

T.C. KONYA TEKNİK ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

BETONARME YÜKSEK BİNALARIN TBDY-2018 KAPSAMINDA ANALİZİ

İlyas Furkan KAPIDAŞ

YÜKSEK LİSANS TEZİ

İnşaat Mühendisliği Anabilim Dalı

Ağustos - 2019 KONYA Her Hakkı Saklıdır

TEZ KABUL VE ONAYI

İlyas Furkan KAPIDAŞ tarafından hazırlanan "Betonarme Yüksek Binaların TBDY-2018 Kapsamında Analizi " adlı tez çalışması 01/08/2019 tarihinde aşağıdaki jüri tarafından oy birliği ile Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü İnşaat Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS tezi olarak kabul edilmiştir.

Jüri Üyeleri

Başkan Prof. Dr. Musa Hakan ARSLAN

Üye Dr. Öğr. Üyesi Nail KARA

Üye Dr. Öğr. Üyesi Kamil AKIN

Yukarıdaki sonucu onaylarım.

(Danışman)

Prof. Dr. Hakan KARABÖRK LEE Müdürü

TEZ BİLDİRİMİ

Bu tezdeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edildiğini ve tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

DECLARATION PAGE

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

İlyas Furkan KAPIDAŞ Tarih:01/08/2019

ÖZET

YÜKSEK LİSANS TEZİ

BETONARME YÜKSEK BİNALARIN TBDY-2018 KAPSAMINDA ANALİZİ

İlyas Furkan KAPIDAŞ

Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü İnşaat Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Musa Hakan ARSLAN

2019, 144 Sayfa

Jüri Prof. Dr. Musa Hakan ARSLAN Dr. Öğr. Üyesi Nail KARA Dr. Öğr. Üyesi Kamil AKIN

Bu çalışmada dünyada ve ülkemizde yaygınlaşan betonarme yüksek binaların (BYB) incelenmesi amaçlanmıştır. Bu amaç doğrultusunda yüksek yapı analizlerinde önemli noktalar literatür taraması ile incelenmiştir. Bu kapsamda yüksek bina sınıfı yapıların tarihsel gelişimi ve bu doğrultuda yüksek binaların taşıyıcı sistem tasarımı ve sınıflandırması ele alınmıştır. Yüksek bina sınıfı yapılara etkiyen yükler incelenmiştir. Bu yapılarda deprem yüklerinin en iyi şekilde etki edilmesi ve yapıya doğru bir şekilde etki etmesi mevcut yönetmeliklere göre etki ettirildiğinden, yürürlükte bulunan yönetmelikler incelenmiş ve eksiklikleri vurgulanmıştır. Yüksek yapıların analizinde kullanılan yönetmeliklerin tarihsel gelişimi ve bu yöndeki gereksinimler doğrultusunda atılan adımlar incelenmiştir. Ülkemizde ki eski ve yeni yönetmeliklerin yüksek yapılar için sınır ve farklılıkları ön plana çıkarılmış ve daha doğru analiz sonuçlarına varmak adına performans analizinin gereklilikleri anlatılmıştır. Mevcut yönetmeliğin yüksek bina sınıfına göre bina analiz adımları aşama aşama uygulanması gösterilmiştir.

Anahtar kelimeler: Türkiye bina deprem yönetmeliği, Türkiye deprem yönetmelikleri, yüksek yapılar, deprem, performans tabanlı tasarım.

ABSTRACT

MS THESIS

ANALYSIS OF REINFORCED CONCRETE HIGH BUILDINGS WITHIN THE SCOPE OF TBDY-2018

İlyas Furkan KAPIDAŞ

Konya Technical University Institute of Graduate Studies Department of Civil Engineering

Advisor: Prof. Dr. Musa Hakan ARSLAN

2019, 144 Pages

Jury Prof. Dr. Musa Hakan ARSLAN Asst. Prof. Dr. Nail KARA Asst. Prof. Dr. Kamil AKIN

In this study, it is aimed to examine the reinforced concrete high buildings (RCHB) which are widespread in the world and in our country. To begin with, reviewing the literature is completed to see important points in the analysis of high structures. In this context, the historical development of high building class structures and the structural system design and classification of the high buildings are discussed. In addition, loads affecting high building class structures were examined. As the earthquake loads applied to high building class structures are calculated in the best way and the accurate action is made according to the current regulations, the current regulations are examined and their deficiencies are emphasized. The historical development of the regulations used in the analysis of high structures and the steps taken in line with the requirements in this direction were examined. The limits and differences of the regulations in our country for high buildings are highlighted. Lastly, the requirements of performance analysis are explained in order to achieve more accurate analysis results. The implementation of the existing regulation according to the high building class is shown in the stages of building analysis steps gradually.

Keywords: Turkey earthquake building regulations, high rise buildings, earthquake, performance-based design.

ÖNSÖZ

Çalışmalarımın tüm aşamalarında ve yüksek lisans eğitimim boyunca bilgi ve deneyimlerinin ışığında beni yönlendirip, bana her konuda destek olan değerli hocam Prof. Dr. Musa Hakan ARSLAN'a teşekkürlerimi sunarım.

Hayatımın tüm aşamalarında olduğu gibi tezimin her aşamasında benden desteklerini esirgemeyen başta rahmetli babama ve sevgili anneme tüm kalbimle teşekkürü borç bilirim.

> İlyas Furkan KAPIDAŞ KONYA-2019

ÖZET iv
ABSTRACTv
ÖNSÖZ vi
SİMGELER VE KISALTMALAR ix
1. GİRİŞ1
1.1. Çalışmanın Amacı 2 1.2. Çalışmanın Kapsamı 2 1.2. Çalışmanın Önemi 2
2.LİTERATÜR TARAMASI4
3. YÜKSEK BİNA TANIMI ve SINIFLANDIRIMASI9
3.1. Yüksek Bina Tarihçesi93.2. Yüksek Binaların Taşıyıcı Sistem Tasarımı ve Sınıflandırılması123.2.1 Yüksek Binaların Taşıyıcı Sistem Tasarımı123.2.2. Yüksek Binaların Taşıyıcı Sistem Sınıflandırması153.3. Yüksek Bina Tasarımında Baz Alınan Yükler303.3.1. Düşey Yükler313.3.2. Yatay Yükler343.3.3. Özel Etkiye Sebep Olan Yükler37
4. YÜKSEK BİNA ANALİZİNDE HESAP ADIMLARI ve PERFORMANS ANALİZİ
 4.1. Performans Analizi Yöntemlerinin Gelişimi
5. TBDY-2018 ve IYBDY-2008 SINIRLARI ve FARKLILIKLARI46
 5.1. TBDY-2018 ve IYBDY-2008 Deprem Yönetmeliklerine Göre Örnek Betonarme Yapı Çözümü
6. ÖRNEK BETONARME BİR YAPININ İNCELENMESİ
 6.1 Hesap Modeli Tasarımı

6.2.3 Tasarım Aşaması III:DD-1 Deprem Yer Hareketi Altında Göçmenin	
Önlenmesi Performans Değerlendirmesi	108
6.3 BYS=2 Olan Örnek Bina İçin Analiz Aşamaları	123
7. SONUÇLAR ve ÖNERİLER	136
KAYNAKLAR	141
EKLER	143
EK-1: Kule Site AVM DD2,DD4 ve DD1 AFAD Deprem Raporu	143
ÖZGEÇMİŞ	144

SİMGELER VE KISALTMALAR

Simgeler	Açıklama
٨	Kolonun veva Perde Uc Bölgesinin Brüt Enkesit Alanı
	Sargi Donatisinin Disindan Disina Alinan Ölcü İçinde
TACK	Kalan Cekirdek Betonu
Δ	s Enine Donatı Aralığına Karsılık Gelen Vükseklik
1 1811	Boyunca Kolonda veva Perde Uc Bölgesindeki Tüm Etrive
	Kollarının ve Cirozların Enkesit Alanı Değerlerinin
	Gözönüne Alınan b _k 'va Dik Doğrultudaki İzdüsümlerinin
	Toplamı
A_{sb}	Bağlantı Donatısı
$\mathbf{A}_{\mathbf{t}}$	Ampirik Doğal Titreşim Periyodu Hesabında Kullanılan
	Eşdeğer Alan [m ²]
\mathbf{A}_{wj}	j'inci Perdenin Gövde Enkesit Alanı [m ²]
b _k	Birbirine Dik Yatay Doğrultuların Her Biri İçin, Kolon
	veya Perde Uç Bölgesi Çekirdeğinin Enkesit Boyutu
bw	Kirişin Gövde Genişliği, Perdenin Gövde Kalınlığı
C _h	İkinci Mertebe Hesabında Kullanılan Ampirik Katsayı
Ct	Ampirik Doğal Titreşim Periyodu Hesabında Kullanılan
	Katsayı
D	Dayanım Fazlalığı Katsayısı
d _b	Boyuna Donati Çapı (Çekmede Ortalama) [m]
E	Deprem Yük Etkisi
$Ed^{(II)}$	Y atay Deprem Etkisi
	Duşey Deprem Etkisi
I _{cd} f	Betonun Tasarım Basınç Dayanımı Datanım Ortalama (Dalanam) Dayanımı [MDa]
l _{ce} r	Betonun Ortalama (Beklenen) Dayanimi [MPa]
l _{ck}	28 Gunluk Beton Basinç Dayanımı
I _{ctd}	Betonun Tasarım Çekme Dayanımı Kasa Daviya d Daviyat İsin Yayal Zamin Etli Katasıya
f _s	Kisa Periyod Periyot için Yerel Zemin Etki Katsayısı
I _{su}	Minimum Çelik Kopma Dayanımı
I _{yd} f	Boyuna Donatinin Tasarim Akma Dayanimi Caližin Ortalama (Balilanan) Dayanimi [MBa]
lye £	Vision Ortalama (Beklenen) Dayammi [MPa]
l _{yk}	Minimum Çelik Akma Dayanimi
I _{ywd} F	Enine Donatinin Tasarim Akma Dayanimi
lywk E(X)	(X) Danram Doğrultuğunda Ünci Vat Kütle Markazine
Γ <u>iE</u> `´	(A) Depielli Dogrunusunda i inci Kat Kutte Merkezine Etkiven Esdeğer Deprem Vükü [kN]
F.	1.0 Saniye Periyod İçin Verel Zemin Etki Katsayısı
C C	Sabit Vijk Etkisi
σ	Vercekimi İvmesi $[\alpha=9.81 \text{ m/s}^2]$
s h	Döseme Kalınlığı, Kolonun Gözönüne Alınan Deprem
	Doğrultusundaki Enkesit Boyutu
h _k	Kiriş Yüksekliği
$\mathbf{H}_{\mathbf{N}}$	Binanın Bodrum Katlarının Üstündeki Üst Bölüm'ünün
	Yüksekliği
$\mathbf{h}_{\mathbf{w}}$	Kat Yüksekliği

Ι	Bina Önem Katsayısı
1	Açıklık
lı	Döşeme Uzun Kenar Açıklığı
lın	Döşeme Uzun Kenar Net Açıklığı
Ls	Kesme Acıklığı [m]
, ,	Döseme Kısa Kenar Acıklığı
-s 	Döseme Uzun Kenar Net Acıklığı
Isn T	Disetik Mafeal Boya [m]
ւր	Dordo vovo Dož Virisli Dordo Dorozovnih Dlandolzi Uzunluču
I _W	Perde veya Bag Kirişii Perde Parçasının Plandaki Ozunluğu
Iwj	j inci Perdenin Planda Ozunlugu [m]
M	Moment
M _{DEV}	Betonarme Perdenin veya Çaprazlı Çerçevenin Tabanında
	Meydana Gelen Devrilme Momenti [kNm]
$(\mathbf{M}_{\mathbf{p}})_{\mathbf{t}}$	Perde Taban Kesitinde f _{ck} , f _{yk} ve Çeliğin Dayanım Artışı
	Gözönüne Alınarak Hesaplanan Moment Kapasitesi
Mo	Binanın Tümü için Deprem Yüklerinden Tabanda Maydana
, , , , , , , , , , , , , , , , , , ,	Gelen Toplam Devrilme Momenti [kNm]
$\mathbf{M}_{\mathbf{a}}^{(\mathbf{X})}$	(X) Depremi Doğrultuşunda Binanın Tümü için Deprem
	Vüklerinden Tabanda Maydana Gelen Tonlam Devrilme
	Momenti [ItNm]
	Momenti [Kivii]
m _t	Binanin Bodrum Kallarinin Uslundeki Usl Bolumunun
	I oplam Kutlesi [t]
My	Etkin Akma Momenti [kNm]
N _d	Yük Katsayıları ile Çarpılmış Düşey Yükler ve Deprem
	Yüklerinin Etkisi Altında Hesaplanan Eksenel Kuvvet
N _{dm}	Yük Katsayıları ile Çarpılmış Düşey Yükler ve Deprem
	Yüklerinin Etkisi Altında Hesaplanan Eksenel Basınç
	Kuvvetlerinin En Büyüğü
n	Hareketli Yük Katılım Katsavısı
n	Düzgün Yavılı Yük
Р 0	Hareketli Yük Etkisi
R	Tasivici Sistem Davranis Katsavisi
к D (Т)	Öngörülen Süneklik Kenesitesi ve Perivede Peğli Denrem
$\mathbf{N}_{a}(1)$	Vülcü Azəltmə Katasıra
C	
5	Kar Yuku Etkisi
S	Enine Donati Araliĝi, Spiral/Sargi Donati Adimi
$S_{ae}(T)$	Yatay Elastik Tasarım Spektral Ivmesi [g]
$S_{aeD}(T)$	Düşey Elastik Tasarım Spektral İvmesi [g]
$S_{aR}(T)$	Azaltılmış Tasarım Spektral İvmesi [g]
S _{DS}	Kısa Periyod Tasarım Spektral İvme Katsayısı
S _{D1}	1.0 Saniye Periyod Tasarım Spektral İvme Katsayısı
Ss	Kısa Periyod Harita Spektral İvme Katsayısı
S ₁	1.0 Perivod Harita Spektral İvme Katsavısı
T	Doğal Titresim Perivodu [s]
- T.	Vatav Elastik Tasarım Snektrumu Köse Perivodu [s]
	Düsey Elastik Tasarım Spektrumu Köşe Deriyodu [5]
⊥AD T_	Votov Elastik Tasarini Spekiruniu Koşe Feliyodu [8]
I B	i atay Elastik Tasarin Spektrumu Koşe Periyodu [S]
I BD	Duşey Elastık Tasarım Spektrumu Köşe Periyodu [s]
T_L	Yatay Elastik Tasarım Spektrumu Uzun Periyodu [s]

T _{LD}	Düşey Elastik Tasarım Spektrumu Uzun Periyodu [s]
T _{pA}	Ampirik Olarak Hesaplanan Hakim Doğal Titreşim
-	Periyodu [s]
u _i ^(X)	(X) Deprem Doğrultusunda Herhangi Bir Kolon veya Perde
	İçin, i'inci Kattaki Azaltılmış Yerdeğiştirme [m]
Ve	Kolon, Kiriş, Birleşim Bölgesi ve Perde Enine Donatı
	Hesabında Esas Alınan Kesme Kuvveti
Vc	Betonun Kesme Kuvveti Dayanımına Katkısı
V_d	Yük Katsayıları ile Çarpılmış Düşey Yükler ve Deprem
	Yüklerinin Ortak Etkisi Altında Hesaplanan Kesme
	Kuvveti
Vr	Kolon, Kiriş veya Perde Kesitinin Kesme Kuvveti
	Dayanımı
$\mathbf{V}_{t,\min}$	Minimum Taban Kesme Kuvveti
$V_{tE}^{(X)}$	(X) Depremi Doğrultusunda Binanın Tümüne Toplam
	Eşdeğer Deprem Yükü (taban kesme kuvveti) [kN]
$V_{tx}^{(X)}$	Modal Hesap Yöntemlerinden Biri ile X Doğrultusu'nda
	Elde Edilen En Büyük Toplam Deprem Yükü [kN]
W	Bina Kütlesine Karşılık Gelen Ağırlık
β	Deprem Katsayısı
βv	Perde Kesme Kuvveti Dinamik Büyütme Katsayısı
Хғ	Faya Yakınlık Katsayısı
α _H	Bina Yüksekliğine Bağlı Katsayı
Vmc	Beton Güvenlik Katsavısı
Esu	Minimum Celik Kopma Uzaması
Vmc	Celik Güvenlik Katsavısı
yms V-	Esdečer Tehen Verme Vurveti Düvütme Veterviemm
У Е	Eşücgel Tabalı Kesine Kuvveti Buyutine Katsayısının Balirlanamasında Kullanılan Ampirik Vatsayı
Q (X)	Ende Xan Tahan Kanan Kanan in Diaritana Kataan
$Pte^{(-)}$	(X) Devery Devery le Divery Ninei Keter
ΔFNE	(X) Deprem Dogrultusunda Binanin N inci Katina
▲ (X)	(Y) Dennem De ženstructur de Harbon ei Din Kolon verse Dende
$\Delta_{\mathbf{i}}$	(A) Deprem Dogrunusunda Hernangi Bir Kolon veya Perde
	İçin, Ardışık iki Kat Arasındaki Yerdeğiştirme Farkimi İfada Edan Azaltılmuş Cönali Vat Ötalanmaşi [m]
$(\mathbf{A}_{\mathbf{X}}(\mathbf{X}))$	(X) Donrom Doğrultuşunda Ardışık İki Kat Araşındaki
(Δi)ort	(A) Deprem Dogrunusunda Ardışık IKI Kat Arasındaki Vərdəğistirmə Fərkimi İfadə Edən Ortalama Azəltilmiş
	Görəli Kət Ötələnməsi [m]
\$.(X)	(V) Donrom Doğrultugunda İgin. Binanın i'ingi Katındaki
Ui	(A) Deprem Dogrundsunda Teni, Dinamin Tiner Katindaki Kolon yaya Pardalar İçin Etkin Görali Kat Ötalanmaşi [m]
2	Görəli Kat Ötələnmələrinin Suurlandırılmaşında
λ	Kullenden Ampirik Ketsevi
۵ (X)	(V) Doprom Doğrultusunda Har Dir Pinci Kat İsin
OII,i`´	(A) Depieni Dogiunusunua fier Dir Finci Kat Için Tanımlanan İlringi Martaba Cöstaras Doğari
Q (X)	i anninanan ikinci wertebe Gosterge Degeri (\mathbf{X}) Degram De čeplture de Terrender Multi-
∇ II,max [`]	(A) Deprem Dogrullusunda Tanimianan Maksimum Ikinci
0	Meriebe Gosterge Degeri
Ūy O (GÖ)	Akma Durumu için Yerdegiştirmiş Eksen Donmesi [rad]
$\Theta_{p}(00)$	Goçmenin Onlenmesi Performans Düzeyi İçin İzin Verilen
	Plastik Dönme Siniri [rad]

$\boldsymbol{\theta}_{p}^{(KH)}$	Kontrollü Hasar Performans Düzeyi İçin İzin Verilen
o (SH)	Plastik Donnie Siniri [rad]
O p ^(a)	Dänne Suna [nod]
	Donme Siniri [rad]
φu	Göçme Öncesi Eğrilik [m ⁻¹]
фу	Akma Eğriliği [m ⁻¹]
Kısaltmalar	Açıklama
ATC	Applied Technology Council
FEMA	Federal Emergency Management Agency
TBDY	Türkiye Bina Deprem Yönetmeliği
DBYBHY	Deprem Bölgelerinde Yapılacak Binalar Hakkında
	Yönetmelik
İYBDY	İstanbul Yüksek Binalar Deprem Yönetmeliği
СТВИН	The Council on Tall Buildings and Urban Habitat
токі	Toplu Konut İdaresi
LATBSDS	Los Angeles Tall Buildings Structural Design Council
PEER-TBI	Pasific Earthquake Engineering Research Tall Buildings
	Initiative
ASCE/SEI	American Society of Civil Engineers Structural
	Engineering Institute
SFBID	The San Francisco Public Utilities Commission
TBI	Tall Buildings İnitiative
SEONAC	Structural Engineering Association of California
UBC	The University of British Columbia
SEOAC	Structural Engineers Association of California
VISION	Performance Based Seismic Engineering of Buildings
BYS	Bina Yükseklik Sınıfı
DTS	Deprem Tasarım Sınıfı
DD	Deprem Düzeyi
KK	Kesintisiz Kullanım
HK	Hemen Kullanım
CG	Can Güvenliğe
GÖ	Göçme Öncesi
DGT	Dayanıma Göre Tasarım
ŞGDT	Şekildeğiştirmeye Göre Değerlendirme ve Tasarım
SH	Sınırlı Hasar
KH	Kontrollü Hasar
BYB	Betonarme Yüksek Bina

1. GİRİŞ

İnsanoğlu geçmişten beridir anıtsal yapılara önem vermekte ve bu doğrultuda yapılar yapması her zaman önceliği olmuştur. Geçmişten günümüze de yapı malzemesindeki olağanüstü ilerleme, mekanik alandaki gelişmeler, yapım teknolojisindeki gelişmeler, deprem hareketlerinin daha iyi incelenmesi, tasarım ve analiz yöntemlerinin gelişmesi, bilimsel ve mühendislik alanındaki hızlı ilerleme beraberinde yüksek yapıların düşeyde yükselmesine izin vermiştir. Yerleşim merkezlerinin hızla artan nüfusu konut ve iş yerindeki taleplerin artması ve ekonomik büyümeler ile bilimsel ve teknik gelişmelerin ilerlemesini sağlamıştır.

