) + c1r1 (Xpbesti () — Xi(t))
+ CaT2 (Xgpest (£) — Xi(t)) (1)
Xi(t+1) = Xi(t) + Vi(t + 1) (2)

The operation of PSO can be divided into 2 parts: an initializa-
tion part and loop part. The loop part can be subdivided into 4
parts: calculation of fitness, update of Ppes; and Gpes; Values, update
of positions and update of the inertia weight.

2.2. Artificial bee Colony optimization

Artificial Bee Colony Optimization is a stochastic optimization
algorithm simulating the actions of honey bees divided into three
groups: employed bees, onlooker bees and scout bees (Karaboga,
2005).

Employed bees act as the pioneers to onlooker bees. These bees
fly to the food source, carry it to hive, and perform the waggle
dance in the dance area. At this time, the waggle dance directs
the onlooker bees to the food source (Koyuncu & Ceylan, 2015).
The onlooker bees are seen as the observers in the dance area. To
find the food source, onlooker bees study the movements of
employed bees. Scout bees are the saviors, starting a random
search for food after the food source is consumed.

The pseudocode of ABC is as follows:

1. Initialization Section
-Generate the food sources (x,,;) using Eq. (3)
(Liis the lower and u; is the upper limit of the space)

Xm = i +rand(0,1)  (u; — ;) 3)

While (iteration number < maximum iteration number)
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2. Employed Bee Section

-Generate the neighboring food sources (#,,;) using Eq. (4) for all
food sources

(vm; vectors are going to be compared with x,, vectors)

Umi = Xmi + ¢mi(xmi - in) (4)

e X;; is a randomly chosen food source, and ¢ is a random num-
ber within the range [-1,1]

e i is a randomly chosen index within the range [1,dimension
number]

e k can’t have the same value as the parameter m

-Calculate the fitness function according to Eq. (5)

1/(1 +fm(xm)> fm(Xm) > 0

T+ fnXm)l,  fn(Xm) <O

-For m = 1:population size
If (fity(vmi) is better than fit,,(x,,)) then X, = vy,
Else x,, = x,,, and count(m)=count(m)+1;End;End

fitwxa) = {

3. Onlooker Bee Section
-Calculate the profitability of all food sources (x,, vectors) using
Eq. (6).

o ﬁtm(Xm)
= —amm
anN:1ﬂtm (Xm)
-z=0;m=1;
While (z < population size)
If (P, > rand (0, 1))
--Generate the new neighbor food source (y,;) using

(6)

Eq. (4)
--Calculate its fitness using Eq. (5)
If (fit;s(vmi) is better than fit,,(x,,)) then X, = Y
Else x,,, = x,, and count(m)=count(m)+1
-- z=+1; End
Else m=m+1 (if m exceeds the population size, then
m=1); End; End

4. Scout Bee Section
- For m = 1:population size
If (count(m) > user defined limit), then use Eq. (3) to
reproduce Xy,

End

End

In ABC, the employed bee number is equal to half of the swarm
and other half consists of onlookers. The employed bee whose food
source runs out becomes a scout bee.

As seen in the pseudocode, the employed bee phase operates
Egs. (4) and (5) to generate new particles for comparison with
old ones. The onlooker bee phase uses Egs. (4)-(6) with the same
purpose as the employed bee phase. However, Eq. (6) provides a
probability choice which contributes to reasonable diversity. The
scout bee phase utilizes Eq. (3) in order to regenerate the useless
particles. For this purpose, this phase operates a user defined
parameter called limit.

2.3. Scout particle Swarm optimization

In the PSO algorithm, velocity and position are responsible for
the update of particles. To do this, ABC uses employed bee and
onlooker bee phases. Nevertheless, the scout bee phase in ABC
regenerates useless particles that cannot improve their individual
best positions. As explained above, this process is operated via
the parameter limit.

The Standard PSO algorithm (explained in Section 2.1 doesn’t
contain a control parameter to regenerate insufficient particles.

At this point, these particles are the ones that cannot retrieve their
Ppes: value. Particles are updated without any diversity in Standard
PSO, and their adequacies are not controlled (Koyuncu & Ceylan,
2015). It is obvious that PSO needs a control parameter to improve
its convergence capability, but this parameter must not increase its
convergence time significantly. Consequently, it looks similar to a
reasonable idea to insert the scout bee phase into the Standard
PSO algorithm. By adding the scout bee phase into PSO, ScPSO is
obtained (Koyuncu & Ceylan, 2015). In ScPSO, all processes (except
limit) are the same with the PSO algorithm. The flowchart of ScPSO
is shown in Fig. 2 (Koyuncu & Ceylan, 2015).

As seen in Fig. 2, the particle, which can’t improve its personal
best position (Ppes), is regenerated according to Eq. (3). There, g;
and [; symbolize the upper and the lower boundaries of particle,
respectively. In the regeneration process, q; and [; are equal to par-
ticle’s maximum position X, and to particle’s minimum position
Xmin-

In Fig. 2, minimum error is the difference between the global
point, the value to be reached, and the value obtained by continu-
ous global optimization. For a real world problem, this situation
changes depending on the main purpose and usage of the ScPSO.
In the study of Koyuncu and Ceylan (2015), the minimum error
symbolizes the Mean Square Error (MSE), since the aim and the
usage are respectively the pattern classification and optimization
of the Neural Network (NN) algorithm. In brief, minimum error
can be defined depending on the application, the methods utilized
and the purpose of the usage.

The inspiration of ScPSO is presented in Fig. 3 to better explain
the formation of hybrid technique (Ceylan & Koyuncu, 2018).

| Initialization of particles |

¥

[ calculation of fitness

—

Minimum error
is reached?

Fitness error; >
Fitness error;.;

counti= count; + 1

| Update of Poest and Grest |
v

Update of particles (positions) using Eq. (1-2)
Vit+D=0. Vi) +erri(0).(Xopesif 0-XA D) +2.7:0). (Xapest(D-Xi(0)) (1)
X(t+1)=X(0) + V(t+1) @)

[ Update of inertia weight

Regenerate the i.th particle
using Eq. (3)

Xu=1; trand(0,1)*w; - )  (3)

t < maximum
iteration number

Finish

Fig. 2. Flowchart of ScPSO algorithm.
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Particle Swarm Optimization

Velocity

Eq.(D)
Vit + 1) = oV (©) + 718 (Xppest 1 () = X:(©) + 272(0) (Xgbes ©) — X,

Position =) Eq.(2)

Eq.(2)
| xe+n=x©+ve Q

Artificial Bee Colony Optimization

Eq.3)
| X, =1 +rand(0,1) * (v, — ;)

Eq.(4
Employed Bee Phase m Eq.(4)

EQ(S) | Umi = Xmi + ¢mi (xmi = Xki )

Eq.(4) &(5)|
Onlooker Bee Phase  {Eq.(5) Y@ fn o)y fin () >0

.t7n ( 771) =
Ea©] |7 TV Gl A <0
Scout Bee Phase Eq.(3) — ran oo 1Eq.(6)
L Zf,?’:lﬁtm(xm)

\

It regenerates
the useless

Velocity Employed Bee Phase
Position Onlooker Bee Phase

particles

Scout Bee Phase

/

Scout Particle Swarm Optimization

Velocity s Eq.(1)

Position &=} Eq.(2)

Scout Bee Phase = Eq.(3)

Fig. 3. Inspiration of ScPSO algorithm.