Türkiye'de de dünyaya paralel olarak yapı stoku son yıllarda hızla artmaktadır. Bu stokun önemli bir kısmını da betonarme yapılar oluşturmaktadır. Betonarme yapıların ise azımsanmayacak kısmını ise yüksek binalar meydana getirmektedir. Geçtiğimiz 50 senede oluşmuş olan büyük ve orta şiddetli depremler göz önüne alındığında ortaya çıkan yapısal hasarların sonucunda gözlendiğinde ekonomik ve sosyal kayıpların son derece büyük olduğu görülmüştür.

Depremlerin sebep olduğu hasarları minimuma indirmek adına depremlerin oluşturacağı etkileri gerçeğe en yakın şekilde tahmin etme ve sınırlandırılması önemlidir. Fakat mevcut yönetmelikler bu konuda yetersiz kaldığından yüksek yapılar için deprem etkileri altında yeterli dayanımı öngören tasarım yöntemlerine alternatif olarak, daha ayrıntılı ve öncelikle performansa dayalı tasarım yöntemlerinin geliştirilmesi gerektiği ortaya çıkmıştır.

Başlangıç olarak ABD'de sürdürülen araştırmalar neticesinde yayımlanan şekil değiştirmeye dayalı hesaplama yöntemleri esas alındığı ATC-40 (1996), FEMA-273 (1997), FEMA-274 (1997) dokümanları; oluşabilecek ötelenmeler, şekil değiştirme ve hasar durumlarının kabaca tahmin edildiği kuvvete dayalı tasarım yaklaşımı, yerini daha gerçekçi olan performansa dayalı tasarım ilkelerine bırakmıştır. Sucuoğlu (2015)'e göre; bir yapımın performansı, belirlenmiş deprem riskleri altında yapının göreceği hasar tespiti ve muhtemel hasarın yapının kullanımı ve güvenliği üzerinde hangi düzeyde etki bırakacağını gerçekçi olasılıklarla tahmin etmektir.

Bu eksiklikler ışığında yüksek binalar için yürürlüğe girmiş olan Türkiye Bina Deprem Yönetmeliği (TBDY- 2018) ayrı bir başlık açmış ve gereksinimler ışığında yüksek yapıların deprem yer hareketinde hesaplanan tasarımı için özellikle performansa dayalı tasarım esas alınarak hazırlanmış olup bu çalışmada bu hususta ayrıntılarıyla incelenmiştir.

1.1. Çalışmanın Amacı

Bu çalışmanın amacı; ülkemizde yapılmış ve/veya yapılacak olan yüksek yapı sınıfına girecek olan binaların bulundurması gereken özellikleri tanıtılmış, aynı zaman yüksek bina sınıfına girmiş olan yapıların deprem etkileri altındaki davranışlarının mevcut ve/veya yürürlüğe yeni girmiş olan yönetmelikler altında incelenmesidir. Bu hususta mevcut ve/veya yürürlüğe yeni girmiş olan yönetmeliklerdeki yüksek bina sınıfı içinde bulunan yapıların deprem etkisi altındaki analizleri için gerekli hesap adımları ve analiz sonucunda ortaya çıkan yapı davranışının karşılaştırılması yapılarak yönetmeliklerimizdeki eksiklikler değinilmiş, yürürlüğe yeni girmiş olan yönetmeliğimizin hangi eksiklikleri doldurduğu irdelenmeye çalışılmıştır. Ayrıca çalışmanın temel motivasyonunu yüksek bina sınıfı yapı taşıyıcı sistemlerinin performansa dayalı tasarım ve değerlendirme ilkeleri kullanılarak betonarme yüksek bir yapının performans değerlendirmesi oluşturmaktadır.

1.2. Çalışmanın Kapsamı

Çalışma kapsamında sırasıyla şu konulara değinilmiştir:

- Yüksek bina sınıfı yapılar,
- Yüksek binaların taşıyıcı sistem tasarımı ve sınıflandırılmaları,
- Yüksek bina tasarımında baz alınan yükler,
- Mevcut ve yürürlüğe yeni girmiş olan yönetmeliklerin incelenmesi,
- Yüksek bina analizinde hesap adımları,
- Yüksek binaların performans tabanlı analizi başlıkları altında incelenebilir.

1.2. Çalışmanın Önemi

Betonarme yapılar geçmişten günümüze kadar yerleşim amaçlı yapılar yapmakta ve araziyi daha verimli kullanmak, mimari kaygılar gelişen mühendislik çözümlerinin de katkısı ile dikine yapılaşma giderek artmaktadır. Bunun sonucunda yüksek bina sayısı gün geçtikçe artmakta ve doğru mühendislik çözümleri önem arz etmektedir. Bu doğrultuda öncelikle yüksek binalarda daha gerçekçi çözümlemelerin yapılması için yüksek binaların tanımlanması iyi yapılması gerekir. Bu yapılarda oluşturulacak olan taşıyıcı sistem tasarımı normal yapılara göre ayrışmaktadır. Yüksek binaları diğer yapılardan ayıran bir diğer önemli etki edecek yüklemeler normal yapılara göre farklılaşmaktadır. Bu bağlamda yüksek yapılar diğer yapılardan ayrışarak deprem etkisi altında analizleri diğer yapılara göre zorlaşmakta ve gereklilikleri artmaktadır. Bu nedenle yüksek yapılarda yapılacak olan performans tabanlı analizin hesap adımları ve analiz sonuçlarının doğru yorumlanması önem arz etmektedir.

2.LİTERATÜR TARAMASI

İnsanlığın var olduğu zamandan bu yana, yeryüzündeki tüm canlılar gibi korunma ve barınma temel ihtiyaç olmuştur. Malzeme teknolojisinin geliştiği 19. yüzyıl sonlarından itibaren yapılar yükselmeye başlamış ve günümüz teknolojisinde yüksek binalar hızla yükselmeye başlamıştır. Yüksek binaların hızla yükseldiği ülkemizde de farklı sorunların karşımıza çıktığı görülmüştür.

Arslan (2009), yaptığı çalışmada; çok katlı bir hastane yapısının DBYBHY (2007)'ne göre deprem performansının doğrusal ve doğrusal olmayan yöntemlerle belirlenmesi ve karşılaştırılmasını incelemiştir.

- Bu araştırma sonucunda, zaman tanım alanında hesap yönteminde en elverişsiz koşulun elde edildiği görülmüştür. Zaman tanım alanında hesap yönteminde diğer modların da hesaba katılmış olması ve doğrusal elastik yöntem ve doğrusal elastik olmayan artırımsal eşdeğer yükü yönteminde yapının sadece birinci modunun dikkate alınarak çözüm yapılması ve elverişsiz koşulun elde edilmesine neden olmuştur.
- Doğrusal olmayan hesap yöntemlerinin uygulanırken plastik mafsal özelliklerinin tanımlanması aşaması hassas bir şekilde yapılmalıdır. Diğer elemanlar için farklı mafsal tipleri, kabuller yapılarak seçilebilir.

Başot (2010), yaptığı çalışmada; yaşanan büyük depremler sonucunda meydana gelen hasarlar ve can kayıpları ile depreme karşı dayanıklı yapıların gerekliliği ile özellikle İstanbul'da yükselen yüksek yapı inşaatlarının artması İYBDY (2008) gerekliliğini ortaya çıkarmıştır. DBYBHY (2007) ile İYBDY (2008) arasındaki karşılaştırma sonuçları sunulmuştur.

- Mod birleştirme yöntemi için İYBDY (2008) ilkelerine göre kesintisiz kullanımı kontrol edilmiştir fakat İYBDY (2008) tam olarak DBYBHY (2007) kuralları ile örtüşmemektedir. Dolayısıyla iki yönetmeliği karşılaştırabilmek için DBYBHY (2007) ile belirlenen eleman hasar bölgeleri dikkate alınmıştır. Daha sonra ise M.H.B. hariç olmak üzere diğer bölgelerdeki hasarlı elemanlar adet olarak toplanarak katta bulunan tüm eleman sayısına oranlanarak yüzdesel karşılaştırılma yapılmıştır.
- Düşey elemanlar için İYBDY (2008) D1 deprem düzeyi ile DBYBHY (2007) arasında %15, İYBDY (2008) D2 deprem düzeyi ile ise %25; kirişler için İYBDY

(2008) D1 deprem düzeyi ile DBYBHY (2007) arasında %9, İYBDY (2008) D2 deprem düzeyi ile ise %9 fark olduğu hesaplanmıştır. İYBDY (2008) mod birleştirme yöntemine göre D1 ve D2 depremleri etkisinde kesintisiz kullanım performansını kontrol etmesi aşan elemanların hasar bölgelerinin belirtilmemesi aradaki farkı açıklayabilir. İYBDY (2008) ilkelerinin aşan elemanların yüzde kaçının kabul edilebilir sınırlarda olduğu belli olmamasından dolayı kesintisiz kullanımı sağlayıp sağlamadığı hakkında karar verilemezken, DBYBHY (2007) esaslarına göre bina hemen kullanım performans düzeyini sağlamamaktadır.

- Doğrusal olmayan zaman tanım alanında hesap yöntemi sonuçları bakımından farklılıklar vardır. Bunların farklı olması İYBDY (2008) ilkelerinin göçme güvenliğini kontrol ederken, DBYBHY (2007) ilkeleri ise hangi hasar aralığında olduğunu kontrol etmektedir. Ayrıca DBYBHY (2007) ilkelerince hesaplanan hasar yüzdelerinin toplanarak kıyaslanması da bu sonuca nedendir.
- DBYBHY (2007) ilkelerince yapı performansı göçme düzeyinde çıkmasının en önemli nedeni perde elemanlarda oluşan plastik mafsallar olarak tanımlanmıştır. Yönetmelik tek bir düşey taşıyıcının bile göçme bölgesine geçmesi durumunda yapı performansını göçme öncesi durum olarak tanımlamaktadır.
- İYBDY (2008) ilkelerince değerlendiren yapı, tasarım aşaması II esaslarınca D1 depremi etkisinde ve D2 depremi etkisinde normal kuvvet ve Mx momenti bakımından, tasarım aşaması III esaslarınca şekil değiştirme üst sınır değerlerinin aşılması sebebiyle yenilenmiştir.

Karaçöp (2010), yaptığı çalışmada; yüksek yapıların deprem etkileri altında davranışını tahmin etme ve performansını değerlendirme konusunda mevcut yönetmelikler yetersiz kaldığından yüksek yapılar için özel yönetmelikler hazırlanmıştır. Bu kapsamda İYBDY (2008) ile DBYBHY (2007) karşılaştırılması yapılmıştır.

- Hareketli yük katılım katsayısı (n) İYBDY (2008)'nde 0,1 olarak belirtilirken, DBYBHY (2007)'ne göre 0,3'dür. Hareketli yük katılım sayısında azalma düşey yüklerden ve depremden meydana gelen normal kuvvetlerin kısmen azalmasına sebep olmaktadır.
- Kesme kuvveti dinamik büyütme katsayısı β'nın İYBDY (2008)'nde 2 olarak belirtilirken, DBYBHY (2007)'ne göre 1,5'dir. Yüksek binalarda her iki doğrultuda yapının hâkim periyodları çok yüksek olduğundan, yapının her iki doğrultuda taban kesme kuvveti hesabında minimum taban kuvveti baskın

gelmektedir. Bu da doğrusal analizde yapının taşıyıcı sistem davranış katsayısı (R), çok küçük değerler almaktadır.

- Dayanım fazlalığının göz önünde bulundurulduğu zaman, doğrusal olmayan analizinde göstereceği doğrusal olmayan davranış azalış göstermektedir.
- Zaman tanım alanında doğrusal olmayan analizlerinde, doğrusal olmayan davranışlarını modelleyebilmek için kullanılan lifli elemanların yapının rijitlik matrisini çok büyüterek analiz süresini uzatmıştır.

Gözütok (2011), yaptığı çalışmada; şekil değiştirme ve yer değiştirmeye dayalı hesap yöntemlerinin esas alındığı ATC-40 (1996), FEMA-273 (1997), FEMA-274 (1997) model dokümanları ile birlikte, deprem etkisi nedeniyle taşıyıcı sistemde oluşabilecek yer değiştirme, şekil değiştirme ve hasar durumlarının kabaca tahmin edildiği kuvvete dayalı tasarım yaklaşımı yerini, taşıyıcı sistem davranışının daha gerçekçi bir şekilde ele alındığı performansa dayalı tasarım ilkelerine bırakmaya başlamış ve bu çalışmada betonarme çekirdek ve çerçeve taşıyıcı sisteme sahip bir yapının performansının zaman tanım alanında doğrusal olmayan çözümleme yöntemi kullanılarak belirlenmesi ve değerlendirilmesi yapılmıştır.

- Doğrusal olmayan davranış nedeniyle taşıyıcı sistemde gözlemlenecek rijitlik azalması etkilerinin daha geniş bir ölçekte göz önüne alındığı sönüm modelinden elde edilen taban kesme kuvveti, tepe noktası yer değiştirmesi, göreli kat ötelenmesi donatı, beton ve bağ kirişi sekil değiştirmesi miktarlarının daha büyük olduğu belirlenmiştir.
- Çekirdek perdeleri donatı ve beton basınç sekil değiştirmesi miktarlarının IYBDY-2008 D2 deprem seviyesi için tanımlanan kontrollü hasar/can güvenliği performans seviyesi sınır değerlerini aşmadığı belirlenmiştir.
- Kullanılan sönüm aralığı değişiminin taşıyıcı sistemin doğrusal olmayan davranışını büyük oranda etkilediği belirlenmiştir.

Budak (2015), yaptığı çalışmada; öncelikle yüksek yapıların tasarımında performansa dayalı tasarımın gereklilikleri açıklanmıştır. Yapısal elemanların elastik ötesi modelleme yöntemleri üzerinde bir değerlendirme yapılarak yüksek yapılar için performans kriterleri üzerinde durulmuştur.

 Normal yapılardan farklı olarak, yüksek yapılar mimari kaygıları, yatay yükler altında davranışları, yüksek kalitede yapı malzemelerinin yenilikçi sistemlerle empoze edilerek kullanılmasıyla özel yapılara girmektedir. Mevcut deprem şartnamesi DBYBHY (2007), yüksek yapıların tasarımında yetersiz ve kısıtlayıcı kurallara sahiptir. Zaman tanım alanında doğrusal olmayan dinamik analiz ve performans esaslı yaklaşımların kullanılması, yüksek yapıların belirlenen farklı deprem durumlarında en olağan şekli ile tahmin imkanının sunulduğu sonucuna ulaşılmıştır.

Tunç (2016), yaptığı çalışmada; yeni deprem yönetmeliği ile alışılagelen kavramların ve tasarım kriterlerinin değişime uğradığı görülmüş ve bu değişimin özel sektör ve kamu çalışanları açısından uygulama sırasında oluşabilecek sorunlara ve eğitim alt yapısı hazırlamadan uygulamaya konulmasına dönük kararların özellikle tasarım aşamasında yaratacağı olumsuzluklara değinilmiştir.

- Yapılan çalışmada DBYBHY (2007) ve TBDY (2018)ile tasarlanmış ve analizi yapılmış aynı tipteki yapı incelendiğinde yeni yönetmeliğin etkin rijitlik katsayılarının kullanılmasının bina salınım periyodunu ve ötelenmelerini önemli ölçüde artırdığını göstermiştir.
- Yeni yönetmeliğe göre yapılan çözümde taban kesme kuvvetleri azalmıştır.
- Taban kesme kuvvetlerindeki azalmaya rağmen dayanım fazlalığı katsayısının etkisiyle özellikle kesme kuvvetlerinin belirleyici olduğu perde duvar elemanlarının yapı tasarım iç kuvvetlerinde %20-%25 arasında artış öngörülmüştür.
- Bu çalışmadan yola çıkarak yüksek katlı binaların DBYBHY (2007)'ne göre çok daha büyük tasarım kuvvetlerine maruz kalması öngörülmektedir.

Aydınoğlu (2013), yüksek binaların deprem performansına göre tasarımı, son yıllarda deprem mühendisliğinde araştırmalara konu olarak ilgi çeken uygulama alanlarındandır. Mevcut deprem yönetmelikleri yüksek binalar düşünülerek geliştirilmediğinden mevcut DBYBHY (2007) eksiklikleri ve yüksek bina analizi için gerekli yönetmelik esaslarından bahsedilmiştir.

Yüksek bina tasarımında, azaltılmış deprem yüklerinin etkisi altında doğrusal analize dayalı 'Dayanıma Göre Tasarım' yaklaşımının birçok bakımdan yetersiz, hatta sakıncalı olduğu anlaşılmıştır. 'Performansa Göre Tasarım' çerçevesinde 'Şekil değiştirmeye Göre Tasarım' yaklaşımı ile yapılması yüksek binalar için daha gerçekçi ve güvenli sonuçlar verecektir.

• Betonarme perdeler nonlineer davranışı, perde yüksekliği boyunca kesme kuvvetinin ve eğilme momenti büyüklüklerini ve değişimlerini anlamlı bir şekilde

etkilemektedir. Kesme kuvvetinde gözlenen büyütme etkisi, gevrek davranış açısından yaşamsal öneme sahiptir.

- Bağ kirişli perdelerde bağ kirişleri neredeyse her durumda doğrusal olmayan bir davranış göstermektedir. Bağ kirişlerinin doğrusal olarak ele alınması alınması göz ardı edilemeyecek hatalara yol açmakta ve bu elemanlardaki kesme kuvvetlerinden perde parçalarına aktarılan normal kuvvetlerin oluşturduğu şekil değiştirmeler hatalı olmakta ve tüm perdeyi etkilemektedir.
- Çekirdek perdeli yapılarda, üst katlardan aktarılan büyük kesme ve moment kuvvetlerinin altta çevre perdeleri ile rijitleştirilmiş bodrum katlarına aktarılmasında ortaya çıkan karmaşık davranış, zemin etkileşimi ile birlikte bodrum döşemelerinin doğrusal olmayan davranışlarının da göz önüne alınması gerekir.
- Perde ve döşeme bağlantılarında önemli ölçüde nonlineer davranış ortaya çıkmaktadır.
- Sonsuz rijit diyafram varsayımından vazgeçilerek, yüksek binalarda döşemelerin hem eğilme rijitliklerinin hem de düzlem içinin (membran) değerlendirilmesi gerekir.
- Yüksek binaların şiddetli (50 yılda aşılma olasılığı %10) ve çok şiddetli depremlerin (50 yılda aşılma olasılığı %2) etkisi altında ileri düzeydeki performans hedeflerine ulaşıp ulaşamadıklarına ilişkin değerlendirmeleri yapabilmek için mutlaka doğrusal olmayan taşıyıcı sistem modellemesine ve doğrusal olmayan analize ihtiyaç duyulmaktadır.
- Bağımsız bir tasarım kontrol sistemi ile etkin bir mekanizma oluşturularak yüksek binaların deprem tasarımlarının kapsamında denetlenmesi gerekmektedir.

3. YÜKSEK BİNA TANIMI ve SINIFLANDIRIMASI

3.1. Yüksek Bina Tarihçesi

Eski çağlardan beri insanoğlu yüksek binalar yapma konusunda büyük bir arzu ve motivasyon içinde olmuşlardır. Gökyüzü; Çatalhöyük ile başlayan ilk şehirleşmeden günümüze kadar olan süreç içerisinde insanoğlunun ulaşmak istediği öncelikli hedefi olmuştur. İlk çağlardaki Artemis Tapınağı, Babil Kuleleri, Mısır Piramitleri, Büyük İskender Feneri, Rodos Heykeli, Maya Tapınağı ve Kutup Minar gibi düşük teknoloji ve yüksek insan gücü ile yapılmış bu eserler; yüzyıllar boyunca efsanelerde yer etmiş, gücün, şanın, medeniyetin ve zenginliğin timsali olmuşlardır. (Şekil 3.1). Rekabet ve gurur kaynağı, hala yapı yüksekliği ile belirlenmekte olan en önemli etkendir.

Şekil 3.1: Babil Kulesi ve Büyük Giza Piramidi (Işık,2008)

Evvelden günümüze kadar gökyüzüne ulaşmak isteyen insanoğlunun asla vazgeçilmeyen bu gayreti sonucunda malzeme ve yapı mühendisliği alanlarında önemli aşamalar gözlemlenmiştir. Bu çabaların sonucunda tipik 5-6 katlı çerçeve yapısal taşıyıcı sistemlerden oluşan yapı tipleri olan günümüzün devasa kolonlu, olağandışı mimarilere sahip yüksek yapıları ortaya çıkmıştır.

Yüksek Bina ve Şehir Habitatı Konseyi'nin (CTBUH (2008)) tanımına göre, on ve üzeri katlı yapılar yüksek bina olarak tarif edilmiştir. Bu yükseklik, Amerika'nın New York kentindeki çok katlı yüksek yapıların yapılmaya başlandığı dönemde, itfaiyenin ulaşabileceği maksimum yükseklik olmuştur. Halen günümüzde ülkelerin geçerli yönetmeliklerine göre kat sayısı ya da binanın toplam yüksekliği baz alınarak farklı tarifler ile yüksek binalar tanımlanmıştır. Almanya'da zemin ±0 kotundan 22m ve fazlası tepe yüksekliğine çıkılması yüksek bina olarak adlandırılırken; ABD için 6 kat ve/veya

fazlası olması durumunda yüksek bina, zemin ±0 kotundan 150 m ve fazlası yüksekliğe ulaşılması durumunda gökdelen olarak adlandırılmıştır. Altan Öke ise, 'İstanbul'un geleceği ve gökdelenler' panelinde yaptığı konuşmada yüksek yapıları şöyle ayırmaktadır: Birinci kategori: 8-12 kat arasındaki, mevcut teknolojik gelişime yakın insan gücü ile imal edilebilecek ve Türkiye'de pek çok örneğinin olduğu çok yüksek olmayan binalardır. İkinci kategori; 12 ile 25 kat arasındaki yapılmış bina kategorisidir. Üçüncü kategori; 25 ila 50-55 kat arasındaki bir kat sayısına ulaşılmış olup, bu yüksekliğe ulaşmış binalar için önlem alınmaya başlanarak dizayn edilen bina kategorisidir. Dördüncü kategorideki binalar; 55-75 kat sayısı arasında olup, 75 katın üzerindeki binalar ise "süper gökdelen" olarak tanımlanmıştır. Yüksek yapılara baktığımızda; yüksekliğin hızla arttığı ve bunun yapı davranışı üzerindeki etkinliğinin açık bir şekilde gözlemlendiği, düşey yüklerin etkisinin yanı sıra yapısal tasarımda yatay yüklerin (deprem, rüzgâr gibi) öncelikli öneme sahip olduğu yapılar olarak tanımlanmıştır.

Yüksek binaların teknolojik yönden incelemesinde; yataydaki ve düşeydeki yükler altında fazladan dayanım sağlayarak, daha yüksek noktalarda daha ferah kiralanabilir alanlara ulaşılması öncelik kazarak; yenilikçi yaklaşımlarla tasarlanan taşıyıcı sistemler oluşturulmuş, yeni temel ve kazı sistemleri geliştirilmesine sebep olmuştur. Aynı zamanda hızla hareket edebilen asansörler, yeşil bina olmasını sağlayan yenilikçi iklimlendirme sistemleri, geniş çerçeveden görüş sağlayan cam yüzeyler, ferahlık sağlayan iç ve dış aydınlatma teknolojileri, iletişim, video kayıt sistemleri ve güvenlik sistemleri gibi birçok teknolojik yeniliğe öncülük eden yüksek binalar farklı öneme sahip olmuşlardır (Paltun, 2015). Yüksek çok katlı binalar 19. yüzyıl sonlarına doğru Amerika kıtasında yükselmeye başlarken, günümüzde Çizelge 3.1'den de görüldüğü gibi artan teknolojik gelişmelerin öncülüğünde bütün dünyada hızla yükselmeye başlamışlardır. Son yıllarda simgesel olarak ayrı öneme sahip binalar değişik biçimlerde, hızla artan bina yükseklikleri ile beraber; öncelikle Arap Emirlikleri'nde, ardından Uzak Doğu Asya ülkeleri Çin, Japonya, Kore, Malezya, Singapur gibi ülkelerde devam eden ve bitmiş birçok süper gökdelen gökyüzüne çıkmaktadır.

Şekil 3.2: Dünya yüksek bina dizilimi (www.tarihiolaylar.com)

Sıralama	Ülke	İsim	Yükseklik				
1	Suudi Arabistan	Kingdom Kulesi	1000m (Devam Ediyor)				
2	Dubai	Burj Khalifa	828m				
3	Çin	Shanghai Kulesi	632m				
4	Suudi Arabistan	Mekke Kulesi	601m				
5	ABD	One World Trade Center	541m				
6	Çin	Guangzhou CTF	530m				
7	Tayvan	Taipei	508m				
8	Çin	Şanghay Dün. Fin. Mer.	492m				
9	Hong Kong	Uluslararası Tic. Mer.	484m				
10	Malezya	Petronas İkiz Kuleleri	452m				
11	Çin	Zifeng Kulesi	450m				
12	ABD	Wilis Kulesi	442m				
13	Çin	KK100(Shenzhen)	441m				
14	Çin	Guangzhou U.F.M.	439m				
15	ABD	432 Park Avenue	426m				
16	ABD	Trump Kulesi	423m				
17	Çin	Jin Mao Kulesi	420m				
18	Dubai	Princess Kulesi	413m				
19	Dubai	Al Hamra Kulesi	413m				
20	Hong Kong	2 Uluslararası Fin. Mer.	412m				

Çizelge 3.1: Dünya Yüksek Bina Sıralaması

Yüksek binaların ülkemizdeki serüveni ise 2000'li yıllardan itibaren nüfusu hızlı bir şekilde artış göstermeye başlayan İstanbul ve diğer birçok şehirde, artan nüfus yoğunluğuna çare olarak yükselmeyi öncelik edinmişlerdir. İstanbul ili yapı kat adedi ve yapı yüksekliği olarak 35m'yi geçen yapı sayısı baz alındığında Avrupa'da ilk sırada yer almaktadır. Ülkemizde 1980'li yıllarda daha kısıtlı alanda daha fazla kişinin bir arada çalışması hedeflenerek iş merkezi olarak tasarlanmış yüksek binaların yapımına başlanmıştır. Tüm dünyada olduğu gibi ülkemizde de simgesel anlam taşıması amacıyla farklı öneme sahip yapıların yapımı hız kazanmıştır. Daralan şehir alanları sebebiyle son yıllarda çalışmak kadar konut tipi yüksek binalarda kalmanın prestij açısından saygınlık sağlayan bir unsur olarak ülkemizde algılanması artmaya başlamıştır. Ek olarak, devletin TOKİ (Toplu Konut İdaresi Başkanlığı) vasıtasıyla hayata geçirdiği toplu konut projelerinde nüfus yoğunluğuna yetecek yaşam alanlarının oluşturması hedefiyle; İstanbul gibi sıkışık illerde yatay mimariden çok dikey mimariye yönelimi yüksek bina sayısının hızla artmasına öncülük etmiştir.

3.2. Yüksek Binaların Taşıyıcı Sistem Tasarımı ve Sınıflandırılması3.2.1 Yüksek Binaların Taşıyıcı Sistem Tasarımı

Yüksek binalar, geniş ve uzak mesafelerden algılanmaları sebebiyle şehirlerin sembolü olma özelliğini de taşırlar. Bu sebeple şehirlerde ikon hale gelen yapıların tasarımında birtakım kaygılar ortaya çıkmaktadır. Gökyüzüne yükselen ikon yapılar; değişik formlarda sıra dışı cephe kaplamaları ile farklı bir görünüşe bürünerek sembol niteliği kazanmakta, aynı zamanda ekonomik güç veya kültürel değerleri yansıtabilmektedir. Yüksek katlı binaların tasarımı için farklı alanlarda uzmanlık gösteren birçok kişi beraber aynı anda çalışmayı gerektirmektedir. Yüksek binalarda Şekil 3.3'teki gibi değişken formlar, taşıyıcı sistem seçimlerini etkileyerek sıra dışı tasarımları ortaya çıkarmaktadır.

Yüksek binalar mimari bakış açısına göre; plan, kesit, dış görünüm, denge ve sadelik, oran ve ölçek, mekânların birbiri ile ilişkisi, görsel etki, stil ve süsleme olarak ele alınmıştır. Yüksek binalar strüktürel bakış açısına göre incelendiğinde; şekil ve büyüklük, boyutlar, dayanıklılık, stabilite, etkinlik ve ekonomi, sadelik ve açıklık, hafiflik ve incelik özelliklerine göre ele alınmıştır. Yüksek binalar düşeyde oluşturdukları kütle biçimine göre prizmatik, gittikçe daralan veya yükseldikçe içe çekilen binalar olarak tanımlanabilir.

	Outside Geometries Number of Anoles										Explored Geometry										
QZ	e r	Tomber o	3	4	5	6	7	8	9	10	Circle	Simpl 3	\triangle	A	5	B	æ	$\langle \cdot \cdot \rangle$	3	83	3
enter (\bigtriangleup		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	e Poly	Base		A	A	A	A	A	A	A
Geomo	Angles	\triangle	\mathbf{A}	圆	B	æ	8	8	æ	8	æ	gon		A	A	12345S	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A	And An	22mes	AL.
tries	1		\wedge	八	52	52	0	2	53	53	0		Base	æa	AA.	AR A		AA	æa.	<u>aa</u>	ÆA
				\sim	00	8	$\frac{\circ}{\infty}$		8	00			Тор			K.S.	Æ		E.S	and the	Z.S
	4			**	88	œ	æ	æ	œ	88	35		Тор		J.	A	A	A	as	and a	
			\Box	S	$\left(\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \end{array}\right)$		\mathbb{C}	\mathbb{C}	B	\square	\bigcirc	4		5.7	\$3	$\overline{(11)}$	£	E3	Ĩ	83	£
	5	\bigcirc	Ŷ					*	*	*	*		Base	国		団	No.				
			$\widehat{\mathbf{v}}$	53	\bigcirc	\bigcirc	\bigcirc	3	\bigcirc	\bigcirc	\bigcirc		Base			X	23				
	6	\bigcirc	X		8		8	8	88	8			Тор	圆	R	田	B	B	TT	Ħ	E.
			2,3	53	\bigcirc	3	3	63	\bigcirc	3	$\langle \cdot \rangle$		Тор		**		83	83	88	88	83

Şekil 3.3: Plan şemaları açısından çokgenlerden türetilen simetrik formlar (Paltun, 2015)

Yüksek binalar için Şekil 3.4'teki 4 ana form şekli mevcuttur. Yüksek yapıların düşey ekseni etrafında değişkenlik göstererek; yükselirken aynı anda daralan form tipleri, düşey eksen etrafında yüksekliğe dönen form tipleri, düşey eksen etrafındaki eğrisel ya da helezonik form tipleri, yükseldikçe değişmekte olan kesit formlarından oluşmaktadır.

Kutu biçimli binalara tepki olarak, modern mimarinin geliştirdiği bu formların yüksek binalarda kullanılması ortaya çıkmıştır. Günümüz teknolojik gelişimi ile birlikte taşıyıcı sistemlerinin etkinliği ve bilgisayar destekli tasarımların artması serbest formlara sahip yüksek yapıların tasarımını kolaylaştırmış ve uzaktan bakıldığında simgesel değere sahip bina sayısındaki artışı hızlandırmıştır. Geçmişte serbest formlar ve düzensiz biçimler, Peter Eisenman ve Frank Owan Gerry gibi mimarlar tarafından kullanılmıştır.

Şekil 3.4: Zemin ve bitiş durumuna göre tasarım şekilleri (Paltun, 2015)

Tarihte yapılmış anıtsal öneme sahip Mısır anıtları, Yunan tapınakları ve Roma köprüleri gibi yapılar, ampirik alışılagelmiş kurallara, sezgiye ve deneyimlere dayanan bir sanat işi olarak meydana çıkmıştır. 17. yüzyılda başlayan yapısal tasarım, rasyonel yaklaşım, sanat ve bilim, deney ve kuram arasında bir bütünlük gösterir.

Yapısal tasarım bakımında öneme sahip yapı statiği ve deneysel tecrübeler, bütün bilimsel tasarım adımlarının oluşturulması için yeterli kabul edilemez. Kuramsal incelemeyi yapabilmek için yapı davranışının mühendislik yönünden idealize edilmesi gerekir. Hesaplanmış olan iç kuvvet ve ötelenmelerin hepsi takribi değerlerdir. Bu durumda yapının yükleme ve şekil değiştirmeler altında yapı dayanımı, yapılan hipotez ve idealleştirmelerle takribi olarak hesaplanabilmektedir. Harici olarak yapıda oluşabilecek hesapta olmayan yükler ve farklı oluşan işletme koşullarının meydana gelmesi; deneysel ve yargısal düşünce yapı tasarımında önemli olmak ile birlikte, yalnızca deneysel ve yargısal düşünmenin yetersiz kalacağı ortaya çıkmaktadır.

Bir yapının başarılı bir tasarıma sahip olarak görülebilmesi, o yapının mimari işlevselliği ile yapısal dizaynın birlikte, etkin bir şekilde kompoze edilmesi anlamını taşır. 20.yy. başlarına kadar inşaat mühendisleri tarafından tasarlanmış yapılarda; mali endişelerden doğan kısıtlamalar, tahmin edilemeyen yük etkileri ile birlikte yüksek güvenlik kriterleri, yapıda kullanılan malzemelerinin öngörülen dayanımlara ulaşamaması, tasarım sırasında yapılan hesap belirsizliklerinden dolayı piramit tasarım yaklaşımı olarak nitelendirilmiş yaklaşımı kabullenmişlerdir (Klink, 1993). Yapılardaki statik ve dinamik yüklerin etkisinde, piramit tasarım yaklaşımıyla hesaplanmış bu yapılar, yapı kütleleri vasıtasıyla yani kütlesel atalet kuvvetlerinin etkinliğiyle mühendislerce karşılanmak istenmiştir. Bu yaklaşım ile gereğinden büyük kesitlere sahip, daha ağır ve daha az kullanışlı yapıların ortaya çıkmasına sebep olmuştur.

Genel olarak piramit tasarımının kullanılması, malzeme dayanımlarına bağlıdır. Tasarım sırasında, mühendislerce yapı taşıyıcı sisteminin boyutlandırılmasında, yapı elemanlarında oluşan gerilmelerin malzeme emniyet gerilmelerinin belirli bir güvenlik oranında küçük olmasını sağlaması ile elde edilmekteydi. Bu yaklaşım günümüzde yaygın olarak emniyet gerilmelerine göre tasarım adı altında günümüzde de kullanılmaktadır.

Beton teknolojinde gözlemlenen gelişmeler etkisiyle yapısal taşıyıcı elemanların boyutlandırılması alanında tasıma gücüne göre hesaplama yöntemleri geliştirilmiştir. Taşıma gücüne göre hesaplama yönteminde; yapı elemanlarının istenilen düzeyde dayanıma sahip olmaları için, arttırılmış yüklemeler altında elde edilen iç kuvvetler; yapı elemanlarının tasıma kapasiteleriyle karşılaştırılmakta ve taşıyıcı eleman boyutlandırmaları taşıma gücü hesap esaslarına göre yapılmaktadır.

Anlatılan nedenler ışığında taşıyıcı sistem tasarım ilkeleri aşağıda belirtilen adımlardan oluşur:

- Yapı tipinin ve konumunun seçimi,
- Yapıda oranların ve malzemenin seçimi,
- Yapıdaki yüklerin belirlenmesi,
- Yapının taşıyıcı elemanlarındaki iç kuvvetlerin belirlenmesi,
- İşletme koşullarında yapı performansının kontrolü,
- Son gözden geçirme ve düzeltmeler.

Malzeme imalatları, üretim teknikleri ve hesap esaslarındaki yenilikçi gelişmeler, mimari tasarım esaslarını genişleterek, yeni bir mimari bakış açısıyla bakılmasına neden olmuştur. Yüksek yapı tasarımının başarılı olması için dış ve iç kuvvet etkilerine karşı yeterli dayanıma sahip olmakla ile birlikte ekonomik yönden de makul seviyelerde olması istenir. Tasarım yapılırken aynı zaman da mekanik, sıhhi tesisat, elektrik, havalandırma ve aydınlatma gibi tamamlayıcı sistemlerinde düşünülmesi gerekmektedir.

3.2.2. Yüksek Binaların Taşıyıcı Sistem Sınıflandırması

Çok katlı yapı düşey yüklerin yansıra, rüzgâr ve depremden oluşan yatay yükleri de fazlasıyla almaktadır. Ancak adı geçen yatay kuvvetler, Şekil 3.5'teki gibi yüksekliğe göre daha hızlı artmaları sebebiyle taşıyıcı sistemde yatay yer değiştirmeler (ötelenmeler) oluştururlar. Bu nedenle belirli bir yükseklikten sonra, yapı mukavemetinin yansıra, yatay yüklere karşı yeterli rijitlik de sağlanmalıdır.

Yüksek binaların taşıyıcı sistem tasarımındaki asıl fikir, zemine konsol olarak bağlanmış yüksek dar yapı olarak uygun görülmüş sistemlerdir. Başlıca yatayda rüzgâr ve deprem etkisinden kaynaklanan yatay yüklerin oluşturduğu kuvvetler yapıyı eğme ve kesme yönünden zorlamaktadır. Yapılarda düşey yükselme ile adı geçen konsola ilişkin eğilme teorisinin ortaya konuşu ve sonrasındaki çalışmalar sonucu mümkün olmuştur. Yüksek yapılarda kullanım alanlarının sağlanması için bu düşey konsolun içinin katlarla bölünmesi gereği ortaya çıkmıştır. Böylelikle çok katlı yapının taşıyıcı sistemi, yatay kullanım alanlarını içeren döşeme sistemleri ile bunları taşıyan ve yapıyı saran düşey taşıyıcı kolon ya da yerinde dökme beton duvar sistemlerinden meydana gelmiştir. Yapının eğilmeye karşı dayanımı ise, kolonların basınçtan veya gerilmeden meydana gelen hasarlara, binanın devrilmesine ve arzu edilenden çok daha fazlası ötelenmelere izin verilmeyecek şekilde olmalıdır. Yapının eğilmeye ve kesme kuvvetlerine karşı dayanımı yeterli olsa bile yüksek binalarda meydana gelen titreşimler insanlarda deniz tutması gibi bir etki ortaya çıkarır.