The pseudocode of ScPSO is presented in Table 1 (Koyuncu &
Ceylan, 2015).

3. Experimental results

In the literature, a novel optimization algorithm is generally
compared with the optimization algorithm from which it origi-
nated, and with peer-hybrid methods. For this purpose, ScPSO is

first compared with PSO based algorithms that are different vari-
ants of PSO. Hence, Global PSO-w, Global PSO-cf, Local PSO-w,
Local PSO-cf, UPSO, CLPSO, SG-PSO and SP-PSO techniques (Shin
& Kita, 2014) are used for comparison on 8 different benchmark
functions.

ScPSO was not designed based on ABC algorithm, but it includes
an important part of ABC. For this reason, similar to the study of Jia
et al. (2014), comparison process is realized with ABC based tech-
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Table 1
Pseudocode of ScPSO algorithm.

Pseudocode of ScPSO

-Initialize all particles within the user defined boundaries

(The first best position (Pbest) values are equal to the position of particles)

-Define a limit value within the range [1, (maximum iteration number-1)]

While (iteration number < maximum iteration number)

-Calculate fitness according to the cost function for all particles

-Update the best position values according to fitness values for all particles

-Choose the best Pbest vector as being Gbest (vector achieved to the
minimum cost)

-Calculate new positions according to following equations for all particles

Vi(t + 1) = wVi(t)+cir1(Xpbest(i)(£)-Xi(£))+Car2(Xgpese(£)-Xi( L))

Xi(t+1)=X{t)+V(t+1)

-If a variable inertia weight is used, change it in accordance with the utilized
rule

-Control all particles which exceed the parameter ‘limit’, then regenerate the
useless ones

End

niques (normABC, BinABC and DisABC) and with GA in the second
part of study.

In the third part of study, ScPSO is compared with the efficient -
hybrid algorithms (HPA, ABC-PS and PS-ABC) designed by using
PSO and ABC algorithms (Li et al., 2015). Thus, the formation of
ScPSO is tested whether it constitutes a need for the literature or
it does not.

3.1. Problems and experimental settings

Before beginning the comparison process, all SCPSO parameters
are examined to achieve optimal operating conditions (optimal
values and optimal ranges). The parameter limit not only affects
the diversity, but it can also change the dynamics of the basic
PSO parameters. To determine the best operating conditions, 5
non-linear benchmark functions (Sphere, Rosenbrock, Rastrigin,
Griewank and Schaffer’s f6) are used as suggested (Shin & Kita,
2014). These well-known functions and their operating conditions
are shown in Table 2. The Threshold values stand for the targets to
be found by optimization algorithms. In other words, the optimiza-
tion algorithm should reach the Threshold value for particle values
defined within the boundary of [X;,in, Xmax]; the length of a particle
vector is chosen according to the Dimension.

To obtain the best parameter values and ranges, speedy conver-
gence is desired in achieving the threshold values shown in Table 2.
Experimental studies are performed using five nonlinear benchmark
functions, and the results are evaluated using four statistical metrics
that are average iteration number, standard deviation of all itera-
tions, minimum value of all iterations and search rate (the ratio of
the successful iteration number to the total iteration number). By
this means, parameter values and ranges are compared based on
Total Statistical Success (TSS), which is defined as the number of best
performances (or the number of obtained first rows).

Table 2
Benchmark functions and operating conditions in trials.
Function Dimension [Xmin, Xmax] Threshold
fsphere(®) = 311 %2 30 [-100,100] 0.01
frusenbrock (X) 30 [*30.30] 100
=y (100(x,~+1 —x)% 4 (x— 1>Z)
frastrigl‘n (%) 30 [-5.12,5.12] 100
=31, (x2 — 10cos(2mx;) + 10)
S griewant (%) 30 [-600,600] 0.1
= 000 i1 — [iLg COS (%) +1
[-100,100] 0.00001

(sin/(@a2)) -05 2

fsthaffer'st(x> =05+ (10001 (X%er%))z

Table 3

Performance comparison of different limit values.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 200 250 300

10

Limit
AIN

7247 4019 7668 5955 7118 6787 6921 6821 7181 7513 6353
273 536 715 455 457 834

391

6755
1361
7265
4836

7189 5018 7360 6293
296 980 944 375

7280

7220
781

7662 4325 5134 5262 5966 4885
479 416 950

Griewank
Rastrigin

Sphere

1079
5876
5731

1102
6293
5259
1930
4307

1875
6803

1195
5800
3622

1893
7741

1206
5406

1294
5899
3657

1534
5820
3945

6401

5827
5175
2558
4309
599

6303
5361

5850
4204

6003
5368

3496

4926

5843 5813 6817

5069

7197
4990
1331
4295
315

4928

4544
4939

5793

5386

4521 4514

2927

5368

4729

3798

5376
2052

5262

2955

5311

4324 4215
2336

Rosenbrock
Schaffer’s f6

2295
4473

1878
3996
2177
4423

2026
4237
541

1469

4382

1549
4109
2882

1300 2453 546 2078

4208
305

1353

4423

2630
4543
496

1474 4416

4525

2382 3408 2291 2082
4383

2604
3952

4480
826

4040
689

4398
274

4060

4172
2920
3913

4248
2133
4590
4199
3541
487
46

4471 4630

4444 4632

511

Griewank
Rastrigin

Sphere

Std

1558
4562
3618

2104

2815

1997
4183
3780
1535
466
61

1430
4632

1567
4597

2122 2341

4482

292

2491

1769
4623

4614 4541
4396

4591 4259 4436 4594 4644 4359 4529
3497 4260

4342
4007

4281

4596

4615 4652

4539

3737
3057
554
72

4090

3761

3637
2328
569
48

3958
534
529
50

2806
3272
482
44

3941

3383

3824 4088
2227

450

38

3919

3905

3642
3421
500
66

3945
3879
466
54

3816

3149
3219
485
59
572

3705
3868
536

Rosenbrock
Schaffer’s f6

3216
434
78

2777
455
81

2843
553
47

2283
480
44

2876
518
105
668

2400
548
58
463

1415
623
61

3202
441
87

3983
491
99

1858
466
72

3424
519
89

2569
385
64
589
993
60

3280
471
48

Griewank
Rastrigin

Sphere

Min

602
987
38

564
856
23

543
676
109

550
616
69

559
488
172

544
760
25

545
568
103

514
800
23

624
782
51

532
797
53

545
840
49

392
524
122

556
569
50

712 543

719
28

610
722
73

484

475
537
61

634

527

814
33

755
78

1049
59

1012
31

1062
42

820
28

778
36

Rosenbrock
Schaffer’s f6

0,40

0,30
0,95
0,40
0,70
0,90

0,30
0,95
0,40
0,60
0,95

0,35 0,40

0,35
0,90
0,35
0,75
0,90

0,35
0,95
045
0,80
0,95

030 0,55 030 040 035 030 065 025 0,45

0,30
0,90
0,25
0,60
0,85

0,30
0,95
0,55
0,60
0,85

0,55
0,95
0,50
0,60
0,95

0,45
0,95
0,60
0,75
0,85

0,55 0,60

0,65
0,95
0,45
0,90

0,30
1

Griewank
Rastrigin

Sphere

0,45
0,65
0,90

0,45
0,55
0,95

0,40
0,60

0,45
0,80
0,95

045
0,65

0,70
0,90
0,90
11

0,55
0,65

0,30
0,70

0,35
0,70
0,90

0,45
0,80
0,75

0,45
0,65

0,30
0,65
0,95

0,45
0,70
0,85

0,50
0,70
0,95

045
0,75

Rosenbrock
Schaffer’s f6

Total Statistical

0,95

0,80

Success

=SR.

Min, Success Rate

AIN, Standard Deviation = Std, Minimum Value =

Average Iteration Number
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The successful iteration in search rate is one at which global
convergence is reached. Among four metrics, average iteration
number stands for the most important one as in (Jia et al., 2014).

Population size, maximum iteration number and the number
of independent runs are respectively 30, 10,000 and 20 as in
(Shin & Kita, 2014). Dimensions for Schaffer’s f6 and for the other
functions are 2 and 30, respectively. Velocity boundaries ([Viin,
Vimax]) Were changed in fractional folds of position boundaries
([Ximin» Xmax])- As seen in Eq. (7), k represents the fractional fold
number.

[Vmim Vmax} = [Xmim Xmax} * K (7)

However, the coefficients c; and ¢, are altered according to the
rule that their sum is equal to 4, more than 4 and less than 4. While
doing this, their sum is fixed within the range [3.5, 4.5] according

to the advice of Zhang (2012). The inertia weight is analyzed
within the range [0,1], and linear descent movement (0.9 — 0.4)
is added to the trials as suggested (Shi & Eberhart, 1999). The
parameter limit is examined over a wide range, and a relationship
between limit and dimension-population size is searched. The
comparisons of different parameter values and ranges (based on
average iteration number, standard deviation, minimum value
and search rate) are shown in Tables 3-6.

As seen in Table 3, the best value for limit is 75 at which supe-
rior performance is achieved based on the average iteration num-
ber, standard deviation and success rate. To observe this,
consider the Total Statistical Success (achieved on the first rank).
TSS is 11 when limit is set at 75. The second TSS value is 4 for a limit
value of 80. Therefore, it is obvious that selection of limit as 75 is
more reliable.

Table 4
Performance comparison of different velocity boundaries.
k (fractional fold) 2 1.8 1.6 14 1.2 1 0.8 0.6 04 0.2
AIN Griewank 5835 4121 5838 7661 4608 4019 5792 7202 8061 8610
Rastrigin 6572 5117 4570 4396 2704 273 221 127 49 27
Sphere 4077 4509 7231 3537 6773 3496 5388 6715 8146 8571
Rosenbrock 4962 5171 3850 5029 4861 2927 3319 3949 4814 8178
Schaffer’s f6 2112 2620 2151 2236 2489 1762 4046 2733 1989 2169
Std Griewank 4607 4280 4605 4051 4458 4398 4653 4276 3619 3308
Rastrigin 3801 4079 3744 3931 3633 274 195 113 28 9
Sphere 4370 4487 4230 4232 4400 4259 4615 4478 3708 3401
Rosenbrock 4130 3813 3297 4115 3900 2806 3441 3780 4270 3651
Schaffer’s f6 3103 3716 3081 2956 3788 2877 4097 3641 2868 2993
Min Griewank 551 589 484 488 544 482 413 397 497 672
Rastrigin 478 150 252 456 113 44 54 34 25 16
Sphere 539 568 628 527 510 514 553 457 576 419
Rosenbrock 913 1088 1120 917 818 800 775 700 438 281
Schaffer’s f6 43 47 52 66 71 8 49 78 51 36
SR Griewank 0,45 0,70 0,45 0,25 0,60 0,65 0,45 0,30 0,25 0,15
Rastrigin 0,50 0,70 0,75 0,70 0,85 1 1 1 1 1
Sphere 0,65 0,60 0,30 0,70 0,35 0,70 0,50 0,35 0,20 0,15
Rosenbrock 0,60 0,65 0,80 0,60 0,65 0,90 0,80 0,75 0,60 0,20
Schaffer’s f6 0,90 0,80 0,90 0,90 0,80 0,90 0,75 0,85 0,90 0,90
Total Statistical Success 1 1 1 2 0 10 1 2 3 9
Average Iteration Number = AIN, Standard Deviation = Std, Minimum Value = Min, Success Rate = SR.
Table 5
Performance comparison of different inertia weight values.
Inertia Weight 09-04 09 0.8 0.7 0.6 0.5 04 0.3 0.2 0.1
AIN Griewank 4019 6322 5858 6430 7669 6145 6437 6363 5857 6968
Rastrigin 273 1632 793 926 2317 353 1218 1311 914 1180
Sphere 3496 6350 7221 4470 6526 5848 5038 5428 5837 6762
Rosenbrock 2927 6384 4389 5286 4465 3123 3909 5266 4713 6000
Schaffer’s f6 1762 1378 1546 2273 914 4025 2400 2000 4207 2475
Std Griewank 4398 4513 4584 4382 4039 4324 4395 4461 4582 4188
Rastrigin 274 2438 891 2158 3573 290 2342 2171 980 2326
Sphere 4259 4475 4248 4517 4323 4591 4501 4574 4605 4413
Rosenbrock 2806 4109 3784 4155 3770 3120 3311 3760 4026 4034
Schaffer’s f6 2877 1595 1588 2838 1419 4043 3339 3052 3860 3810
Min Griewank 482 353 406 650 458 528 477 648 570 608
Rastrigin 44 90 67 56 55 111 49 57 33 62
Sphere 514 480 508 505 521 545 611 483 524 634
Rosenbrock 800 858 794 799 656 668 556 856 850 981
Schaffer’s f6 8 49 31 65 21 37 6 60 106 38
SR Griewank 0,65 0,40 0,45 0,40 0,25 0,45 0,40 0,40 0,45 0,35
Rastrigin 1 0,95 1 0,95 0,85 1 0,95 0,95 1 0,95
Sphere 0,70 0,40 0,30 0,60 0,40 0,45 0,55 0,50 0,45 0,35
Rosenbrock 0,90 0,45 0,70 0,60 0,80 0,85 0,80 0,75 0,65 0,55
Schaffer’s f6 0,90 1 1 0,95 1 0,80 0,85 0,90 0,75 0,80
Total Statistical Success 10 3 3 0 4 1 2 0 2 0

Average Iteration Number = AIN, Standard Deviation = Std, Minimum Value = Min, Success Rate = SR.
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Table 6
Performance comparison of different acceleration constants.