Şekil 3.5: Binaların yatay kuvvetler karşısında davranışı – yatay kuvvetlerin yüksekliğe oranla artışı (Işık,2008)

Taşıyıcı sistem tasarımında, sistem elemanlarının boyutlandırılmasında yatay yüklerin etkisi, düşey yüklerin taşınması için gerekli olandan öteye geçmemelidir. Bu sebeple yükseklikle artan rüzgâr yükü ve deprem kuvvetlerinin karşılanması, artan eleman boyutlandırması ile değil, taşıyıcı sistemin etkinliği ile sağlanmalıdır. Burada önemli olan bir nokta, yüksek bir yapının taşıyıcı sistem tasarımında, taşıyıcı sistemin düşey ve yatay yükler altında davranışı ve etkinliği önemli olmakla birlikte, mimari, mekanik ve sıhhi donanım sistemlerinin çözümlenmesi istekleri de rol oynamaktadır. Binanın eğilme dayanımı Şekil 3.6'da ki gibi devrilmeye, çekme-basınç hasarlarına ve aşırı şekil değiştirmeye maruz kalmadan karşı koyabilecek yeterlilikte olmalıdır.

Eğilme etkisine, kayma etkisine ve aşırı titreşimlere karşı geliştirilen düşey yönde sürekliliğe sahip, özellikle rijitlik merkezinden mümkün olduğunca uzağa yerleşmiş elemanlardan oluşan sistemler en idealidir. Akılcı yüksek bir yapı formu mühendislik modellerine esin kaynağı olmasaydı, betonarme bir baca modeli en ideal form özelliğini koruyor olarak muhakeme edilebilirdi. Anlaşılabileceği gibi betonarme bacalarda uygulanan modüler iskelet halindeki sistem, yüksek binalar için en uygun çözüm özelliğini korumaktadır.

Şekil 3.6: Binanın eğilme dayanımı; (a) Bina devrilmemeli, (b) kolonlarda çekme veya basınçtan dolayı hasar olmamalı, (c) bina aşırı şekil değiştirme yapmamalı (Gülsoy,2003)

Zemine konsol bağlandığı düşünülerek tasarlanmış yapıların plandaki kolonların dışa yerleştirilmesi önemlidir. Planda kolonların tamamiyle dış akslarda toparlanarak uygulanabilmesi genel olarak düşünüldüğünde mümkün değildir. Özen gösterilmesi gereken husus, eğilmeye karşı en verimli dayanım gösterilebileceği yerleşim modelinin nasıl olacağıdır. Yapıdaki yatay kuvvetlerin etkisinin ölçülmesinde iki parametre kullanılır. 'Eğilme Rijitlik Endeksi' (Bending Regidity Index, BRI) ve 'Kesme Rijitlik Endeksi' (Shear Rigidity Index, SRI) olarak adlandırılmıştır. Eğilmeye karşı en etkili olan sistem yapının plandaki dört köşesinde toplanmış kolon taşıyıcı sistemidir. BRI olarak adlandırılan endekse göre; yapının dört köşesindeki kolonların toplama eğilmeye karşı atalet momentleri toplamının, tüm sistemin atalet momentleri toplamına oranıdır. Sadece binanın dört köşesine kolonlar yerleştirilerek BRI endeksi hesaplanmış olsa idi BRI=100 olarak belirlenmiş ve endeksin 100'e yaklaşması durumunda eğilmeye karşı etkinlikte artmaktadır. Şekil 3.7'deki kolonları eşit dağıtılmış bir yapının kolonları kenarlara toplanmış bir yapıya göre BRI endeksi yüze daha yakındır.

Şekil 3.7: Bina plan şekli. (a) Üniform olarak düzenlenmiş kolonlar (b) Kenarlara toplanmış kolonlar (Gülsoy,2003)

Şekil 3.8: Kolon düzenine bağlı farklı uygulamalar (Gülsoy,2003)

Yapılarda kesme rijitlik endeksi yapının yatay kuvvetler altındaki rijitliği ile doğru orantılıdır. Yapının ne kadar eğilme rijitliği artarsa, doğru orantılı olarak kesmedeki dayanımı da o kadar fazla etkinlik göstermektedir. Bu sistemler de perde betonarme duvarlar ve diyagonallerden oluşan kafes sistemler etkili rol oynamaktadır.

Yüksek binalarda uygulanan taşıyıcı sistemler, genel olarak yapıda kullanılan malzemelere göre sınıflandırılır. Bu sınıflandırma;

- Çelik taşıyıcı sistemler
- Betonarme taşıyıcı sistemler
- Kompozit (çelik ve betonarme elemanların birlikte kullanımı) taşıyıcı sistemler.

Yapıda kullanılan malzemelere göre yapılan sınıflandırmanın ardından, yük taşıyıcı sistemler olarak da ayrı bir sınıflandırması yapılmıştır. Yüksek yapılarda sık kullanılan taşıyıcı sistem sınıflandırması Khan, Iyengar ve Colaco tarafından 3 farklı sınıfta toplanmasını sağlamıştır. (Gülsoy,2003)

- Döşeme sistemleri
- Düşey yük taşıyıcı sistemler
- Yatay yük taşıyıcı sistemler

Şekil 3.9: Yüksek binalarda kayma dayanımı yüksek sistemler. (a) perde duvar (b) diyagonal çerçeve sistemleri (c) yatay ve diyagonal çerçeve sistemler (Gülsoy,2003)

Düşey yükleri taşımak adına tasarlanan çelik elemanlarından oluşan yüksek binaların ilk örneklerinde, daha sonraları rüzgâr ve deprem kuvvetlerine karşı basit çerçeveler üretilmiştir. Zamanla Şekil 3.9'daki gibi yatay kafes kirişli sistemler, büyük boyutlardaki çerçeveler, içte diyagonal çaprazlı çerçeveler ve benzerlerinin geliştirilmesiyle daha etkin ve yüksek yapılar yapılmaya başlamıştır. Günümüzde ise çok sayıda çelik yapı sistemleri kullanılmaktadır. Bununla beraber bu yapı sistemlerini yatay yüklere karşı etkinliklerine göre şu şekilde gruplandırabiliriz.

- Yarı rijit bağlantılı çerçeveler
- Rijit çerçeveler
- Çapraz çerçeveler
- Şaşırtmalı kafes sistemler
- Dış merkezli çaprazlı sistemler
- Büyük ölçekli çaprazlı sistemlerle rijit çerçevelerin beraber kullanıldığı sistemler
- Yatay kafes kirişli ve kuşaklı sistemler
- Çerçeveli tüp sistemler
- Kafesli tüp sistemler
- Demet tüp sistemler

3.2.2.1 Çelik Çerçeveli Tüp Sistemler

Tüp sistem basitçe yatay yüklere karşı yapının tamamının üç boyutlu olacak şekilde karşı koyabildiği sistem olarak tanımlanabilir. Cephede sık aralıklarla düzenlenmiş kolonlar ve yüksek dış kirişlerle düzenlenmiş yerden konsol çıkan boru şeklinde üç boyutlu olarak projelendirilirler. Yatay yüke karşı düşey bir konsol gibi davranan bu sistem yüksek binalar için oldukça etkili bir sistemdir. Tüp sistemler betonarme yapı sistemi, yapısal çelik kullanarak veya kompozit olarak kullanılarak yapılmaktadır.

Şekil 3.10: Bir tüp sistemin planı ve üç boyutlu görünümü, eksenel gerilmeler gecikme kayma etkisi göz önüne alınarak ve alınmadan (Gülsoy,2003)

3.2.2.2 Çelik Kafesli Tüp Sistemler

Kafesli tüp sistemler, yüksek binalar için klasik çözüm olan çerçeveli tüp sistemlerin etkinliklerini arttırmak için uygulanan sistemlerdir. Bu sistemlerde çerçeveli tüp sistemlerde ulaşılan bina yüksekliklerini daha da arttırmakta, kolon açıklıklarının mümkün olduğu kadar büyümesi sağlanmaktadır. Tüp sistemlerin bina yüzlerine diyagonal olarak yerleştirilen çaprazlamalar sayesinde binanın web ve flange denilen her iki yüzlerinde de meydana gelen shear lag etkilerini hemen hemen yok etmektedir. Çerçeveli tüp sistemler yatay yüklerden meydana gelen kayma gerilmeleriyle yapının yeterince rijit davranamaması sebebiyle köşe kolonlarına toparlamakta ve bu yükleri başka elemanlara aktaramamaktadır. Buda yapının bu yatay yüklere karşı maksimum etkili olabilmesi için binanın yüzlerindeki kolonlarda meydana gelen çekme ve basınç gerilmelerinin eşit olarak yayılmasının sağlanması gerekir. Kafesli tüp sistemler yapıyı

daha rijit hale getirerek bu yüklerin daha üniform olarak dağılmalarını sağlar ve shear lag etkilerini minimalize etmektedir.

Şekil 3.10: (a) Sık yerleştirilmiş çaprazlamalı tüp sistem –(b) Minimum sayıda yerleştirilmiş çapraz diyagonal tüp sistem (Gülsoy,2003)

Şekil 3.11: Çelik Kafesli Tüp Sistemler (Sesigür, 2018)

Kafesli tüp sistemlerde en etkili sistem kolonlara şaşırtmalı olarak sık yerleştirilirmiş çaprazlamalarla elde edilse de birleşim noktalarındaki detaylar ve pencere boşluklarından dolayı kullanımı pek düşünülmez. Fakat diyagonal çaprazlama ile şekil tüp çerçeveli sistemlerin etkinliğini arttıran en kullanışlı tüp kafesli sistemlerdir. Bu sistemde mümkün olduğu kadar az diyagonal çaprazlamalar kullanılarak bina yüzündeki kafes etkileşmekte üç boyutlu bir davranış gözlenmektedir.

3.2.2.3 Çelik Modüler (Demet) Kafesli Tüp Sistemler

Genel olarak tüp sistemler planda, üçgen, dörtgen, beşgen, dairesel veya kapalı tüp kesitler halinde kullanılmaktadır. Bu sistemler arasında ki en etkili form ise kare formdur. Dış tüp sistemin simetrik olmaması sebebiyle burulma rijitliği karakteristiği bakımından avantaj sağlamış olsa dahi bu süreksizlik tüp sistemin etkinliğini azaltmaktadır. Modüler tüp sistemlerde ise birkaç kapalı tüp sistemin yapboz gibi bir araya gelmesiyle oluşur ve yapıda tüp sistemlerin etkinliğinden de bir şey kaybedilmemiş olur.

Şekil 3.12: Çelik modüler kafesli tüp sistemler, Sears Tower

3.2.2.4 Betonarme Geniş Açıklıklı Çerçeveli Tüp Sistemler

Tüp sistem; daha önce belirtildiği gibi cephede sık aralıklarla yerleştirilmiş (2,5 m-4,5 m) kolonlar ve yüksek çevre kirişlerinden oluşan bir yapı sistemi olarak tanımlamaktadır. Yüksek çerçeve kirişlerinin etkisiyle sık aralıklarla döşenmiş kolonların etkisiyle yapı, yatay yüklere karşı oldukça etkili bir sistem oluşturarak uygun yapı formu elde edilmiştir.

Şekil 3.13: Geniş açıklıklı çerçeve tüp sistem planı (Gülsoy,2003)

3.2.2.5. Betonarme Çerçeveli Tüp Sistemler

Yatay yükler sebebiyle oluşan eğilme momenti, büyük ölçüde binanın yatay yüke dik yüzündeki kolonlar tarafından eksenel kuvvetler oluşturarak karşılanır. Çerçeve başlarında meydana gelen eksenel kuvvetler, bu kolonları bağlayan kirişlerin yeterince rijit olmamalarından dolayı kolonlara eşit olarak dağılmamakta ve köşe kolonlarındaki gerilmeler daha fazla olmaktadır. Bu duruma yukarıda da açıklandığı gibi kayma gecikmeleri (Shearlag) etkileri denmektedir.

Planda yakın aralıklarla yerleştirilmiş kolonlar, giriş katında kullanım alanlarını fonksiyonel olarak kullanımını zorlaştırır. Bu yüzden düşey yükleri, sık yerleştirilmiş kolonlardan alarak giriş kattaki geniş aralıklara döşenmiş kolonlara aktarması için transfer kirişleri kullanılır. Bu sayede yapıda giriş seviyesinde kullanım rahatlığı oluşturması amacıyla geniş açıklıklı kolon yerleşimi düzenlenmiştir. Bu sistemlere bir diğer alternatif ise cephede kolon yüklerini oluşturması amacıyla oluşturulan eğik kolonlardır.

Şekil 3.14: Betonarme çerçeve tüp sistem yapıda shear lag etkileri (Gülsoy,2003)

Tüp sistemin de dağılmış iç kolonlar ve perdeler, kısa açıklıklı döşemeleri ile konut tipinde kullanılan yerleşim yerlerindeki binalara uygunluk gösterirken, bir merkezi çekirdekli tüp yapıda (iç içe tüp), tüpten çekirdeğe geniş açıklıklı döşemeler, ofis-büro binaları için uygun olmaktadır.

3.2.2.6. Betonarme Kafesli Tüp Sistemler

Tüp sistemlerin öncüsü Fazlur Khan tarafından ortaya atılan bu sistemde çelik yapılar için uygulanan kafesli tüp sistem, betonarme binalarda da pencere boşlukları diyagonal düzende bloklandırılarak uygulanmıştır. Cephedeki bu yapı düzeni, kesme kuvvetlerini karşılamakta kolon ve çevre kirişlerindeki eğilme etkisini ortadan kaldırmaktadır.

Şekil 3.15: 780 Third Avunue

3.2.2.7. Betonarme Demet (Modüler) Tüp Sistemler

Betonarme demet (modüler) tüp kavramı, çelik taşıyıcı sistemler bölümünde de söz edildiği gibi, birden fazla çerçeveli tüpün, binanın yükselmesine ve yatay yüklere dayanıklılığın arttırılmasına yönelik olarak bir araya getirilmesiyle meydana gelmiş sistemlerdir. Modülleri oluşturan tüplerden her biri, çerçeveli tüp veya kafesli tüp olarak oluşturulabilmektedir. Farklı plan şemalarına sahip olabilmektedir. Bu sistemin sağladığı en önemli avantaj, bina kütlelerinin tasarımında serbestlik tanımasıdır.

Şekil 3.16: Modüler tüp sistem bir yapının görünüşü – Burj Khalifa (Gülsoy,2003)

3.2.2.8. Betonarme Çerçeveli Tüp ve Çekirdek Sistemler

Özellikle çerçeveli tüp sistemlerin kesme etkilerine karşı yetersiz kalmasıyla yapının planda iç kısmına perdelerden oluşturulan çekirdek kısmı yükü taşımaktadır. Bina kat adedinin artmasıyla çerçeveli tüp sistemlerde belirginleşen yatay rijitliğin yetersiz kalması durumu orta kısımda oluşturulan çekirdek kısmıyla artırılmaya çalışılmakta ya da dış çerçevedeki kolonların sıklaştırılmasıyla sağlanmaktadır.

Şekil 3.17: Çerçeveli tüp ve çekirdek sistem planları (Sesigür, 2018)

Şekil 3.19: Yüksek binaların taşıyıcı sistem sınıflandırması (Drosdov - Lishak 1978) (Coşkun,2006)

Şekil 3.20: Çerçeve Sistem Planları (Sesigür, 2018)

Şekil 3.21: Perdeli sistem planları; (a)Enine doğrultuda perdeli sistem, (b)Boyuna doğrultuda perdeli sistem ,(c)İki doğrultuda perdeli sistem (Sesigür, 2018)

Şekil 3.22: Çekirdek sistem planları (Sesigür, 2018)

Şekil 3.23: Tüp sistem planları (Sesigür, 2018)

Şekil 3.24: Yüksek binalar ve kullanılan taşıyıcı sistem plan kesitleri (Sesigür, 2018)

3.3. Yüksek Bina Tasarımında Baz Alınan Yükler

Yapılara etki eden yükler doğa ve insan olmak üzere iki nedenden meydana gelmektedir. Yapılara etki eden bu yükler başlıca iki gruba ayrılarak düşey ve yatay yükler olarak ayrılmıştır. Düşey ve yatay yüklerden dolayı oluşan statik, dinamik, deprem, rüzgâr gibi yüklere karşı taşıyıcı sistemler yeterli güvenliğe sahip olması istenir. Diğer yapılara oranla yüksek yapılarda yatay yüklerin etkinliği çok daha fazladır. Yapı yükseldikçe kat sayısının artması sonucunda, yatay yükler düşey yüklere göre hızla artış gösterir. Bu hızlı artış sonucunda meydana gelen ötelenmelerin önlenmesi için yeterliği rijitliğin kazanılması amacıyla yapısal sistem üzerinde plan şemasının ortaya koyulması çok önemli bir yere sahiptir.

Taşıyıcı sistemin tasarımında, yapı elemanlarının boyutlandırılmasında yatay yüklerin payı, düşey yüklerin taşınması için gerekli olandan fazlası olmamalıdır. Bundan dolayı, yükseklikle hızla artan deprem ve rüzgâr kuvvetlerinin karşılanması, artan yapı eleman boyutlandırması ile değil, taşıyıcı sistemin etkinliği ile temin edilmiş olmalıdır.

3.3.1. Düşey Yükler

Bir yapıya gelen yükler üst üste dizilmiş yatay düzlemlerdeki taşıyıcı sistemler vasıtasıyla düşey elemanlara toplayarak temele ve zemine aktarılır. Bu aktarımın düzgün olması için her kattaki düşey taşıyıcılar düzenli bir şekilde olmalıdır. Buradaki amaç optimum çözümün bulunması olmalıdır.

En üstten en alta doğru her kattan gelen yükün birikmesiyle en alt katlara inildikçe taşınan yük artacağından düşey taşıyıcı kesitleri de artmaktadır. Yalnızca çerçevelerin(kolonların) kullanıldığı sistemlerde belirli bir katın altında büyüyen kolon kesitleri sebebiyle döşeme alanları azalmaktadır. Düşey taşıyıcı sistemlerinin optimal tasarımı, çok katlı yapıların ana elemanı olan düşey ulaşım çekirdekleriyle tamamlanır.

3.3.1.1. Sabit (Ölü) Yükler

Yapı, ömrü boyunca taşıyıcıya etkiyen ve şiddeti değişmeyen ''Sabit Yükler'' adı verilen yüklere maruz kalır. Sabit yükler yapının ağırlığını oluşturur. Bazı sabit yükler Çizelge 3.2'deki gibi taşıyıcı elemanların ağırlığı, döşeme kaplamaları, çatı örtüsü, yalıtım, asma tavan vb. sabit yükler olup TS 498'de verilmiştir. Taşıyıcı sistem boyutunu hesaplamak için ağırlığa, ağırlık için ise boyuta ihtiyaç duyulması sebebiyle öncelikle yaklaşık boyutlandırma yapılması gerekir.

	Yoğunluk (kN/m³)	Tasarım Yükü (kN/ m ³)
Betonarme Betonu	25	25
Tesviye Betonu	22	22
Sıva (Kireçli Çimento Harcı)	20	20
Mermer	27	27
Meşe Ağacı	6,9	6,9
Kayın Ağacı	6,8	6,8
Isı Yalıtımlı Gazbeton	6,0	6
Dolu Tuğla Duvar	19	19
Boşluklu Tuğla Duvar	14,5	14,5
Gazbeton Dolgu Duvar	7,0	7
Gazbeton Taşıyıcı Duvar	13	13
Granit Taş Duvar	28	28

Çizelge 3.2: TS ISO 9194-1997 Ek A'dan bazı yoğunluklar

3.3.1.2. Hareketli Yükler

Sabit yüklerden farklı olarak hareketli yükler zamana, insana ve alana göre değişkenlik gösterir ve tahmin edilmeleri zordur. Bunlar insan, mobilya, hareketli bölme ve mekanik aletler gibi yapıya etkiyen fakat değişkenlik gösterip taşıyıcı sistemin bir parçası olmayan yüklerdir. Deneyim ve analitik çalışmalar sonucunda olabilecek maksimum yükleme koşulları için ampirik değerler geliştirilmiş ve ilgili yönetmeliklerde belirtilmiştir.

Hareketli yükler Şekil 3.25'teki gibi büyüklükleri, konumları ve zamana bağlı değişkenlik gösteren tekil yükler olsalar dahi, bu yüklerin tespiti zor olduğundan genellikle düzgün yayılı eşdeğer yük olarak hesaplanır. Bu eşdeğer hareketli yükler Çizelge 3.3'teki gibi yapının kullanım amacına göre geliştirilen ampirik değerler TS 498'de tablo halinde verilmiştir.

Hareketli yük değerleri yapının kullanım amacına göre değişkenlik gösterse de alan büyüdükçe hareketli yük değerleri, standartların öngördüğü değerlerin altına inebilmekte, alan küçüldükçe standart değerlerini de aşabilmektedir.

Şekil 3.25: Sabit ve hareketli yükün zamana bağlı değişimi (Işık,2008)

Şekil 3.26: Düzgün yayılı büro yükünün alana göre değişimi (hareketli yük azaltma katsayısı) (Işık,2008)

	kN/m ³
Çatı Döşemesinde	1,5
Konut Odalarında	2,0
Konut Koridorlarında	2,0
Konut Merdivenlerinde	3,5
Sınıflar, Anfiler, Polikinlik Odalarında	3,5
Konut Merdivenleri Sahanlıklarında	3,5
Konut Balkonlarında	5,0
Tiyatro ve Sinemalarda	5,0
Kütüphane, Arşıv Döşemelerinde	5,0
Hastane, Okul, Büro Merdivenlerinde	5,0
Büro, Hastane, Okul, Sinema Koridorlarında	5,0
Garajlarda (en fazla 2,5 ton olan araçlar için)	5,0
Tribünlerde (ayakta)	7,5

Çizelge 3.3: TS 498-1997'den bazı hareketli yükler

3.3.1.3. Kar, Yağmur ve Buz Yükleri

Kar kalınlığı ve yoğunluğu için uzun yıllar boyunca araştırmalar yapılmış ve bunun sonucu olarak da her bölgenin kendi katsayılarıyla birlikte kar haritaları oluşturulmuştur. Kar yükleri yalnızca çatı ve teraslarda olmaksızın yapının her yerinde hesaba katılır ve yüzeyde birikme olası maksimum kar kalınlığına dayanır. Kar yapının çatı döşemesine etkiyen farklı bir hareketli yük tipidir. Özellikle büyük kapalı alanların (hangar, pazar yeri vb.) çatısında biriken kar yüksek miktarlara çıktığında etkili olmaktadır.

Su, kara göre daha az hesaba katılan bir faktör olup, ancak çatı ve teraslarda oluk tıkanması sonucu Şekil 3.27'deki gibi zamanla değişen ağır yükler meydana getirilebilir.

Buz, özellikle çıkıntısı bulunan saçaklı yapı dış süsleme elemanlarında oldukça etkili olan bir yüktür.

Yeni yağmış, sulu olmayan yumuşak kar: 100 kg/m³

Yeni yağmış, sulu yumuşak kar: 400-500 kg/m³

Beklemiş sıkı kar: 300 kg/m³

Su: 1000 kg/m³

Buz 900 kg/ m³. Buz sudan hafiftir, bu nedenle Eisberg suda yüzer, ancak en çok %10'u su üstünde görülür. En az %90'ı su altındadır.

Şekil 3.27: Kar yoğunluğunun değişken değerleri (Işık,2008)

3.3.1.4. Konstrüksiyon Yükleri

Taşıyıcı elemanlar, tasarım sırasında sabit ve hareketli yüklere göre tasarlansa dahi yapım aşamasında bu yüklerin üzerinde ki yüklere maruz kalabilmektedir. Örneğin inşaat sırasında yapının belirli bir bölümüne biriken ağır alet ve malzemeler harici konstrüksiyon yüklerine sebep olabilir.

3.3.2. Yatay Yükler

Yüksek binalar düşey yüklerin etkisine ilave olarak, yatay yüklerin etkisiyle zemine bağlanmış dönme, kayma, eğilme etkilerindeki bir konsola benzetilmiştir.

 Yapıyı etkisi altına alan düşey ve yatay yüklerin bileşke kuvveti, yapı içerisinde kalmış olmalıdır. Bileşke kuvvetin yapı içerisinde kalmaması durumunda devrilmeler oluşmaktadır. Bileşke kuvvetin yatık olma derecesi, devrilme olasılığını bir hayli arttırmaktadır.

- Konsol kirişlerdeki eğilme etkisi, kuvvetin etkidiği tarafta çekme, diğer tarafta basınç etkisini oluşturur. Yatay yüklerden oluşan moment diyagramı en büyük değerini zeminde almaktadır. Bunun sonucunda adı geçen çekme ve basınç etkileri de en altta en büyük değerlerine ulaşırlar.
- Yatay kuvvetlerin neden olduğu kayma etkileri, konsol kirişin en kesitleri olan döşeme düzlemlerinin diyafram şeklinde çalışması ile taşıyıcı düşey elemanlara iletilmektedir. Yapıda yatay kesme kuvvetleri de en büyük değerine zeminde ulaşırlar.

Bina yüksekliği arttıkça, tüm bu etkilerin de hızla artacağı ortadadır. Meydana gelen bu artma miktarı, basit kiriş şeklindeki büyük açıklıklı bir yapıya göre çok daha büyük olumsuzluk oluşturabilmektedir. Konsol kirişlerde ve basit kirişlerdeki bu moment etkisi, "p" etkiyen düzgün yayılı yük, "l" açıklık olmak üzere;

Konsol kirişte : $M = p.l^2 / 2$

Basit kirişte : $M = p.l^2 / 8$

şeklindedir. Bu, konsola benzetilen yüksek yapının, moment açısından, yapı yüksekliğinin iki katı açıklıklı bir basit kirişe eşdeğer olduğunu gösterir. Örnek olarak 442 metre yüksekliğindeki "Sears Tower" bu açıdan 2 x 442 = 884 metre açıklıklı bir basit kirişe eşdeğerdir. Bununla birlikte kat sayısı yani bina yüksekliğinin artmasıyla yatay kuvvet etkisi daha ön plana çıkar. Düşey yükler kat sayısına göre yaklaşık olarak doğrusal artarken; yatay kuvvetler, yüksekliğe oranla çok hızlı artış gösterirler.

3.3.2.1.Deprem Yükü

Depremler, yerküre levhalarının tektonik hareketlerinin sonucunda meydana gelen enerjinin oluşturduğu yer kabuğundaki dalga hareketleridir. Deprem esnasında oluşan bu enerji, yer altı zemin katmanlarının içinden geçerek taşıyıcı sistemin temeline ulaşır. Temele ulaşan bu kuvvetler yapıda (x), (y) ve (z) doğrultusunda etki ederek yapıda dinamik hareketlere neden olur. Yapı taşıyıcı sistem elemanları bu üç eksenli harekete karşı koyacak şekilde hesaplanarak dizayn edilmelidir.

TBDY-2018 yönetmeliğine göre deprem yüklemesi olarak kayda geçmiş efektif zemin ivmesi, ivme spektrum eğrisi, bulunduğu bölgenin zemini ve faya yakınlığı gibi birçok etmen göz önüne alarak hesaplanmaktadır. Bu hesaplamalar sonucunda:

• Çok seyrek sıklıkta olan büyük şiddetteki depremlerde yapı taşıyıcı sisteminde göçme olmayacak,

- Seyrek sıklıkta olan orta şiddetteki depremlerde yapı taşıyıcı sisteminde büyük hasarlar oluşmayacak,
- Sık olan hafif şiddetteki depremlerde tüm yapının hasarsız olacak şekilde boyutlandırılması

gibi yapının kullanım amacına göre yönetmelikçe hedeflenmiş performans düzeyleri sağlanmalıdır.

3.3.2.2.Rüzgâr Yükü

Rüzgâr etkisi dinamik bir yük olup Şekil 3.28'deki gibi bir topoğrafyanın şekil ve engebesine bağlı olarak, taşıyıcı sistemin şekli ve komşu binaların dizilişi gibi etkenlere bağlıdır. Ülkemizde rüzgâr yükü TS 498-1997'e göre hesaplanır.

Rüzgârın esiş yönünde çarptığı yapı yüzeylerinde basınç, arka yüzeylerde emme kuvveti oluşur. Rüzgâr kuvvetinin birimi kN/m²'dir. W basınç kuvveti yapının geometrisine ve rüzgârın hızına bağlıdır. Rüzgâr hızı yapı yüksekliğine göre değişkenlik gösterir ve belli bir yüksekliğe kadar artar. Bu nedenle cepheye etkiyen kuvvet de yapı yüksekliğince artar.

Şekil 3.28: Rüzgâr hızının yükseklikle değişimi (Işık,2008)

TS 498-1997 yönetmeliğinden q değeri ve Cp katsayısı alınır. Çizelge 3.4 tüm Türkiye için geçerlidir. Rüzgâr hızının yüksek olduğu bölgelerde, önemli yüksek yapılarda rüzgâr hızı Meteoroloji Bölge Müdürlükleri aracılığıyla ortalama rüzgâr hızı öğrenilerek Çizelge 3.4 yardımıyla yapı yüksekliğince q değerinin belirlenmesi önem arz etmektedir.

Bir yapının herhangi bir noktasına etkiyen rüzgâr basıncının büyüklüğü, yapı geometrisi, rüzgâr yönü, rüzgâr hızı ve hava özgül ağırlığı gibi farklı etmenlere bağlıdır. Rüzgâr hızı zemin engebesine bağlı olarak azalabilmektedir. Hızı azalmış hava kütlesi, daha yüksekte esen rüzgâr hızını azaltıcı etki yapmaktadır. Daha da yukarıları çıkılmasıyla birlikte bu yavaşlatıcı etki ortadan kalkarak zemin yüzeyindeki engebenin etkisi olmamaktadır. Bu yüksekliğe gradyan rüzgâr yüksekliği adı verilmiştir.

Normal yapıların tasarımında rüzgâr yükü yapıya statik kuvvet olarak düşünülürken, asma köprüler, endüstri bacaları, yüksek kuleler, yüksek yapılar vb. yapılarda rüzgârın dinamik özelliklerine dikkate alınarak hesap yapılması gerekir.

Zeminden Yükseklik (m)	Rüzgâr Hızı v (km/h)	Dinamik Rüzgâr Basıncı (kgf/m²)
0 - 8	100	50
9 – 20	130	80
21 - 100	150	110
>100	165	130

Çizelge 3.4: Yapı Yüksekliği – Rüzgâr Hızı – Dinamik Rüzgâr Basıncı

3.3.3. Özel Etkiye Sebep Olan Yükler

3.3.3.1. Isıl Yükler

Isı değişimlerinin meydana getirdiği sünme, büzülme gibi etkilerin yapı taşıyıcı sistem elemanlarındaki iç kuvvetlere ek olarak ilave bir yük oluşturarak ilave zorlanmaları meydana getirmiştir.

3.3.3.2. Çarpma ve Dinamik Yükler

Makineler, mekanik aletler, araçlar, düşey taşıyıcılar, hareketli merdivenler gibi hareketli yük oluşturarak meydana gelen titreşimlerin oluşturduğu ani ivmelenmeler sonucunda yapıya farklı büyüklüklerde kuvvetler etki edebilmektedir. Yapıda meydana gelen titreşimleri sönümleyecek şekilde tasarlanmış olmalıdır.

4. YÜKSEK BİNA ANALİZİNDE HESAP ADIMLARI ve PERFORMANS ANALİZİ

Yapı mühendisliği alanında gelişen uygulamalar arasında performansa bağlı tasarım ve değerlendirme kavramı oldukça yaygınlaşmakta olan bir kavramdır. 1908 Messina – İtalya ve 1923 Kanto – Japonya meydana gelmiş, büyük kayıplara sebep olan depremlerden sonra ortaya atılan bu kavram, depreme dayanıklı yapı tasarımı ilkelerinin özellikle ABD'de yapılan çalışmalar sonucunda geliştirilmesiyle birlikte son halini almaya başlamıştır. Messina ve Kanto depremlerinden sonra, depreme dayanıklı yapı tasarım yönetmeliklerinde yapılara etkiyen deprem yükleri, yapı toplam ağırlığının %10'u mertebesinde olduğunu kabulünde bulunmuş ve buna dayanarak tasarım mühendisleri, genellikle çerçeve taşıyıcı sistem kullanılarak oluşturdukları yapıları tek veya birkaç çerçeve için çözümleyip uygulamaya sunmuşlardır. Çerçeve sistemlerden meydana gelen bir yapının yatay yükler altındaki kesit zorlarının belirlenmesi için Muto tarafından geliştirilen ve kendi ismiyle anılan Muto Yöntemi hesaplarda büyük kolaylıklar sağlamıştır. Bu kolaylıklardan en önemlisi, Muto yönteminin, çerçeveli sistemlerde burulma etkilerini göz önüne alarak, 3 boyutlu hesap yapma imkânı sağlamış olmasıdır. Perde ve çerçeveli sistemler için ise Prof. Adnan Çakıroğlu perdelere grup yüklemelerini kullanan kuvvet yöntemi ile çerçevelerde Muto yönteminin uygulamasını birleştirmiş ve zamanına göre oldukça ileri düzeyde pratik bir analiz yöntemi geliştirmiştir. Hesaplamalarda geliştirilen bu yöntemlerle birlikte depreme dayanıklı yapılarda gelişmeye başlamıştır. Deprem hareketlerinin gelişen teknolojiyle birlikte inceleme imkânı arttıkça yönetmeliklere deprem etkilerinin hesapları ile ilgili bölümler eklenmeye başlamıştır. Özellikle ABD' deki çalışmalar sonucu deprem yükü (UBC) deprem katsayısı 0.10 eşitliği ile ilerleyen yıllarda; Biot ve Housner tarafından davranış spektrumunun geliştirilmesiyle, yapı titreşim periyodu ile yapıya etkiyen deprem kuvvetinin birbiriyle bağıntısını anlatan dinamik katsayılar ülke yönetmeliklerinde kendine yer bulmuştur.

Ülke yönetmeliklerimize bakacak olursak; 1961 yönetmeliğinde, Bölge Katsayısı ve Zemin Katsayısına bakılarak 1958 UBC yönetmeliğinin öngördüğü gibi 0,10 olarak kabul görmüştür. 1968 yönetmeliğinde ise Zemin Katsayısı, Önem Katsayısı ve Dinamik Katsayı kavramları literatürümüzde yer bulmuştur. Önem katsayısına göre deprem katsayısı değişiklik göstermiş, β =1 iken 0.072, β =1,5 iken 0.108 olması öngörülmüştür. Malzeme emniyet katsayısı 1961 yönetmeliğinde olduğu gibi 1,5 katsayısı ile artırılması

öngörülmüştür. 1975 yönetmeliğinde ise dinamik katsayı olarak tanımlanan katsayı ise bölge katsayısını, önem katsayısını ve zemin etkisini içinde bulundurmaktadır. İlk kez yapı tipine göre kasayı belirlenmiştir. Deprem katsayısı ise sünek binalar için $\beta=1$ iken 0.10, sünek olmayan binalarda ise $\beta=1,5$ iken 0.15 öngörülmüştür. Malzeme emniyet sınır değerlerinin 1.33 katsayısı ile arttırılması öngörülmüştür.

1960'lı yıllarda ABD'de özellikle California'daki yapı mühendisleri topluluğu SEAOC'de deprem etkilerinin hesaplananlardan çok daha büyük etkilere sahip olduğu gözlenmiş ve büyük hasar ve can kayıplarının kaçınılmazlığından söz edilmiştir. Var olan yönetmelik hükümlerinin tam anlamıyla kurallara uyulduğu taktirde bile can güvenliği performansına ulaşabileceği anlayışı bulunmaktaydı. Bu anlayışın sonucunda can güvenliği bir performans hedefi olmakla birlikte tamamlayıcı diğer hedeflerde ortaya çıkmaya başlamıştır. Ülkemizde ise 1998 deprem yönetmeliği ile birlikte performansı tanımı can güvenliği ile ülkemize giriş yapmıştır.

4.1. Performans Analizi Yöntemlerinin Gelişimi

Performansa dayalı tasarım, taşıyıcı sistemlere etkiyecek muhtemel yer hareketlerinde oluşacak düşey ve yatay yüklerin etkisinde taşıyıcı elemanlarının davranışlarının diğer tasarım yöntemlerinden daha iyi tahmin edilebildiği ortaya çıkmıştır. Zamanla bilim insanları tarafından davranış spektrumu ile uyumlu olan deprem simülasyonları zaman tanım alanında geliştirilmiş ve doğrusal olmayan dinamik çözümlemeler uygulanmaya başlamıştır. Böylece taşıyıcı sistem davranışları gözlemlenmesi için belirli periyotlara bağlı aşılma olasılığı tanımlanmış tasarım depremleri oluşturulmuş ve bunlara bağlı spektral ivme değerleriyle yapıya etki ettirilmiştir.

Her yaşanılan deprem depremleri daha iyi anlamamıza sebep olmuştur. 1973 yılında SEAOC tarafından belirli bir fon ayırılarak çalışma yapılması için Applied Technology Council'i kurmuştur. ATC'nin ilk önemli çalışması bugün günümüz yönetmeliklerinin temel omurgasını oluşturan ATC 3-06 (1992) deprem yönetmeliğinin yayımlanması olmuştur.

ATC 3-06 (1992) ile deprem etkileri ve davranış spektrumu tanımı yapılmıştır. Taşıyıcı sistem grupları düzenli ve düzensiz olmak üzere ikiye ayrılıp tanımlanmış ve bulundurması gereken özellikleri tanımlanmıştır. Göreceli yapı tipi katsayısı yerine daha tutarlı olan davranış katsayısı tanımlanmıştır. Mod birleştirme yöntemi alternatif yöntem olarak tanımlanmıştır. Kapasite tasarımları detaylandırılmıştır. Göreli kat ötelenmeleri dair sınır değerleri tanımlanmıştır. Bu yönetmeliğin ülkemizdeki etkisi yaklaşık 20 yıl sonra 1998 yönetmeliği ile Türkiye'ye de yansımıştır.

VISION 2000, ATC-40 (1996), FEMA 273 (1997), FEMA 274 (1997) yönetmelikleri, performansa dayalı değerlendirme ve tasarım konusunu temel alan önemli kaynak yönetmeliklerdir. 1989 yılında Kaliforniya'da meydana gelen Lorna Prieta depremi sonrasında mevcut yapı stokunun depreme karşı incelenmesi ve değerlendirilmesi ihtiyacı gündeme gelmiştir. Son derece büyük kayıplara yol açan Kaliforniya depremi sonucunda, performansa dayalı tasarım ve değerlendirme konusu yapı ve deprem mühendisleri tarafından ön plana çıkartılmıştır. Bunun sonucu olarak; SEAOC tarafından 1995 yılında VISION-2000 adlı doküman yayımlanmıştır. VISION 2000'nin ardından ATC-40 (1996), FEMA 273 (1997) ve FEMA 274 (1997) dokümanları ABD'de yayımlanmıştır.