Acceleration 1.6/ 1.65/ 1.7/ 175/ 1.8/ 1.85/ 1.9/ 192/ 1.94/ 1.96/ 1.98/ 2/2 2.02/ 2.04/ 2.06/ 2.08/ 21/ 215/ 22/ 225/ 23/ 235/ 24/

Constants (c;/cz) 24 235 23 225 22 215 21 2.08 2.06 2.04 2.02 1.98 1.96 1.94 1.92 1.9 1.85 1.8 1.75 1.7 1.65 1.6

AIN  Griewank 2088 1108 2970 2249 2884 2738 2595 2545 2645 3087 7274 4019 7255 NCS NCS NCS NCS  NCS NCS  NCS NCS  NCS NCS
Rastrigin 1573 5093 1379 1587 5603 813 500 843 1375 929 848 273 419 955 664 278 344 2043 961 726 1250 1735 1449
Sphere 1242 1309 1049 1054 948 790 2078 2572 2661 3931 1721 3496 4451 NCS NCS NCS NCS NCS NCS NCS NCS NCS NCS
Rosenbrock 5993 5029 3486 5206 4304 4960 3839 4837 3888 3358 5807 2927 3209 4912 5906 6718 8467 NCS NCS NCS NCS NCS NCS
Schaffer’s 1687 2045 473 2403 2269 2436 2567 2459 3272 2105 1859 1762 2039 2968 1744 1896 2327 2512 890 1730 2761 2540 3002
f6

Std  Griewank 2645 278 3526 2980 3615 3631 3706 3729 3692 3998 4176 4398 4202 NCS NCS NCS NCS  NCS NCS NCS NCS NCS NCS
Rastrigin 2909 3696 2171 2949 4129 845 595 2111 2417 1011 2121 274 497 2131 1003 277 648 3503 1779 1300 2330 3065 2445
Sphere 173 228 194 178 206 118 3330 3716 3675 4454 2788 4259 4534 NCS NCS NCS NCS  NCS NCS  NCS NCS  NCS NCS
Rosenbrock 3556 3412 2917 3505 3397 3607 3339 3917 3577 3387 3905 2806 3190 3850 4005 3970 2981 NCS NCS  NCS NCS  NCS NCS
Schaffer’s 2582 3158 673 3337 2756 3515 3333 3177 4030 3235 2880 2877 2572 3409 2559 2429 3073 3424 945 2598 3510 3708 3332
f6

Min Griewank 894 728 654 606 557 571 529 477 522 479 470 482 507 NCS NCS NCS NCS NCS NCS  NCS NCS NCS NCS
Rastrigin 104 435 156 110 363 68 58 82 52 56 60 44 60 64 101 39 50 61 43 35 36 27 39
Sphere 907 842 655 737 561 529 515 559 552 489 556 514 592 NCS NCS NCS NCS  NCS NCS  NCS NCS  NCS NCS
Rosenbrock 1626 1422 1111 1159 1397 1010 937 588 787 717 758 800 692 841 720 1032 1304 NCS NCS  NCS NCS  NCS NCS
Schaffer’s 53 60 4 34 36 54 27 41 31 62 34 8 33 92 59 47 30 66 83 411 6 70 66
f6

SR Griewank 090 1 0,80 0,90 080 085 0,80 0,80 0,80 0,75 0,30 0,65 030 NCS NCS NCS NCS NCS NCS NCS NCS NCS NCS
Rastrigin 090 065 095 090 055 1 1 0,95 0,95 1 0,95 1 1 0,95 1 1 1 0,85 1 1 095 090 0,95
Sphere 1 1 1 1 1 1 085 080 0,80 0,65 0,90 0,70 0,60 NCS NCS NCS NCS  NCS NCS  NCS NCS  NCS NCS
Rosenbrock 0,60 0,70 090 075 0,75 075 0,80 0,65 0,75 0,80 0,55 090 035 0,65 0,55 0,45 025 NCS NCS NCS NCS NCS NCS
Schaffer’s 095 090 1 0,85 095 085 0,85 090 0,80 0,90 0,90 090 095 0,85 0,95 0,95 095 090 1 1 085 085 0,85
f6

Total Statistical 1 4 6 1 1 4 1 1 1] 2 1 6 1 0 1 1 1 0 2 2 0 1 0

Success

Not a convenient solution for convergence and speed = NCS & (Average Iteration Number = AIN, Standard Deviation = Std, Minimum Value = Min, Success Rate = SR).
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As seen in Table 4, the parameter k (fractional fold shown in Eq.
(7) is searched in the interval [0,2]. It's seen that the first two val-
ues of TSS are 10 and 9 which are obtained when k=1 and k = 0.2,
respectively. Before the determination of an optimum value for k, if
the first two TSS values are close to each other, the importance of
the average iteration number and success rate should be taken into
consideration. These statistical measures are defined as the most
used and important ones in determining convergence performance
(Shin & Kita, 2014). The average iteration number (AIN) and suc-
cess rate (SR) measure convergence performance much better than
the standard deviation (Std) and minimum value (Min). If TSS is
calculated based on AIN and SR, the TSS when k=1 is 8, while
it's 3 when k =0.2. In light of these inferences, an optimal value
for k is found to be 1. In other words, the position boundary must
be equal to the velocity boundary for better convergence. Addition-
ally, in some applications, k = 0.2 may be used as an alternative, if
k=1 is not reliable.

As seen in Table 5, the best value of TSS is found as 10, and the
inertia weight linearly decreases (0.9 — 0.4) as advised (Shi &
Eberhart, 1999). The second best value of TSS is obtained as 4. In
other words, there is no need to compare the linear decrease with
other options because the gap between them is sufficiently large.

As suggested (Zhang, 2012), the sum of the ¢; and c; coefficients
is changed to be equal to 3.5, 4 and 4.5. However, when sum of
these coefficients is set equal to 3.5 and 4.5, convergence deterio-
rated sharply. Owing to this result, the choice of the sum as 4
stands for the unique solution to obtain an optimal value. There-
fore, the sum of coefficients is fixed to 4.