Performansa dayalı tasarım yaklaşımı, geleneksel dayanım odaklı tasarım yaklaşımına karşı bir alternatif olarak geliştirilmiştir. Bilindiği üzere geleneksel depreme dayanıklı yapı tasarım kuralları, yapılara etkileyen deprem yüklerinin doğrusal elastik dayanım ile doğrusal olmayan dayanım arasındaki ilişkiden yararlanılarak azaltılmasını öngörmektedir. Bu amaç doğrultusunda yönetmeliklerle belirlenen dayanım azaltma katsayıları kullanılmaktadır. Bu tasarım yaklaşımı, teorik olarak dayandığı çok sayıda kabule ve uyguladığı doğrusal elastik analiz yaklaşımına rağmen Thomas Pauley'in deprem mühendisliği pratiğine hediye ettiği kapasite tasarım ilkeleri sayesinde, deprem dayanıklı yapıların üretilmesini sağlamıştır. Kapasite tasarım yaklaşımı kullanılarak üretilmiş bir yapıda, deprem etkileri nedeniyle yapının hasar alabileceği önceden kabul edilmektedir ancak; yapının hangi bölgelerinin hasar alabileceği ve bu hasarın niteliği konusu tam olarak belli olmamaktadır.

Şekil değiştirme ve yer değiştirmeye dayalı hesaplama yöntemleri performansa dayalı tasarım yaklaşımının temelini oluşturmaktadır. Şekil değiştirmeye dayalı tasarım ve değerlendirme ilkeleri ilk kez ATC-40 (1996), FEMA-273 (1997) ve FEMA-274 (1997) yönetmeliklerinde ortaya atılmıştır. Bu üç yönetmeliğin ortak amacı, deprem nedeniyle yapı taşıyıcı sistem elemanlarında oluşabilecek plastik şekil değiştirmelerin zor hesap yöntemlerine gerek kalmadan elde edilmesini sağlamaktadır. Yapı performans değerlendirmesi statik itme analizi (Pushover) bu amaca ulaşılabildiğinin en büyük göstergesidir. Peter Fajfar'ın geliştirdiği N2 yöntemi ve Sigmun Freeman'ın geliştirdiği kapasite spektrumu yönteminin, statik itme analizi sayesinde yapı yük taşıma kapasitesiyle birlikte, iç kuvvetlerin, yer değiştirmelerin ve plastik yer değiştirmelerinde hesaplanabildiği bir analiz yöntemi olarak karşımıza çıkmıştır.

Yapı performansının belirlenmesinde statik itme analizi yetersiz kalmaktadır. Bu analiz yönteminde sistemin hâkim moduyla sınırlı kalıp, yüksek mod etkileri gözlenememektedir. Bununla kalmayıp sadece birinci mod etkilerinin hâkim olduğu, simetrik yerleşime ve burulma düzensizliğinin oldukça az olduğu yapılarda kullanımında dolayı yetersiz kalmaktadır. Yüksek mod etkilerinin de gözlenmesi amacıyla Chopra ve Goel tarafından bulunan Modal itme Analizi ile Aydınoğlu tarafından geliştirilmiş Artırımsal Spektrum Analizi yöntemleri harici deprem hareketlerinde doğrusal olmayan şekil değiştirme ve yer değiştirme büyüklerinin hesaplanabilmesi için bir başka yöntem bulunmamaktadır.

Performansa dayalı tasarım yaklaşımları tatbikîde kusursuz olmadığı gibi halen bazı eksiklikleri bulunmaktadır. Hasar seviyelerinin belirlenmesinde kullanılan plastik mafsalların sınır değerlerinin tanımlanması kısmı tartışma konusudur. ATC-40 (1996) ve FEMA 356 yönetmeliklerinde, plastik mafsal şekil değiştirme sınır değerleri çizelgeler şeklinde olup, Eurocode-8 yönetmeliğinde deneysel bağıntılar yardımıyla Şekil 4.1'deki plastik mafsal hipotezinin yapı sistem davranışı ortaya çıkmış ve DBYBHY (2007)'ne göre ise kesitteki beton ve donatı çeliği şekil değiştirmeleri cinsinden verilmiştir. TBDY (2018)'ne göre ise plastik mafsal şekil değiştirme sınır değerlerinin uygulandığı gözlemlenmiştir.

Şekil 4.1: Plastik mafsal hipotezinin geçerli olduğu yapı sistem davranışı (Gözütok,2011)

Gelişmiş ülkelerin ihtiyaçları doğrultusunda geliştirilmiş deprem yönetmelikleri performansa dayalı tasarımı esas almaktadır. Belirli deprem hareketinde yapı için sağlaması gerek yapısal davranış performans hedefi olarak adlandırılır. TBDY (2018)'ne göre yapısal performans hedefleri ise aşağıdaki gibidir;

- Kesintisiz kullanım (KK) performans düzeyi, hasarın oluşmadığı ya da ihmal edilebilir boyutta olduğu durumlar,
- Sınırlı hasar (SH) performans düzeyi, sınırlı düzeyde hasarın meydana geldiği,
- Kontrollü hasar (KH) performans düzeyi, onarılması mümkün, çok ağır olmayan hasarlar,
- Göçmenin önlenmesi (GÖ) performans düzeyi, ağır hasarların oluştuğu, göçme öncesi hasar durumunu oluşturan performans düzeyleridir.

Şekil 4.2: Performans seviyeleri ve aralıkları

4.2. Yeni Yapılacak Yüksek Binaların Analizi ile Performans Değerlendirmesi

TBDY (2018)'ne göre yeni yapılacak ve/veya yapılmış mevcut yüksek binalarda izlenecek hesap adımları yönetmeliğin 13. bölümünde Deprem Etkisi Altında Yüksek Bina Taşıyıcı Sistemlerinin Tasarım İçin Özel Kurallar uygun olacak şeklinde yapılmalıdır.

Tasarlanacak olan yapının öncelikle TBDY (2018)'de belirlenen bina yükseklik sınıflarından BYS=1 olarak tanımlanarak yüksek bina sınıfına girmesi gerekir. TBDY (2018)'ne göre bina kullanım amacına göre göre sınıflara ayrılarak BKS sınıfı belirlenir. DD-2 tasarım deprem yer hareketi düzeyi için tanımlanan Kısa Periyot Tasarım Spektral İvme Katsayısı'na bağlı olarak DTS belirlenecektir.

TBDY (2018), 13A – Yüksek Bina Taşıyıcı Sistemleri bölümüne göre Tablo 4.1'e göre süneklik düzeyi yüksek betonarme ve/veya süneklik düzeyi yüksek çelik taşıyıcı sistemler dizayn edilir. DTS = 4 olarak tanımlanan yapılar süneklik düzeyi karma betonarme ve çelik taşıyıcı sistemlere sahip olabilir.

Yüksek binaların tasarımı üç aşamalı şekilde yapılır. I. aşama ön tasarım ve boyutlandırma; II. Aşama performans değerlendirme ve iyileştirme; III. Aşama ise performans değerlendirme, iyileştirme ve son tasarımların yapıldığı kısımdır.

4.2.1. Yüksek Binaların Tasarım Aşaması

TBDY (2018)'ne göre hedeflenen dört tip performans düzeyi bulunmaktadır. Kesintisiz Kullanım (KK), taşıyıcı sistemde hasarın oluşmadığı veya ihmal edilebilir düzeyde oluştuğu; Sınırlı Hasar (SH), taşıyıcı sistemde sınırlı düzeyde hasarın meydana geldiği, doğrusal olmayan hasarın ihmal edilebilir düzeyde olduğu; Kontrollü Hasar (KH), taşıyıcı sistemde onarılması mümkün, çok ağır olmayan, can güvenliğini sağlayan kontrollü hasar seviyesi olan; Göçmenin Önlenmesi (GÖ), taşıyıcı sistemin ağır bir şekilde hasar aldığı, kısmen veya tamamen göçmenin önlendiği göçme öncesi seviyesinde oluşan performans düzeylerinden oluşur.

I.Tasarım aşamasında standart tasarım deprem düzeyi olanı DD-2 yer hareketinin etkisinde Kontrollü Hasar performans hedefinin sağlanması hedeflenmiş olup Dayanıma Göre Tasarım (DGT) yaklaşımı ile ön tasarım ve boyutlandırması yapılması gerekir.

Seçilen bina taşıyıcı sistemine göre TBDY (2018)'de verilen Taşıyıcı Sistem Davranış Katsayısı R ve Dayanım Fazlalığı Katsayısı D seçilip gerekli kurallar çerçevesinde deprem tasarım sınıfına göre R katsayısı (4/5)R olarak azaltmaya gidilebilir.

DD-2 deprem hareketinde istenilen performans düzeyine ulaşabilmek için Mod Birleştirme Yöntemi ile Lineer Üç Boyutlu Analiz veya Zaman Tanım Alanında Mod Toplama Yöntemi ile Lineer Üç Boyutlu Analiz hesabı yapılacaktır. Kullanılan taşıyıcı sisteme göre TBDY (2018)'de Bölüm.7 dökme betonarme bina taşıyıcı sistem tasarımı, Bölüm.8 prefabrik betonarme bina taşıyıcı sistem tasarımı ve Bölüm.9 çelik bina taşıyıcı sistem tasarım kurallarına uyularak ön tasarım yapılacaktır.

II. Tasarım aşamasında DTS sınıfına bağlı olarak; DTS=1, 2, 3, 3a, 4, 4a için Normal Performans Hedefleri, DTS=1a, 2a için ise İleri Performans Hedefi seçilmelidir. Deprem tasarım sınıfına göre TBDY (2018) Tablo 3.4 (b)'ye göre normal performans hedefinde DD-4 deprem ver hareketinde Kesintisiz Kullanım (KK) hedef performans olup Dayanıma Göre Tasarım baz alınırken; ileri performans hedefinde DD-3 deprem yer hareketinde hedef performans Sınırlı Hasar (SH) hedef performans olup Şekil değiştirmeye Göre Değerlendirme ve Tasarım (ŞGDT) yapılacaktır. Normal performans hedefinde TBDY (2018) Tablo 4.4'te verilen kurallara uyulması halinde Esdeğer Deprem Yükü Yöntemi uygulanabileceği binalardır. Uygulanamaması durumunda ise Mod Birleştirme Yöntemi ile Lineer Üç Boyutlu Analiz veya Zaman Tanım Alanında Mod Toplama Yöntemi ile Lineer Üç Boyutlu Analiz hesabı yapılacaktır. İleri performans hedefinde ise Zaman Tanım Alanında Nonlineer Üç Boyutlu Analiz hesabı yapılacaktır. İleri performans hedefinde değerlendirmeye esas şekil değiştirmelerin bulunması için en az 2 x 11 = 22 hesabin ortalaması esas alınacaktır. Normal performans hedefinde; sünek davranışa sahip elemanlarda etki(talep)/kapasite E/K =1.5 ve/veya sünek olmayan davranışa sahip elemanlarda E/K =0,7 değerini aşmaması gerekir. İleri performans hedefinde ise izin verilen sargılı beton birim kısalması $\varepsilon_{c}^{(SH)} = 0.0025$ ve izin verilen donatı birim şekil değiştirme sınırı $\varepsilon_s^{(SH)} = 0.0075$ koşullarını sağlaması gerekir. TBDY (2018)'de 5.4.5.2'de tanımlanan etkin kesit rijitliği kullanılarak yapılan hesapta plastik mafsal oluşumuna izin verilmeyecektir.

II. tasarım aşamasında normal ve/veya ileri performans hedeflerinin sağlanamaması durumunda ön tasarım değiştirilerek, I. aşama deprem hesapları tekrarlanacaktır.

III. Tasarım aşamasında, I. ve II. Aşamalarda istenilen performans hedeflerine ulaşan yüksek bina, deprem tasarım sınıfına göre DD-1 deprem yer hareketinde TBDY (2018)'ye göre normal performans hedefinde Göçmenin Önlenmesi (GÖ), ileri performans hedefinde Kontrollü Hasar (KH) hedeflenen performanslarını sağlamalıdır. Kontrollü Hasar (KH) hedef performans olup Şekil değiştirmeye Göre Değerlendirme ve Tasarım (ŞGDT) yapılacaktır. Performans hedefinin gerçekleştirilip gerçekleştirilemediğini Zaman Tanım Alanında Nonlineer Üç Boyutlu Analiz hesabı yapılarak kontrolü sağlanacaktır. Sistem elemanlarının değerlendirilmesinde esas alınmak üzere sönüm oranı %2,5 ve yük birleşim etkisi, deprem etkisinin, düşey yük etkisi ile birleşimi tanımlanmıştır:

$$G + Q_e + 0.2 S + Ed^{(H)} + 0.3Ed^{(Z)}$$

G, sabit yük etkisini, S, kar yükü etkisini, Ed^(H) düşey deprem etkisini, Ed^(Z) yatay deprem etkisini, Q_e ise TBDY (2018)'de verilen Hareketli Yük Katılım Katsayısı n

kullanılarak Q=nQ olarak hesaplanan değerdir. Hedeflenen performans değerlendirmesinde esas alınacak şekil değiştirme ve iç kuvvet taleplerinin bulunması için 2 x 11 = 22 hesabın her birinden elde edilen sonuçlarının ortalamasının standart sapma eklenmesi ile ortalama değerin 1.5 katından fazla ve 1.2 katından az olmayacak şekilde bulunması ile değerlendirmeye esas alınır. Normal performans hedefi Göçmenin Önlenmesi (GÖ) performans hedefinin değerlendirmesi için TBDY (2018)'de verilen beton ve donatı çeliği birim şekil değiştirmeleri ile plastik dönmeler için verilen sınır değerleri sağlanacaktır. İleri performans hedefi Kontrollü Hasar(KH) performans değerlendirmesinde Göçmenin Önlenmesi için hesaplanan birim şekil değiştirme ve plastik dönme sınır değerleri 0.75 katsayısı ile çarpılarak hesaplanacaktır. Normal ve ileri performans değerlendirmesinde ki iç kuvvet kapasite hesabında ortalama malzeme dayanımları esas alınacaktır. III. Tasarım aşamasında her bir katta hesaplanan en az 2 x 11 = 22 hesap sonucu elde edilen göreli kat ötelenmesi oranı %3'ü, tek bir deprem hesabından elde edilen göreli kat ötelenmesi oranı ise %4,5'i geçmeyecektir.

III. tasarım aşamasında normal ve/veya ileri performans hedeflerinin sağlanamaması durumunda taşıyıcı sistemde iyileştirmeler yapılarak analizler tekrar edilecektir ve bu tasarım geliştirilerek değerlendirmeye esas şekil değiştirme, iç kuvvet ve göreli kat ötelenmesi taleplerinin performans sınırlarından daha küçük olduğu gösterilecektir.

Yüksek bina temelleri ise öncelikle I. Tasarım aşamasına göre ön boyutlandırması yapılır, III. Tasarım aşamasında DD-1 deprem yer hareketinde performans değerlendirmesinde esas kuvvet taleplerine göre hesap yapılacaktır. Kazıklı temellerde ise yapı-kazık-zemin dinamik etkileşimli şekilde hesaplanacaktır.

Yapılan değerlendirme ve tasarım süreçlerinde, Çevre ve Şehircilik Bakanlığı tarafından eğitim koşulları, mesleki yeterlilik ve deneyim konularını sağlayan kişilerin belgelendirmesi ile oluşan uzman kişilerden bu süreçte tasarım ve gözetim kontrolü hizmeti almak zorundadırlar.

Yüksek bina sınıfına giren yapılarda, DTS = 1, 1a, 2, 2a sınıfı binalardan HN>105m olanlarda, kayıtların gerçek zamanlı olarak Afet ve Acil Durum Yönetimi Başkanlığı ve yapı sahibi tarafından tutulmasına imkân verecek şekilde, Başkanlıkça yayımlanan yönergeye uygun bir yapı sağlığı izleme sistemi kurulacaktır. Sistem uygulama projelerinde gösterilecektir.

5. TBDY-2018 ve IYBDY-2008 SINIRLARI ve FARKLILIKLARI

Üçüncü bölümde detayları anlatıldığı üzere yüksek binaların en önemli özelliği tasarım aşaması depremine göre olan tasarımıdır. Yapının çok yüksek olması çoklu bir modal analiz gerektirdiği gibi klasik deprem yükü parametrelerinin haricinde bazı yenilikçi çözümlerin varlığına ihtiyaç duyulmaktadır. Türkiye'de TBDY (2018) ile beraber yüksek binaların deprem hesabında performans tabanlı yaklaşımda farklı bir şekilde ele alınmıştır.

Son yıllarda görüldüğü üzere yüksek yapılara olan ihtiyaç giderek artmakta ve yapının elastik ötesi davranışına ilişkin daha doğru olan gerçekçi yöntemlerin belirlenmesi için performans esaslı tasarım yöntemlerinin kullanılması da öne çıkmaktadır.

Performansa dayalı tasarımda, daha önce belirlenmiş olan deprem düzeylerinde yapıda oluşacak olan hasar düzeyleri ve bu hasarın yapının güvenliğini ve kullanım düzeyini hangi şekilde etkileyeceğini daha gerçekçi şekilde tahmin edilebilmektedir. Farklı deprem düzeylerinde ve yapı türüne bağlı olarak kesintisiz kullanım (KK), hemen kullanım (HK), can güvenliği (CG) ve göçmenin önlenmesi (GÖ) performans düzeyleri tanımlanabilir.

Yüksek yapıların tasarımında öncelikle Tasarım-I, Tasarım-II ve Tasarım-III aşamaları olmak üzere üç performans düzeyi göz önüne alınır. Birinci tasarım aşamasında, depremin aşılma olasılığı %10 olan, tekrarlanış süresine göre 475 yılda bir olan standart tasarım depreminde etkisi altında CG düzeyini; ikinci tasarım aşamasında, aşılma olasılığı %50~68 olan 43~72 yılda bir tekrarlanma olasılığına sahip sık depremlerde KK ve HK performans düzeyini; üçüncü tasarım aşamasında, aşılma olasılığı %2 olan ve 2475 yılda bir meydana gelen çok seyrek depremlerde GÖ ve CG performans hedeflerini karşılamalıdır. Tasarlanan bir yapının performansı hem elastik hem de elastik ötesi analizler kullanılarak hesaplanabilir. Yüksek yapıların performans esaslı tasarımında elastik ötesi hasar oluşması durumunda zaman tanım aralığında doğrusal olmayan analiz yöntemlerinin kullanılması gerekmektedir.

Yüksek yapılar denildiğinde aklımıza gelen ilk soru doğal olarak bina yüksekliği ile alakalıdır. Kesin tanımı olmasa da ülkelere ve deprem şartnamelerine göre değişkenlik gösterse de örneğin bina yüksekliği; LATBSDS (2015), AB-083, PEER-TBI (2010) göre yaklaşık 50 metreden yüksek binalar, İYBDY (2008)'ne göre de 60 metreden yüksek

binalar yüksek bina kategorisine girmektedir. 2018 yılında yürürlüğe giren TBDY (2018)'de ise 70 metreden yüksek binalar yüksek binalar kategorisine girmektedir.

Orta ve düşük yükseklikteki yapılara nazaran bina yüksekliği arttıkça yapı mimarisi, yatay ve düşey yükleri değişerek artmaktadır. Dünyada Çizelge 5.1'den de anlaşılabileceği gibi yüksek binaların sayısına bir yenisi eklenmektedir. Bu sebeple yeni tasarım ve analiz yöntemleri geliştirilmesi gerekmektedir. International Building Code (IBC, 2012), ASCE/SEI 7-10 (2010) ve San Francisco Building Code (2013) gibi deprem yönetmelikleri alternatif malzeme kullanımına ve analiz yöntemlerine izin vererek var olan yönetmeliklerin geliştirilmesi amaçlanmıştır. LATBSDC(2015), SFBID (2014), TBI (2010), CTBUH (2008), SEONAC (2007), İYBDY (2008) ve TBDY (2018) genel olarak doğrusal olmayan dinamik yöntemlere dayanan alternatif dokümanlar sunmuştur.

Dilas	Ütilee Correct	Үаріті Та	mamlanmış	Yapım Aşamasında		
Doige	Ulke Sayisi	Bina Sayısı	Yüzde %	Bina Sayısı	Yüzde %	
K.Amerika	3	2508	36,74	178	17,23	
Asya	32	2480	36,33	592	57,31	
Avrupa	48	672	9,84	84	8,13	
Orta Doğu	13	413	6,05	69	6,68	
G.Amerika	11	216	3,16	39	3,78	
Okyanusya	5	322	4,72	52	5,03	
O.Amerika	18	118	1,73	14	1,36	
Afrika	39	98	1,44	5	0,48	
Toplam	169	6827		1033		

Çizelge 5.1: 2015 yılı verilerine göre yapım aşamasındaki ve yapımı bitmiş olan 100metreden yüksek bina sayısı ve yüzdeleri

Ülkemizde de her geçen gün yüksek bina yapımı hızla artmaktadır. Deprem yönetmeliği de değişen malzeme kullanımı, daha gerçekçi tasarım ve analiz yöntemleriyle bilimsel çalışmaların kazanımları, 2018 yılında TBDY ile yenilenmiştir. Ülkemizdeki inşaat sektörünün gelişmesi ile yüksek bina yapımı da özellikle İstanbul'da hız kazanmıştır. Yüksek binalar için özellikle DBYBHY (2007) tasarım ve analiz eksikliklerinin giderilmesi amacıyla İstanbul Büyükşehir Belediyesi'nin çalışmaları ile 2008 yılında İYBDY yayımlanmıştır.

Özellikle belirtilmelidir ki TBDY (2018) ile birlikte Bina Yükseklik Sınıfı (BYS) bir olarak sınıflandırılan binaların (yüksek binalar) tasarımı için konuyla ilgili 'mesleki yetkinliği bulunan' uzmanlardan tasarım gözetim ve kontrol hizmeti alma şartı getirilmektedir.

TBDY (2018) Tablo 3.3'te Deprem Tasarım Sınıfına (DTS) göre değişmekle birlikte BYS=1 olan binalar için bina yüksekliği minimum 70 metreden fazla olan binalar

yüksek bina sınıfına girerken, İYBDY (2008)'ye göre minimum yüksekliği 60 metre olarak belirlenmiştir.

Yüksek binalar için uygulanmakta olan her iki yönetmelikte de deprem düzeyleri birbirine yakın olarak verilmiştir. TBDY (2018) deprem düzeyleri DD-1; aşılma olasılığı %2 tekrarlanma periyodu 2475 yıl, DD-2; aşılma olasılığı %10 tekrarlanma periyodu 475 yıl, DD-3; aşılma olasılığı %50 tekrarlanma periyodu 72 yıl, DD-4; aşılma olasılığı %68 tekrarlanma periyodu 43 yıl olmak üzere dört tip yer hareketi belirlenmiştir. İYBDY (2008) deprem düzeyleri ise D1; aşılma olasılığı %50 tekrarlanma periyodu 72 yıl, D2; aşılma olasılığı %10 tekrarlanma periyodu 475 yıl, D3; aşılma olasılığı %2 tekrarlanma periyodu 2475 yıl olan üç tip deprem yer hareketi belirlenmiştir.

İYBDY (2008)'de tasarım aşamaları için normal sınıf ve özel sınıf binalar için deprem düzeyleri belirlenirken TBDY (2018)'de normal ve ileri performans hedefleri için farklı deprem düzeyleri belirlenmiş ve iki yönetmelik için deprem düzeyleri karşılaştırması Çizelge 5.2'de sunulmuştur.

Yönet	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aş	aması II	Tasarım Aş	şaması III
шенк	Tasarım	Ön Tasarım	Tasarım	Gerçelleme		Gerçelleme	
İYBDY		Normal Sinif Binalarda (D2) Depremi	Normal Sinif Binalarda (D2) Depremi	Normal Sınıf Binalarda (D1) Depremi Özel Sınıf Binalarda (D2) Depremi		Normal Sinif (D3) Deprem	f Binalarda 11
	Daman	Özel Sınıf Binalarda (D3) Depremi	Özel Sınıf Binalarda (D3) Depremi				
	Deprem	Normal	İleri	Normal	İleri	Normal	İleri
	Duzeyi	Performans	Performans	Performans	Performans	Performans	Performans
		Hedefi	Hedefi	Hedefi	Hedefi	Hedefi	Hedefi
TBDY				Tüm	Tüm		
		Tüm Binalarda		Binalarda	Binalarda	Tüm Binalar	da
		(DD-2) Depren	ni	(DD-4)	(DD-3)	(DD-1) Depr	emi
				Depremi	Depremi		

Çizelge 5.2: TBDY (2018) ve IYBDY (2008) deprem düzeyi parametreleri açısından karşılaştırılması

İYBDY (2008)'ye göre yüksek bina sahibinin tercihi doğrultusunda normal sınıf binalar (konut, otel, ofis binaları vb.) ve özel sınıf binalar (sağlık, eğitim, kamu yönetimi binaları vb.) olmak üzere ikiye ayrılır. Tasarım aşamasında İYBDY (2008) Tablo 3.1'de verilen bina kullanım amacına göre farklı deprem düzeylerindeki hedeflenen performans dayanımına göre ön tasarım yapılmalıdır. TBDY (2018) 'de ise böyle bir ayrım söz konusu olmayıp, tasarlanacak tüm yüksek binaların tasarım aşamasında DD-2 deprem yer hareketinin etkisi altında Kontrollü Hasar (KH) performans hedefini sağlamak üzere yüksek binanın Dayanıma Göre Tasarım (DGT) yaklaşımı ile ön tasarımı – boyutlandırması yapılacaktır. Çizelge 5.3'te gösterildiği gibi tasarım aşamalarında farklı performans hedefleri istenmektedir.

Yönet	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aş	aması II	Tasarım A	şaması III
menk	Tasarım	Ön Tasarım	Tasarım	Gerçelleme		Gerçelleme	
ivppy		Can	Can	Kesintisiz		Göçme	
IIBDI	Hedef	Güvenliği	Güvenliği	Kullanım		Güvenliği	
TRDV	Performansı	Kontrollü	Kontrollü	Kesintisiz	Sınırlı	Göçmenin	Kontrollü
TBDY	_	Hasar	Hasar	Kullanım	Hasar	Önlenmesi	Hasar

Çizelge 5.3: TBDY (2018) ve IYBDY (2008) hedef performanslarının karşılaştırılması

İstanbul Büyükşehir Belediyesi'nin çalışmalarıyla tasarımda kullanılacak 0.2 saniyelik kısa periyot harita spektral ivme katsayısı (Ss) ve 1,0 saniye periyot için harita spektral ivme katsayısı deprem düzeylerine göre yayımlanırken, TBDY (2018)ile birlikte AFAD'ın çalışmalarıyla Türkiye Deprem Tehlike Haritaları kapsamında tüm ülke çapında tanımlanmıştır.

Her tasarım aşaması için hedef performanslarına göre farklı tasarım istenebilmekte buna bağlı olarak analiz türleri Çizelge 5.4'te ki gibi değişmektedir.

Yönet	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aş	aması II	Tasarım Aşaması III
тепк	Tasarım	Ön Tasarım	Tasarım	Gerçelleme		Gerçelleme
İYBDY		Mod Birleştirme Yöntemi ile Lineer 3D Analiz	Zaman Tanım Alanında Nonlineer 3D Analiz (2*7çözüm)	Mod Birleştir ile Lineer Üç Analiz	me Yöntemi Boyutlu	Zaman Tanım Alanında Nonlineer Üç Boyutlu Analiz (2*7 çözüm ort.)
TBDY	Analiz Türü	Analiz (2*7çözüm) Mod Birleştirme Yöntemi ile Lineer Üç Boyutlu Analiz		Mod Birleştirme Yöntemi ile Lineer Üç Boyutlu Analiz	Zaman Tanım Alanında Nonlineer Üç Boyutlu Analiz (2*11)	Zaman Tanım Alanında Nonlineer Üç Boyutlu Analiz (2*11 çözüm ort.)

Çizelge 5.4: TBDY (2018) ve IYBDY (2008) analiz türlerinin karşılaştırılması

İYBDY (2008)'nde zaman tanım alanında yapılacak analizler için en az yedi deprem kaydı (yatay doğrultuda birbirine dik iki yatay bileşen için ivme kayıtları) seçilirken, TBDY (2018)'nde bu sayı en az 11 yer hareketine çıkarılmıştır. Yeterli sayıda deprem yer hareketi kaydı bulunamaması durumunda yönetmelikteki şartlara uyularak deprem hareketleri benzeştirilerek uygulanabilir.

Yerel	Kısa periyot bölgesi için Yerel Zemin Etki Katsayısı $F_{\rm S}$							
Smifi	$S_{\rm S} \le 0.25$	$S_{\rm S} = 0.50$	$S_{\rm S} = 0.75$	$S_{\rm S} = 1.00$	$S_{\rm S} = 1.25$	$S_{\rm S} \ge 1.50$		
ZA	0.8	0.8	0.8	0.8	0.8	0.8		
ZB	0.9	0.9	0.9	0.9	0.9	0.9		
ZC	1.3	1.3	1.2	1.2	1.2	1.2		
ZD	1.6	1.4	1.2	1.1	1.0	1.0		
ZE	2.4	1.7	1.3	1.1	0.9	0.8		
ZF	S	Sahaya özel zemin davranış analizi yapılacaktır (Bkz.16.5).						

Şekil 5.1: TBDY (2018) Tablo 2.1 - Kısa periyot bölgesi için Yerel Zemin Etki Katsayıları

Yerel	1.0 saniye periyot için Yerel Zemin Etki Katsayısı ${\it F}_{\rm 1}$							
Smfi	$S_1 \le 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 = 0.50$	$S_1 \ge 0.60$		
ZA	0.8	0.8	0.8	0.8	0.8	0.8		
ZB	0.8	0.8	0.8	0.8	0.8	0.8		
ZC	1.5	1.5	1.5	1.5	1.5	1.4		
ZD	2.4	2.2	2.0	1.9	1.8	1.7		
ZE	4.2	3.3	2.8	2.4	2.2	2.0		
ZF	S	Sahaya özel zemin davranış analizi yapılacaktır (Bkz.16.5).						

Şekil 5.2: TBDY (2018) Tablo2.2 - 1,0 saniye periyot için Yerel Zemin Etki Katsayıları

Yüksek binalardaki taşıyıcı sistemler süneklik düzeyi yüksek olarak tasarlanacak olup, TBDY (2018) 13.1.3'te istisnai durumlar haricinde süneklik düzeyi sınırlı ve süneklik düzeyi karma sistemlere izin verilmez. Taşıyıcı sistem seçilirken TBDY (2018) Tablo 5.1'de tanımlanan BYS=1 olan sistemler içinden seçilecektir.

Çizelge 5.5: TBDY (2018) ve IYBDY (2008) taşıyıcı sistem davranış katsayıları

Yönet	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aşaması II	Tasarım Aşaması III
menk	Tasarım	Ön Tasarım	Tasarım	Gerçelleme	Gerçelleme
İYBDY	Таşıyıcı	R ≤ 7	-	R/I = 1.5	-
	Sistem	TBDY'ne göre Tablo 4.1'den taşıyıcı sisteme göre			
TBDY	Davranış			R/I =1	-
	Katsayısı	seçilecektir.			

TBDY (2018) ile birlikte betonarme perdelerin minimum kalınlığı 300 mm'den az olmayacak şekilde süneklik düzeyi yüksek perdeler için uygulanması gereken Bölüm 7.6'da verilen kurallara uyulması gerekir. Ayrıca yüksek bina taşıyıcı sistemlerinde sadece B420C veya B500C kalitesindeki nervürlü çelikler uygulanabilir.

TBDY (2018) ve IYBDY (2008)'de verilen kurallar çerçevesinde her iki yönetmelikte de tanımlanmış Taşıyıcı Sistem Davranış Katsayısı (R) ve Dayanım Fazlalığı Katsayısı (D) kullanılacaktır. TBDY (2018)'ye göre Mod Birleştirme Yöntemi veya zaman tanım alanında Mod Toplama Yöntemi ile üç boyutlu hesap yapılacaktır.

TBDY (2018)'ye göre hesaplanan Minimum Taban Kesme Kuvveti; mt baza ve kulenin yer aldığı üst bölümün toplam kütlesini, SDS DD-2 deprem yer hareketi düzeyi için kısa periyot tasarım spektral ivme katsayısını, g yerçekimi ivmesini, α H ise yükseklik tanımı esas alınarak, bina yüksekliği H_N'ye bağlı olarak hesaplanan katsayıyı göstermektedir.

$$V_{t,min} = 0.04 \alpha_H m_t S_{DS} g$$

İYBDY (2008)'ne göre hesaplanan minimum taban kesme kuvveti;

$$\mathbf{V}_{t,\min} = \mathbf{0.04} \ \mathbf{S}_{\mathrm{MS(D2)}} \mathbf{W}$$

Burada $S_{MS(D2)}$, (D2) düzeyindeki deprem için tanımlanan kısa periyod spektral ivmesini, W ise binanın kütlesine karsı gelen ağırlığını göstermektedir. Hesaplanan $V_{t,min}$ değerleri taban kesme kuvvetine eşit olacak şekilde ölçeklendirilecektir.

İYBDY (2008) ve TBDY (2018) yönetmeliklerinde performansa dayalı analiz türüne göre analiz yapılmaktadır. Tasarıma yöntemine tasarım aşamalarında göreli kat ötelenmesi, B/A çubuk elemanlarda kesit rijitliği, dayanım parametresi ve kabul kriterlerine göre değişkenlik göstermektedir.

Çizelge 5.6: TBDY (2018) ve IYBDY (2008) göreli kat ötelenmesinin karşılaştırılması

Yönet	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aşaması II	Tasarım Aşaması III
melik	Tasarım	Ön Tasarım	Tasarım	Gerçelleme	Gerçelleme
İYBDY	Göreli Kat	%2	%2,5	%1	%3,5
TBDY	, $\begin{array}{c} \hline Goren Kai \\ \hline Otelemesi \\ Orani Limiti \\ \end{array} \begin{array}{c} \frac{\delta_{i,max}^{(X)}}{h_i} \leq \end{array}$		$\frac{0,008.\kappa}{\lambda}$	_	Dep. Ort. : %3 Tek Dep. : %4,5

Çizelge 5.7: TBDY (2018) ve IYBDY (2008) B/A çubuk elemanlarda kesit rijitliği

Yönet	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aşaması II	Tasarım Aşaması III
melik	Tasarım	Ön Tasarım	Tasarım	Gerçelleme	Gerçelleme
İYBDY	B/A çubuk elemanlarda	Etkin rijitlik (DBYBHY'n den)	Etkin rijitlik (moment– eğrilik eğrisi)	Etkin rijitlik (moment– eğrilik eğrisinden)	Etkin rijitlik (moment – eğrilik eğrisinden)
TBDY	kesit rijitliği	TBDY Tablo 4	.2	TBDY Tablo 13.1	Etkin rijitlik (moment– eğrilik eğrisinden)

Yönet melik	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aşaması II	Tasarım Aşaması III
	Tasarım	Ön Tasarım	Tasarım	Gerçelleme	Gerçelleme
İYBDY	Dayanım	anım Karakteristik dayanım Örtalama (Expected) dayanım		Ortalama (Expected) dayanım	Ortalama(Expected) dayanım
TBDY	parametrest	Karakteristik malzeme dayanımı		Ortalama malzeme dayanımı	Ortalama malzeme dayanımı

Çizelge 5.8: TBDY (2018) ve IYBDY (2008) dayanım parametreleri

Yönet melik	Tasarım Aşaması	Tasarım Aşaması I-A	Tasarım Aşaması I-B	Tasarım Aşaması II	Tasarım Aşaması III
	Tasarım	Ön Tasarım	Tasarım	Gerçelleme	Gerçelleme
İYBDY	Kabul kriteri	Göreli kat ötelemesi oranı	Birim ş.değiştirme – Göreli kat ötelemesi ort.	Dayanım – Göreli kat ötelemesi oranı	Birim ş.değiştirme – Göreli kat ötelemesi oranı
TBDY	DY İkinci Mertebe Sınırı – Göreli kat ötelemesi oranı		E/K<1,5 / E/K<0,7	Dönme sınır değerleri, Göreli kat ötelenmesi oranı	

Çizelge 5.9: TBDY (2018) ve IYBDY (2008) kabul kriterleri

5.1. TBDY-2018 ve IYBDY-2008 Deprem Yönetmeliklerine Göre Örnek Betonarme Yapı Çözümü

5.1.1. Örnek Binaya İlişkin Genel Bilgiler

2018 ve 2008 deprem yönetmeliklerinde farklılık gösteren tasarım esaslarında ortaya çıkan farklılıkların daha iyi anlaşılabilmesi için her iki yönetmeliğe göre 35 katlı betonarme ofis binası için tasarım esasları belirlenecektir

Binanın yeri Konya'nın Selçuklu ilçesi Kule site mevkisinde, plan boyutları 36 m x 24 m, kat yüksekliği 3,4 m ve toplam kat sayısı 35 (bina yüksekliği = 119 m) olarak kabul edilmiştir. Binanın taşıyıcı sistemi, deprem yüklerinin süneklik düzeyi yüksek boşluksuz perde ve çerçevelerle birlikte taşındığı sistem olarak belirlenmiştir. Kat planında düzenli bir taşıyıcı eleman yerleşimi yapılarak düzensizliklerin etkisi göz önünde bulundurulmamıştır (Şekil 5.3). Binanın normal bir zemine oturduğu kabul edilerek zemin sınıfı DBYBHY (2007)'ye göre Z3, TBDY(2018)'ye göre ZC olarak alınmıştır.

Şekil 5.3: Örnek çözüm için belirlenen kat planı

TBDY (2018)'e göre Kule Site AVM koordinatlarında, deprem yer hareketi düzeyi ve yerel zemin sınıfı göz önüne alınarak yönetmelikte verilen https://tdth.afad.gov.tr/ adresinden belirlenmiş ve DD2, DD4 ve DD1 deprem düzeyleri için EK-1'de ayrıntılı raporları sunulmuştur.

Raporlardan da anlaşılabileceği üzere her tasarım aşamasında deprem düzeyi değiştikçe deprem ivme değerleri değişmekte buna bağlı olarak deprem tasarım sınıfı değişmektedir. Deprem tasarım sınıfının değişmesi ise hedeflenen performans düzeylerini ve analiz yöntemlerinde her tasarım aşamasında değiştirmektedir. Çizelge 5.10'te verilen ivme değerleri ve DTS değerleri birinci tasarım aşaması için verilmiş olup farklılıkların gözükmesi amaçlanmıştır.

5.1.2. Tasarım Parametreleri ve Deprem Hesabı

Her iki yönetmelik için de parametreler oluşmaktadır. Bu farklıların daha iyi anlaşılabilmesi için yukarda belirtilen bina şartlarına göre Çizelge 5.10'daki parametreler belirlenmiştir.