As seen in Table 6, the first two values of TSS are 6, for ¢,/
c2=2/2 and c;/c; =1.7/2.3. Due to the same TSSs, we investigated
the TSS of AIN and SR for both situations. However, it is seen that
this value was the same, 4, for both of them. At this time, we must
focus on the metrics Std and Min. In the literature, it is obvious that
Std is the more preferred metric since it reflects the determination
of convergence. The value of TSS based on Std is 2 and 1 respec-

Table 7
The used benchmark functions on comparisons.

tively for c¢;/c2=2/2 and c;/c; =1.7/2.3. Hence it can be inferred
that the optimum values for the acceleration constants are c;/
¢ =2/2. In addition, we suggest that c;/c; =1.7/2.3 be taken into
consideration in different applications in which c¢;/c; = 2/2 is not
effective.

When the optimal conditions are examined, note that trials not
defined in the tables were performed. However, they were of no
consequence because of poor convergence performance. In behalf
of not moving away from the aim, important parameter changes
are presented in tables.

According to the results, the optimal parameter values and
ranges are:

e Limit=75

L4 [Vminv Vmax] = [Xminv Xmax] &k=1
o Inertia weight=0.9 —» 0.4

° C]/CZ = 2/2

When the optimal conditions are considered, it is seen that
ScPSO has approximately the same dynamics as Standard PSO.
All the parameters (except limit) have the same optimal values as
in Standard PSO. However, a few alternative approaches for param-
eter selection are available. In unbalanced situations (bad conver-
gence), k=0.2 can be the alternative value to be used instead of
k =1. In the same way, c;/c; = 1.7/2.3 can be an alternative choice
if the option of c¢;/c; = 2/2 is not effective with regards to the con-
vergence. These second best conditions (alternative suggestions)
should only be used when there is a need. Otherwise, ScPSO is
not operated under optimal conditions.

3.2. Performance evaluation of ScPSO

After attaining the optimal conditions, ScPSO is compared with
variants of PSO (Shin & Kita, 2014) on 8 numerical benchmark
problems (Sphere, Rosenbrock, Schwefel, Weierstrass, Shifted

Function X f(x) Search Space
fr =314 [0.0]" 0 [~100,100]
[y = (100(}:,-,1 a2 (% — 1)2) (1,1 0 [~2.048, 2.048]
f; =418.9829xn — 1 | (X', sin (\x,-\]/z)) [420.968,420.968]" 0 [-500,500]
fa=>r, ( Ko [a" cos (ank(x,» + 0.5))}) — py " jomax [a" cos (2nb"0.5)} [0.0]" 0 [-0.5,0.5]
a=05b=3 Knax=20

2 0,0]" 0 ~100,100
Fs =Y (Z},lxj) [0,0] [ ]
fo=Yix+057 (oo 0 [-100,100]
f7 =Y ix} + rand(0.1) [o.0" 0 [~1.28,1.28]
fs = max|x;| [0,0]" 0 [~100,100]
o= 20 1% — TTi cos (%) +1 [0.01" 0 [~600,600]
Fr0=10%3 + 7 %2 [0,0]" 0 [-100,100]
Fi1 =% +10°2) ,%2 [0.0]* 0 [-100,100]

10 n
. 2 x,—round(2x)|\ 12 [0,0] 0 [~100,100]
Fi2 = 2114 (] + 121'3:21 lx‘—m:;,ﬂ> -9
fi3= \ELX? _ n‘l/‘l + (0-52?:1&-2 £ %)/n+05 Unknown Unknown [-100,100]
1/2 —

fuu= ‘(Z?:lxiz)z - (Z?:lxi)z‘ / + (.50 %7 + 3¢ %) /n+0.5 Unknown Unknown [~100.100]
Fis = it 1%l + TTi %) (0,0 0 [-10,10]

: 2 n _ _
Ji6 =20 (Z}:]Zj) —450 [o.0] 450 [-100,100]
f17 =311 (22 — 10cos(2mz;) + 10) — 330 [0,0]" -330 [-5,5]
fis = 2?71 (Z,Z — 10cos(2mz;) + ]0) —330 [o,0]" -330 [-5,5]

0,0 -0.5,0.5
" 90 0.5,0.

Fio=>0, ( o [ak cos (2nb" (zi + 0.5))}) — nylma [ak cos (2nb"o.5)} +90,
a=0.5,b=3 Knux=20

z is (x-0) for fi6 and f;7, and (x-0) * M for f;g and fi9. 0 = [04, 03,...,0,] is the shifted global optimum. M is the nxn orthogonal matrix.
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Schwefel’s Problem 1.2, Shifted Rastrigin, Shifted Rotated Rastrigin,
Shifted Rotated Weierstrass), with variants of ABC (Jia et al., 2014)
on 8 benchmark functions (Sphere, Schwefel’s Problem 1.2, Rosen-
brock, Step, Noisy Quartic Function, Schwefel’s Problem 2.26, Ras-
trigin, Griewank), and with PSO-ABC based hybrid techniques (Li
et al., 2015) on 8 benchmark functions (Rosenbrock; Weierstrass,
Griewank, Discus, Bent Cigar, Katsuura, HappyCat, HGBat). As seen
in Table 7, the functions used are defined as f; (Sphere), f> (Rosen-
brock), f3 (Schwefel), f; (Weierstrass), fs (Schwefel’s Problem 1.2), fs
(Step), f» (Noisy Quartic Function), fs (Schwefel’s Problem 2.21), fo
(Griewank), f1o (Discus), f;; (Bent Cigar), f;» (Katsuura), f;3 (Happy-
Cat), f14 (HGBat), f;5 (Schwefel’s Problem 2.22), f;s (Shifted Schwe-
fel), f;7 (Shifted Rastrigin), f1s (Shifted Rotated Rastrigin) and fjo
(Shifted Rotated Weierstrass).

Features of the used functions are defined in Table 8 (Beyer &
Finck, 2012; Bossek, 2017; Geitle, 2017; Jamil & Yang, 2013;
Katsuura, 1991; Pan et al., 2013; Suganthan et al., 2005; Yao, Liu,
& Lin, 1999).

During the comparison process, both of operating conditions
(optimum values and alternative solutions) are considered. In
addition, the fitness error of the algorithms is investigated using
Eq. (8) (Shin & Kita, 2014).

Fitness Error = |f;(x) — f;(x*)| i=(1,2,---,n) (8)

In Eq. (8), f{(x) means the result obtained using the optimization
method, and fi(x) symbolizes the desired convergence value.

Karaboga and Akay (2009) recommended that the values below
107'2 are assumed to be 0. In this study, error results for the func-
tions are accepted as ‘0’ for values below 1073, and the results
below this value are generally meaningless/redundant for real-
time (online) systems. Additionally, the results below 1073° do
not have sufficient areas of application.

Benchmark functions used for performance analysis are taken
from CEC2005, CEC2013, CEC 2014, CEC2015, and from the studies
of Suganthan et al. (2005) and Yao et al. (1999). These functions are

Table 8
Features of the utilized benchmark functions.

Benchmark Functions Features

fi (Sphere)
f> (Rosenbrock)

Multimodal, Separable, Scalable, Differentiable
Unimodal, Non-Separable, Scalable,
Differentiable
Unimodal, Partially-Separable, Scalable,
Differentiable
Multimodal, Separable, Scalable, Differentiable
Unimodal, Non-Separable, Scalable,
Differentiable
Unimodal, Separable, Scalable, Non-
Differentiable
f7 (Noisy Quartic Function)  Multimodal, Separable, Scalable, Differentiable
fs (Schwefel’s Problem 2.21)  Unimodal, Separable, Scalable, Non-
Differentiable
Multimodal, Non-Separable, Scalable,
Differentiable
Unimodal, Separable
Unimodal, Non-Separable, Scalable,
Differentiable
Multimodal, Non-Separable, Non-
Differentiable
f13 (HappyCat) Multimodal, Non-Separable, Scalable
f14 (HGBat) Multimodal, Non-Separable
f15 (Schwefel’s Problem Unimodal, Non-Separable, Scalable,

2.22) Differentiable
f16 (Shifted Schwefel) Unimodal, Non-Separable, Scalable, Shifted
f17 (Shifted Rastrigin) Multimodal, Separable, Scalable, Shifted
f1s (Shifted Rotated Multimodal, Non-Separable, Scalable, Shifted,

f3 (Schwefel)

fa (Weierstrass)
f5 (Schwefel’s Problem 1.2)

fe (Step)

fo (Griewank)

f10 (Discus)
f11 (Bent Cigar)

f12 (Katsuura)

Rastrigin) Rotated
f19 (Shifted Rotated Multimodal, Non-Separable, Scalable, Shifted,
Weierstrass) Rotated

utilized in a wide range and in different areas to compare opti-
mization algorithms.

3.2.1. Performance evaluation of PSO variants

As suggested, population size, maximum iteration number,
number of independent runs and dimension are respectively
arranged as 30, 10000, 20 and 30 (Shin & Kita, 2014).

Table 9 shows the performance comparison based on mean fit-
ness values. In making the comparison, the rankings of the algo-
rithms were sorted according to their success based on
convergence performance (rank =row of obtained results for all
algorithms). A fair and objective comparison was performed. The
best convergence results are in bold in Table 9.

According to the results in Table 9, for f3, f;s and f;7, SCPSO con-
verges more efficiently than other methods, and the difference
between ScPSO and the second best algorithm stays as large. Based
on the features of these functions, ScPSO proves its effectiveness
and satisfies the needs of unimodal, multimodal, separable, fully
non-separable, etc. conditions. Additionally, for other functions,
the rank of ScPSO never falls below 3" place meaning that its rank
varies between 1 and 3 (1, 2, or 3).

Total Average Rank (TAR) adds up to the mean of all ranks
obtained in all the function trials (TAR = mean (all ranks of an algo-
rithm)). The best TAR (1.625) belongs to the proposed method.
Additionally, the rank row of ScPSO is 1%, and the 2" best algo-
rithm is revealed as SP-PSO proposed by Shin and Kita (2014).
TAR of SP-PSO is achieved as 1.875 which is the only result close
to the proposed method. In the comparison based on TAR, ScPSO
is arisen as the best approach that is one step above SP-PSO.

When a comparison based on TSS was performed, ScPSO
achieved the best convergence on five of the eight benchmark
functions (Sphere, Schwefel, Shifted Schwefel’'s Problem 1.2,
Shifted Rastrigin and Shifted Rotated Weierstrass), while SP-PSO
has only two best convergence rates in the results obtained for
the Rosenbrock and Weierstrass functions.

For an in-depth analysis about comparison of PSO based vari-
ants, ScPSO cannot achieve the best results on f5, f; and f;s at which
proposed method obtains a similar result to the best score. ScCPSO
outperforms to peer techniques in other trials. For different condi-
tions like shifted & rotated, unimodal & non-separable, non-
separable & differentiable, unimodal & partially-separable etc.,
the results of ScPSO seem remarkable on continuous function
optimization.

With these results, it can be inferred that ScPSO is superior not
only to the old versions of PSO but also to two recent PSOs (SP-PSO
and SG-PSO).

3.2.2. Comparison of ScPSO with ABC variants

As suggested, population size, maximum iteration number and
independent runs are respectively set to 40, 1000 and 25 (Jia et al.,
2014).

In the trials of this section, the dimension of all functions is cho-
sen as 20. In other words, the response of ScPSO is investigated
under different circumstances (dimension, population size, maxi-
mum iteration number and independent runs) than the previous
comparison (stated in Section 3.2.1. By doing this, the consistency
of ScPSO will be revealed.

Except for the parameter limit, the optimal parameter values,
ranges and alternative solutions found in Section 3.1 are fixed.
The value of limit is set at 67 for this comparison. The reason for
the assignment of limit to 67 is related to a deduction that is pre-
sented in the Discussion section. In Table 10, ScPSO is compared
with ABC variants (Jia et al., 2014) and with GA (Jia et al., 2014)
by using the mean fitness error for the 8 benchmark functions.

According to Table 10, ScPSO converges much better than the
other methods for f;, fg and f;s. This is because ScPSO is more reli-
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Table 9

Comparison of ScPSO with PSO variants.
Function Global PSO-w  Global PSO-cf  Local PSO-w  Local PSO-cf  UPSO CLPSO SG-PSO SP-PSO ScPSO
Sphere (f1) 1.00e+03 1.82e+03 1.79e+02 1.34e+04 9.07e+03  0.00e+00  0.00e+00 1.48e—06 0.00e+00
Rank 5 6 4 8 7 1 1 2 1
Rosenbrock (f2) 1.07e+02 4.60e+02 1.27e+02 1.72e+03 1.03e+03  4.81e+01 2.08e+02  2.20e+01 3.10e+01
Rank 4 7 5 9 8 3 6 1 2
Schwefel (f3) 4.46e+03 5.84e+03 6.41e+03 7.36e+03 7.98e+03  5.46e+03 4.20e+03  4.03e+03 2.21e+03
Rank 4 6 7 8 9 5 3 2 1
Weierstrass (f4) 1.83e+00 2.70e+01 4.37e+00 2.70e+01 2.64e+01 2.42e-01 1.60e+00  0.00e+00 3.30e—01
Rank 5 8 6 8 7 2 4 1 3
Shifted Schwefel’s Problem 1.2 (f;s)  6.00e+06 5.88e+06 5.89e+06 1.01e+07 7.85e+06  5.49e+06 5.70e+06  1.73e+05 3.97e+04
Rank 7 5 6 9 8 3 4 2 1
Shifted Rastrigin (f;7) 1.38e+02 2.41e+02 2.93e+02 4.01e+02 2.48e+02  2.16e+02 1.57e+02  1.29e+02 3.75e+01
Rank 3 6 8 9 7 5 4 2 1
Shifted Rotated Rastrigin (f1g) 2.28e+02 3.96e+02 3.83e+02 5.72e+02 3.90e+02  1.70e+02  2.31e+02  1.72e+02 1.74e+02
Rank 4 8 6 9 7 1 5 2 3
Shifted Rotated Weierstrass (f;9) 2.99e+01 3.53e+01 3.37e+01 3.65e+01 3.98e+01 3.27e+01 2.77e+01 2.89e+01 2.73e+01
Rank 4 7 6 8 9 5 2 3 1
Total Average Rank (TAR) 4.5 6.625 6 8.5 7.75 3.125 3.625 1.875 1.625
Rank based on TAR 5 7 6 9 8 3 4 2 1
Total Statistical Success (TSS) 0 0 0 0 0 2 1 2 5

Table 10

Comparison of ScPSO with ABC variants and GA.
Function GA normABC BinABC DisABC BitABC ScPSO
Sphere (f1) 1.16e—02 1.42e+02 1.55e+01 8.54e+03 1.82e—-07 1.12e-10
Rank 3 5 4 6 2 1
Rosenbrock (2) 3.02e+01 1.42e+05 1.25e+02 3.81e+06 1.81e+01 1.65e+01
Rank 3 5 4 6 2 1
Schwefel’s Problem 1.2 (f5) 4.40e+03 7.48e+03 3.98e+03 1.28e+05 7.47e+03 2.02e+03
Rank 3 5 2 6 4 1
Step (f6) 5.18e+01 1.67e+02 1.89e+01 8.71e+03 0.00e+00 4.57e—13
Rank 4 5 3 6 1 2
Quartic Function i.e. Noise (f7) 1.63e-01 3.22e-01 1.24e-01 2.03e+00 5.91e-02 3.51e-02
Rank 4 5 3 6 2 1
Schwefel’s Problem 2.21 (f8) 1.63e+01 3.33e+01 1.16e+01 3.33e+01 1.42e+01 4.79e+00
Rank 4 5 2 5 3 1
Griewank (f9) 7.39e—-02 1.98e+00 1.21e+00 7.31e+01 1.45e—-05 2.45e-02
Rank 3 5 4 6 1 2
Schwefel’s Problem 2.22 (fs) 1.09e-02 4.48e—-01 1.76e+00 3.55e+01 1.91e-04 1.15e-11
Rank 3 4 5 6 2 1
Total Average Rank (TAR) 3.375 4.875 3.375 5.875 2.125 1.25
Rank based on TAR 3 4 3 5 2 1
Total Statistical Success (TSS) 0 0 0 0 2 6

able and effective in continuous, differentiable, scalable, multi- however its performance stays low for multimodal &

modal, unimodal, separable and non-separable situations. In addi-
tion, ScPSO is revealed as the only method that does not fall below
2" place (based on rank).

The best TAR (1.25) belongs to ScPSO, and the rank row of ScPSO
is found as 1. The 2™ best algorithm is arisen as BitABC proposed
by Jia et al. (2014). The TAR of BitABC is 2.125, a result which is
not a close to ScPSO’s. Therefore, SCPSO scored better than ABC
variants in the comparison based on TAR.

Based on TSS, ScPSO has a satisfactory performance with best
convergence on six of the eight benchmark functions (Sphere,
Rosenbrock, Schwefel’s Problem 1.2, Quartic Function i.e., Noise,
Schwefel’s Problem 2.21 and Schwefel’s Problem 2.22).

For an in-depth analysis about comparison of ABC based vari-
ants, ScPSO cannot achieve the best results on f; and fo. For Step
function (fs), SCPSO obtains a similar result to the best score,

non-separable situation (fg). For other conditions like unimodal &
separable, unimodal & non-separable, non-separable & differen-
tiable, etc., the results of ScPSO can be considered as valuable on
continuous function optimization.

In the light of results, it’s seen that ScPSO is partially based on
PSO, but it can outperform to both PSO and ABC variants.

3.2.3. Performance comparison with PSO - ABC based hybrid methods

As suggested, population size, maximum iteration number,
search space and independent runs are respectively set to 100,
6000, [-100,100]" and 20 (Li et al., 2015). In the trials of this sec-
tion, population size and maximum iteration number is kept high
as the dimension of all functions is chosen bigger (60). By doing
this, the consistency of ScPSO is examined in high dimensional
space.
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Table 11
Comparison of ScPSO with hybrid techniques based on PSO and ABC algorithms.

Function HPA ABC-PS PS-ABC ScPSO
Rosenbrock (2) 1.8851e+01 4.8637e—02 5.8672e+01 5.82e+01
Rank 2 1 4 3
Weierstrass (f4) 3.7219e-05 1.7459e—-03 5.4677e—-14 3.56e—-13
Rank 3 4 1 2
Griewank (f9) 5.1582e-02 1.6354e—-08 0 0

Rank 3 2 1 1

Discus (f10) 0 2.4697e—-03 0 0

Rank 1 2 1 1

Bent Cigar (f;1) 0 2.2342e-02 0 0

Rank 1 2 1 1
Katsuura (f;2) 0 0 0 0

Rank 1 1 1 1
HappyCat (fi3) 1.9535e+00 5.7008e—01 6.7675e—01 4.78e—-01
Rank 4 2 3 1

HGBat (f14) 7.6691e+00 5.0492e-01 4.2917e-01 3.26e-01
Rank 4 3 2 1

Total Average Rank (TAR) 2.375 2.125 1.75 1.375
Rank based on TAR 4 3 2 1

Total Statistical Success (TSS) 3 2 5 6

The optimal parameter values, ranges and alternative solutions
in Section 3.1 are fixed, except for the limit. The value of limit is set
at 500 for this comparison concerning the rule stated in Discussion
section. In Table 11, ScPSO is compared with the hybrid techniques
formed by ABC and PSO algorithms. Performance evaluation is per-
formed by using the mean fitness error for the 8 benchmark
functions.

According to Table 11, ScPSO achieves the best results for fo-f;4.
This is because ScPSO is effective for different conditions (multi-
modal, unimodal, separable, etc.), and it converges more reliable
than others especially in multimodal & non-separable situations
(fi12-f14). Besides, the rank of ScPSO never falls below the 3™ place
for other functions.

ScPSO owns to the best TAR value (1.375), and the rank row of
algorithm is revealed as 1. PS-ABC algorithm, proposed by Li et al.
(2015), is found as the 2™ best algorithm according to the TAR
values.

Based on TSS, ScPSO algorithm presents a remarkable perfor-
mance with best convergence on six of the eight benchmark func-
tions (Griewank, Discus, Bent Cigar, Katsuura, HappyCat and
HGBat).

For an in-depth analysis about comparison of PSO-ABC based
hybrid techniques, ScPSO cannot achieve the best results on f,
and f4. For Rosenbrock function (f,), performance of ScPSO stays
low according to HPA and ABC-PS methods. However, ScPSO
obtains a remarkable result which is close to the best one for
multimodal & separable situation (f;). On continuous function
optimization, the results of SCPSO can be considered as remarkable
for many situations like multimodal & non-separable, unimodal &
separable, multimodal & non-differentiable, etc.

Based on TSS, TAR and average performance, ScPSO outperforms
other techniques for different conditions. Although every algo-
rithm is originated from PSO and ABC methods, the combination
of reliable parts plays a key role for better convergence. Herein,
it's seen that necessary additions or efficient hybridization is
needed to perform the better convergence.

4. Discussions

The dynamics of ScPSO were investigated in Section 3.1. To
determine the best parameter values and ranges, three strategies
were followed:

o If the TSSs between the options are too close, calculate the TSSs
based on the average iteration number and success rate (TSS
criteria = TSS (AIN) + TSS(SR))

o If the TSSs based on average iteration number and success rate
are near each other, observe the TSSs based on standard devia-
tion (TSS criteria = TSS (Std))

o If the TSSs based on the standard deviation are near to each
other, but are not appropriate for the selection process, use TSSs
based on minimum value (TSS criteria = TSS (Min)).

Related to the inferences stated above, optimal parameter values
and ranges have been robustly obtained. In addition to the opti-
mum conditions, alternative situations (c;/c;=1.7/2.3 & k=0.2)
were produced, and these choices were used in the event of failure
with the obtained optimum conditions. Therefore, we see the per-
formance of ScPSO can be kept high in every circumstance (in dif-
ferent featured functions). Consequently, the produced three
strategies with respect to the literature studies, are effective in
the attainment of parameter values, ranges and alternatives.

According to the results in Tables 9-11, ScPSO owns to a supe-
rior convergence to GA, to variants of the PSO and ABC algorithms,
and to the hybrid techniques based on PSO and ABC algorithms. By
this measure, it has robust convergence in unimodal, multimodal,
separable, partially-separable, non-separable, continuous, differen-
tiable, non-differentiable, scalable, shifted and rotated cases, which
places the efficiency of the algorithm in context.

Total Average Rank (TAR) and Total Statistical Success (TSS)
were used to generate the comparison. For the first set of rankings
(a comparison based on TSS), the other orders (29, 3™, etc.) rank-
ing the convergence, were used to determine performance based
on TAR. So, an accurate and objective comparison was realized.

In Section 3.2, the basic optimization parameters (maximum
iteration number, dimension, population size and independent
runs) were changed as suggested in (Jia et al.,, 2014; Kiran &
Gunduz, 2013; Shin & Kita, 2014). This indicates that the optimal
parameter values, ranges and alternatives are obtained effectively
under varying conditions. However, a compatible limit needs to
be determined to maintain high ScPSO performance, in case the
variable circumstances pull convergence performance down to
undesired and inadequate levels. Eq. (9) was developed based on
two important optimization parameters, dimension and popula-
tion size:
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Table 12

Performance comparison of two limit values.
Function Limit

75 67

Sphere (f1) 3.50e-10 1.12e-10
Rosenbrock (f2) 1.67e+01 1.65e+01
Schwefel’s Problem 1.2 (f5) 2.17e+03 2.02e+03
Step (f6) 1.13e-12 457e-13
Quartic Function i.e. Noise (f7) 3.15e-02 3.51e-02
Schwefel’s Problem 2.21 (f8) 5.21e+00 4.79e+00
Griewank (f9) 3.49e-02 2.45e-02
Schwefel’s Problem 2.22 (f;s) 5.74e-11 1.15e-11
Total Statistical Success (TSS) 1 7

Limit = (dimension = population size) /12 9)

In the trials discussed in Section 3.2.1, population size and
dimension are both 30. Multiplication of these parameters equals
900. At this point, limit has a value of 75 which was obtained using
to Eq. (9). In Section 3.2.2 and Section 3.2.3, limit value was fixed at
67 and at 500 since it is the optimal value for parameter. In
Table 12, the limit value of 67 is compared with 75 in order to
prove the relationship between limit and dimension-population
size. Herein, this comparison has been realized in Section 3.2.2,
and presents an example to reveal the best limit choice whether
it’s a stable parameter as 75 found in Section 3.2.1 or a variable
parameter according to Eq. (9).

As seen in Table 12, TSS is found as 7 when limit = 67, while it’s
only 1 for limit = 75. This shows the parameter limit in ScPSO is not
a constant, since it’s a variable parameter that must be adjusted
according to Eq. (9).

5. Conclusions

In standard PSO, it is necessary to reproduce inadequate parti-
cles. A study eliminating this handicap was performed by Koyuncu
and Ceylan (Koyuncu & Ceylan, 2015).

In this paper, a convergence analysis of the algorithm ScPSO has
been carried out. In addition, its operating conditions have been
investigated, and ScPSO was compared with GA, with variants of
PSO and ABC algorithms, and with the hybrid techniques combin-
ing the operation of PSO and ABC algorithms. ScPSO exhibits con-
vergence and robustness to variable conditions such as unimodal,
multimodal, non-separable, etc. operating systems. A different
three step statistical test is recommended for the attainment of
optimum operating conditions.

It was seen that with the addition of parameter limit, conver-
gence performance can be increased. However, the addition of limit
should be determined by the operating circumstances, and Eq. (9)
should be considered to achieve better performance.

It was revealed that hybridization of PSO and scout bee phase
creates a more robust optimization algorithm than GA, PSO, ABC,
variants of these algorithms, and hybrid methods designed with
the use of PSO and ABC methods. Herein, hybridization has been
performed by handling the handicap in PSO, and logically, this pro-
cess has provided a faster approach. As a result, benchmark func-
tion optimization is realized more satisfying by using an efficient
algorithm (PSO) and by upgrading its performance with scout
bee phase. On most of the benchmark functions, ScPSO represented
the most reliable performance by means of better optimal solu-
tions in searching space. On the other hand, the different trials
based on various runs, iteration number and population size con-
ceived that proposed method can obtain remarkable performance
in different conditions.

In future work, an efficient hybrid optimization algorithm will
be developed. PSO, ABC, GA, Artificial Immune Recognition algo-
rithm (AIRS) and Ant Colony Optimization techniques will be used
to determine the most robust optimization algorithm for global
function optimization.
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