Parametreler	TBDY(2018)	IYBDY(2008)	
Zemin Sınıfı	ZC	ZC	
Kısa Periyod Harita Spektral İvme	0.207	1.00	
Katsayısı (S_S)	0,307	1,00g	
Uzun Periyod Harita Spektral İvme	0.072	0.25 a	
Katsayısı (S1)	0,075	0,25g	
Faya Yakınlık Katsayısı (_{¥F})	1,3 (Tablo 2.1)	$1.2 (L_F < 15 \text{ km})$	
Kısa Periyod Harita Spektral Ivme	0 399	0.8	
Katsayısı (S _{DS})		-,-	
Uzun Periyod Harita Spektral Ivme	0,109	0,24	
Katsayisi (S _{D1})	0.055 at 0.274 a	0.06 at 0.2 a	
Spektrum Karakteristik Periyotiari	(0,035,0,274,8)	0,00 \$, 0,3 \$	
Taşıyıcı Sistem Davranış Katsayısı	(Tablo 4 1)	7,0 (x-y yönü)	
Davanım Fazlalığı Katsavısı (D)	A15 = 2.5 (Table 4.1)	-	
Bina Kullanım Sınıfı	BKS = 3	-	
Bina Önem Katsavısı (I)	1.0	1.0	
Deprem Tasarım Sınıfı	DTS = 3	-	
Bina Yükseklik Sınıfı	$H_N = 119 \text{ m} > 105 \text{ (BYS} = 1)$	$H_N = 119 \text{ m} > 75$	
Tasarım Aşaması I (Ön Tasarım)			
Deprem Düzeyi	Normal Sınıf Bina DD2	Normal Sınıf Bina D2	
Hedef Performans	Kontrollü Hasar	Can Güvenliği	
Analiz Yöntemi	Mod Birleştirme Yön. 3DAn.	Mod Birleştirme Yön. 3D An.	
	$\delta_{i,max}^{(X)} = 0.008.\kappa$		
Goreli Kat Otelenmesi Lim.	$\frac{1}{h} \leq \frac{1}{\lambda}$	<i>%</i> 0∠	
B/A cubuk elemanlarda kesit	Etkin rijitlik TBDY-2018		
rijitliği	Tablo 4.2	Etkin rijitlik (DBYBHY'nden)	
Dayanım parametresi	Karakteristik dayanım	Karakteristik dayanım	
Kahal huitani	Göreli kat ötelemesi oranı –	Dayanım – Göreli kat	
Kabul kriteri	İkinci Mertebe Sınır Değ.	ötelemesi oranı	
Tasarım Aşaması I'in kriterleri sağla	ması durumunda Tasarım Aşamas	ı II'ye geçilir.	
Tasarım Aşaması II (İyileştirme)			
Deprem Düzeyi	Normal Sınıf Bina DD4	Normal Sınıf Bina D1	
Hedef Performans	Kesintisiz Kullanım	Kesintisiz Kullanım	
Analiz Yöntemi	Mod Birleştirme Yön. 3D An.	Mod Birleştirme Yön. 3D An.	
Göreli Kat Otelenmesi Lim.	-	%1	
B/A çubuk elemanlarda kesit	Etkin Kesit Rijitliği TBDY-	Etkin rijitlik (moment–eğrilik	
rijitligi	2018 Tablo 13.1	egrisinden)	
Dayanım parametresi	Ort. malzeme dayanımi	Ort. malzeme dayanimi	
Kabul kriteri	Etki/Kapasite Sınırı	ötələməsi oranı	
Tasarım Asaması II'in kriterleri sağlı	aması durumunda Tasarım Asama	si III'e gecilir	
Tasarım Aşaması III (Son Tasarın	n)		
Deprem Düzevi	Normal Sinif Bina DD1	Normal Sinif Bina D3	
Hedef Performans	Göcmenin Önlenmesi	Göcme Güvenliği	
	Zaman Tanım Alanında	Zaman Tanım Alanında	
Analiz Yöntemi	Nonlineer Üç Boyutlu Analiz	Nonlineer Üç Boyutlu Analiz	
	(2*11 çözüm ort)	(2*7 çözüm ort)	
Göreli Kat Ötelenmesi Lim	Dep. Ort. < %3	%35	
	Tek Dep. < %4,5	%0,5,5	
B/A çubuk elemanlarda kesit	Etkin rijitlik (moment–eğrilik	Etkin rijitlik (moment–eğrilik	
rijitliği	eğrisinden)	eğrisinden)	
Dayanım parametresi	Ort. malzeme dayanımı	Ort. malzeme dayanımı	
Kabul kriteri	Bırım ş.değıstırme– Göreli kat	Bırım ş.değıştırme– Göreli kat	
	otelemesi orani	otelemesi orani	

Çizelge 5.10: Örnek binaya ait TBDY (2018) ve IYBDY(2008) deprem hesabı parametreleri

6. ÖRNEK BETONARME BİR YAPININ İNCELENMESİ

Yapılacak bu çalışma kapsamında, TBDY-2018 Tablo 3.3'te Deprem Tasarım Sınıfına (DTS) göre değişmekle birlikte Bina Yükseklik Sınıfı (BYS)=1 olan bina ile BYS=2 olan bina tasarımlarında temel alınacak olan düşey, yatay ve özel yüklerin etki ettirilmesiyle birlikte ETABS programı yardımıyla modellemesi ve yönetmelik kapsamındaki analiz türü uygulanarak BYS-1 ve BYS-2 olan iki farklı yapının değerlendirilip, karşılaştırılmaktadır.

Bu çalışma kapsamında Konya ili, Selçuklu ilçesinde bulunan Kule Site AVM mevkiinde ortalama (ZC) sınıfı bir zeminde enlem ve boylamı sırasıyla 37,89°-32,49° olan, zemin kotu +0 kabul edilerek ilk iki katı 5m ve geri kalan 24 kat 3,5m olup toplam 26 kat ve toplam yüksekliği 94m olan bir bina ile ilk iki katı 5m ve geri kalan 23 kat 3,5m olup toplamı 25 kat ve toplam yüksekliği 90.5m olan iki bina tasarlanacaktır.

Şekil 6.1: Örnek çözüm için belirlenen yapı 3D modeli

Her iki yapı planında X ve Y doğrultularında 8m aralıklar ile 7 akstan oluşmakta ve X-X ve Y-Y doğrultularında 48m uzunluklara sahip olup, Şekil6.1'deki gibi yapı modellemesi 3 boyutlu modellenmiştir.

6.1 Hesap Modeli Tasarımı

Yüksek binalar için TBDY-2018 bölüm 13.1.3'te istenilen yapı taşıyıcı sistemi TBDY-2018 bölüm 7.2.1.1(c)'de tanıtılan Süneklik Düzeyi Yüksek Sistem olarak çekirdek perdeler ile birlikte çerçeve sistemlerle taşındığı bir yapı baz alınacaktır. Bina taşıyıcı sistemi analiz ve hesap kolaylığı olması sebebiyle temel üstü olmayıp, ±0 kotu kotundan yeterli rijitlik, kararlılık ve dayanıma sahip elemanlar aracılığıyla sürekli bir şekilde devam edip temele aktarılacağı varsayımında bulunulduğundan ±0 kotunda düşey taşıyıcı elemanlara tam rijitliğe sahip mesnetler tanımlanmış olup düşey taşıyıcı elemanlar sürekli bir şekilde düşey doğrultuda devam etmiştir. C-E ve 3-5 aksları arasında çekirdek perdeleri yerleştirilmiş olup, geri kalan sistem çerçevelerden oluşmuştur. Yapı döşeme sistemi üzerindeki yükü, betonarme kirişler aracılığıyla düşey taşıyıcı sisteme aktaran plaklardan oluşmaktadır. Yapı kat planı Şekil 6.2'deki gibi akslandırılmış ve boyutlanmıştır.

Şekil 6.2: Tasarımı öngörülen yapı kat planı

Beton malzeme dayanımı, kullanılacak bütün elemanlarda, 28 günlük karakteristik basınç dayanımı(f_{ck}) 60MPa ve Elastisite Modülü(E_c) 41GPA olan C60 beton kullanılacaktır. Beton güvenlik katsayısı $\gamma_{mc} = 1.50$ alınarak tasarım değerleri hesaplanacaktır.

Çelik malzeme dayanımı TBDY-2018 bölüm 13.1.7'de belirtildiği gibi, düşey ve yatay doğrultudaki tüm donatı çeliklerinde minimum akma dayanımı(f_{yk}) 420MPa, minimum kopma dayınımı(f_{su}) 550MPa, minimum kopma uzaması(ϵ_{su}) %12 ve Elastisite Modülü(E_s) 210GPa olan S420c donatı kullanılmıştır. Donatı çeliği güvenlik katsayısı $\gamma_{mc} = 1.15$ alınarak dizayn değerleri hesaplanmıştır.

Zemin ortalama bir zemin kabul ediğinde TBDY-2018 Tablo16.1'e göre ZC sınıfı zemin kabul edilmiştir.

TBDY-2018'e göre tanımlanmış DD-1, DD-2, DD-3 ve DD-4 olmak üzere dört tip deprem düzeyi bulunmaktadır. Yukardaki koordinatlar göz önünde bulundurularak TBDY-2018 gereğince Türkiye Deprem Tehlike Haritalarındaki deprem verileri <u>https://tdth.afad.gov.tr/</u> adresinden alınmış Çizelge 6.1'deki tabloda spektral ivme değerleri verilmiştir. Ayrıntılı deprem değerleri ekler kısmında sunulmuştur.

Çizelge 6.1: 37.89° – 32.49° koordinatlarında tasarlanan bina için DD-1, DD-2, DD-3 ve DD-4 deprem düzeylerindeki spektral ivme değerleri

Tasarım Deprem Düzeyleri	Ortalama Tekrarlanma Periyodu – Aşılma Olasılığı	Kısa Periyod Harita Spektral İvme Katsayısı (S _S = 0.2sn)	Uzun Periyod Harita Spektral İvme Katsayısı (S ₁ = 1.0sn)
DD-1	2475 yıl, 50 yılda %2	0.692	0.149
DD-2	475 yıl, 50 yılda %10	0.308	0.073
DD-3	72 yıl, 50 yılda %50	0.101	0.028
DD-4	43 yıl, 50 yılda %68	0.070	0.020

TBDY-2018 gereğince harita spektral ivme katsayıları S_s ve S₁;

$$S_{DS} = S_S.F_S$$
$$S_{D1} = S_1.F_1$$

Denklemleri yardımıyla tasarım spektral ivme katsayılarına dönüştürülmüştür. S_S ve S₁ harita spektral ivme katsayılarını gösteriyor olup, TBDY-2018 Tablo 2.1 ve Tablo 2.2'de F_S ve F₁ yerel zemin etki katsayılarını göstermektedir. Aşağıda Çizelge 6.2

kapsamında deprem düzeyleri ve ZC zemin sınıfı için tasarım spektral ivme değerleri gösterilmiştir.

Tasarım Deprem Düzeyleri	Ss	Sı	Fs	\mathbf{F}_1	Sds	Sd1
DD-1	0.692	0.149	1.223	1.500	0.846	0.224
DD-2	0.308	0.073	1.300	1.500	0.400	0.109
DD-3	0.101	0.028	1.300	1.500	0.131	0.042
DD-4	0.070	0.020	1.300	1.500	0.091	0.030

Çizelge 6.2: 37.890 – 32.490 koordinatlarında tasarlanan bina için DD-1, DD-2, DD-3 ve DD-4 deprem düzeylerindeki tasarım spektral ivme değerleri

Yatay ve düşey elastik tasarım spektrumları https://tdth.afad.gov.tr/ adresinden alınmış raporlarda sunulmuştur. TBDY-2018 gereğince yatay tasarım spektrum hesap adımları aşağıdaki TBDY-2018 Denk.(2.2) ve Denk.(2.3)'e göre hesaplanmıştır.

TBDY-2018 Denk.(2.2);

$$S_{ae}(T) = \left(0.4 + 0.6\frac{T}{T_A}\right)S_{DS} \qquad (0 \le T \le TA)$$

$$S_{ae}(T) = S_{DS} \qquad (TA \le T \le TB)$$

$$S_{ae}(T) = \frac{S_{D1}}{T} \qquad (TB \le T \le TL)$$

$$S_{ae}(T) = \frac{S_{D1}T_L}{T^2} \qquad (TL \le T)$$

TBDY-2018 Denk.(2.3);

$$T_A = 0.2 \frac{S_{D1}}{S_{DS}}$$
; $T_B = \frac{S_{D1}}{S_{DS}}$; TL= 6s

Yatay tasarım spektrumu köşe periyotları TA, TB, TL ve ara değerleri eşitlikler yardımıyla hesaplanmış ve spektrum eğrisi oluşturulmuş ve her deprem düzeyi için sırasıyla oluşturulan spektrum eğrileri Şekil 6.3'te ve Çizelge 6.3'te aşağıda verilmiştir.

Şekil 6.3: Deprem düzeylerine göre yatay elastik tasarım spektral ivme değerleri

Çizelge 6.3: 37.89° – 32.49° koordinatlarında tasarlanan bina için DD-1, DD-2, DD-3 ve DD-4 deprem düzeylerindeki köşe periyotları ve uzun periyot

Tasarım Deprem Düzeyleri	T _A Köşe Periyotu	T _B Köşe Periyotu	T _L Uzun Periyotu
DD-1	0,053(s)	0,264(s)	6,000(s)
DD-2	0,055(s)	0,273(s)	6,000(s)
DD-3	0,064(s)	0,320(s)	6,000(s)
DD-4	0,066(s)	0,330(s)	6,000(s)

TBDY-2018 gereğince düşey tasarım spektrum hesap adımları aşağıdaki TBDY-2018 Denk.(2.6) ve Denk.(2.7)'e göre hesaplanmıştır.

TBDY-2018 Denk.(2.6);

$$S_{aeD}(T) = \left(0.32 + 0.48S \frac{T}{T_{AD}}\right) S_{DS} \qquad (0 \le T \le T_{AD})$$
$$S_{aeD}(T) = 0.8S_{DS} \qquad (T_{AD} \le T \le T_{BD})$$

$$S_{aeD}(T) = 0.8S_{DS}\frac{T_{BD}}{T} \qquad (T_{BD} \le T \le T_{LD})$$

TBDY-2018 Denk.(2.7);

$$T_{AD} = \frac{T_A}{3}; \quad T_{BD} = \frac{T_B}{3}; \quad T_{LD} = \frac{T_L}{2}$$

Düşey tasarım spektrumu köşe periyotları TAD, TBD, TLD ve ara değerleri eşitlikler yardımıyla hesaplanmış ve spektrum eğrisi oluşturulmuş ve her deprem düzeyi için sırasıyla oluşturulan spektrum eğrisi Şekil 6.4'te ve spektrum değerleri Çizelge 6.4'te aşağıda verilmiştir.

Şekil 6.4: Deprem düzeylerine göre düşey elastik tasarım spektral ivme değerleri

Çizelge 6.4: 37.89° – 32.49)⁰ koordinatlarında tasar	lanan bina için DE	D-1, DD-2, DD-3 v	e DD-4 deprem
	düzeylerindeki köşe pe	eriyotları ve uzun p	periyot	

Tasarım Deprem Düzeyleri	T _{AD} Köşe Periyotu	T _{BD} Köşe Periyotu	TLD Uzun Periyotu
DD-1	0,018(s)	0,088(s)	3,000(s)
DD-2	0,018(s)	0,091(s)	3,000(s)
DD-3	0,021(s)	0,107(s)	3,000(s)
DD-4	0,022(s)	0,110(s)	3,000(s)

TBDY-2018 Tablo3.1'de verilen bina kullanım sınıfları ve bina önem katsayısı işyerleri için seçilmiş olup Bina Kullanım Sınıfı (BKS) = 3 ve Bina Önem Katsayısı = 1.0'dır. Bina kullanım sınıfı ve DD-2 deprem yer hareketi düzeyinde *kısa periyot spektral ivme katsayısı*na bağlı olarak Deprem Tasarım Sınıfı (DTS) Çizelge 6.5'ten DTS=3 olarak belirlenmiştir.
DD-2 Deprem Yer Hareketi Düzeyinde Kısa	Bina Kullanım Sınıfı			
Periyot Tasarım Spektral İvme Katsayısı (S _{DS})	BKS = 1	BKS = 2,3		
S _{DS} < 0.33	DTS = 4a	DTS = 4		
0.33≤S _{DS} <0.50	DTS = 3a	DTS = 3		
0.50≤S _{DS} <0.75	DTS = 2a	DTS = 2		
0.75≤S _{DS}	DTS = 1a	DTS = 1		

Çizelge 6.5: TBDY-2018 Tablo 3.2 - Deprem Tasarım Sınıfları

Bina taşıyıcı sisteminde döşemeler için TS500 bölüm 11.4'de verilen iki doğrultuda çalışan ($l_l / l_s \le 2$) kirişli döşemeler için verilen TS500 Denk.11.1 şartının sağlayarak ön boyutlandırma yapılmıştır.

$$h \ge \frac{l_{sn}}{15 + \frac{20}{m}} \left(1 - \frac{\alpha_s}{4}\right) \qquad TS500 \ Denk. \ 11.1$$

Yapılan ön tasarım için döşeme kalınlığı 20 cm seçilmiştir.

Döşemelerden yükü olarak kolonlara taşıyacak kirişlerin ön boyutlandırılmada süneklik düzeyi yüksek olarak tasarlanan kirişler TBDY-2018 bölüm 7.4.1.1 ve TS500 bölüm 7.3'den faydalanılarak Çizelge 6.6'teki kiriş ön tasarım kuralları uygulanmıştır.

TBDY-2018 Bölüm 7.4.1.1	TS500 Bölüm 7.3
$b_w \ge 25 cm$	$b_w \ge 20 cm$
$b_w \leq h_k + b_k$	$b_w \leq h_k + b_k$
$h_k < 3h_d$	$h_k < 3h_d$
$h_k \ge 300$	$h_k \ge 300$
$h_k \leq 3,5b_w$	

Çizelge 6.6: Kiriş ön boyutlandırma koşulları

Çizelge 6.6'te verilen kurallar ve TBDY-2018 bölüm 7.4.1.1.a kurallarına uygun olarak çerçevesinde kiriş yükseklikleri 60 cm seçilmiş olup genişlikler ise perdeler arası kirişler hariç 80 cm seçilmiştir. Perdeler arasındaki kirişlerin genişliği ise perde genişliği kadar 50 cm yüksekliği ise 80 cm olarak alınmıştır.

Bina taşıyıcı sisteminin kolon elemanları için ön boyutlandırmasında TS500 ve TBDY-2018 kapsamındaki şartlar altında kontrolleri yapılacaktır. Seçilen kolon boyutlar ön boyutlarının kontrolleri amacı ile deprem yüklerinin olmamasından dolayı TBDY-2018 bölüm 7.3.1'deki enkesit koşulları sabit (G), hareketli yük azaltma katsayısı dikkate alınarak hareketli (Q) düşey yüklerinin ve X ve Y yönlerinde etkiyen deprem (E) etkilerinin ortak etkisi G+Q+E kombinasyonu altında hesaplanan N_{dm} eksenel basınç kuvvetlerinin en büyüğü dikkate alınmak üzere, TBDY-2018 bölüm 7.3.1.2'de verilen A_c $\geq N_{dm}/(0.40 \ f_{ck})$ koşulunu sağlamalıdır. TS500 bölüm 7.4.1'e göre 1.4G+1.6Q kombinasyonu altında düşey yükler etkisinde N_d \leq 0.9 f_{cd} A_c şartını sağlamalıdır.

Sabit yükler betonarme birim hacim ağırlığı yc=25kN/m³, kaplama yükü normal katlar için 2.0kN/m² ve çat katı için 4.0kN/m² alınmıştır. Bölme duvar yükü ise döşemelere etki edecek şekilde 1.5kN/m² etki ettirilmiştir. Yapı inşasında oluşabilecek harici makine, teçhizat yükleri işlem kolaylığı açısından göz ardı edilmiş ve etki ettirilmemiştir. Hareketli yükler ise TS-498 uyarınca normal kat döşemeleri için 5.0kN/m², çatı katı döşemesi için 1.5kN/m² alınmıştır. Ayrıca kar yükü olarak 1.15kN/m² etki ettirilmiştir.

Hareketli yük katılım katsayısı TBDY-2018 Tablo 4.3'ten işyerleri için n = 0.3 katsayı olarak belirlenmiştir. Çatı katı ağırlığının hesabında kar yüklerinin %30'u gözönüne alınacaktır.

Çizelge 6.7'te her kat için G+Q+E ve 1.4G+1.6Q için maksimum kat kolonu eksenel kuvvetleri gösterilmiş olup en kesit kontrolleri yapılmıştır. Düşey taşıyıcı sistem elemanları kolonlar düşey doğrultuda Şekil 6.5'de gösterildiği gibi ilk 6 katta 110cm x 110 cm, 7. kattan 17. kata kadar 90 cm x 90 cm ve 17. kattan 26. kata kadar ise 80cm x 80cm olarak tasarlanmıştır.

Kat	Kat Kotu (m)	G+Q+E (TBDY2018) max Ndm (kN)	1.4G+1.6Q (TS500) max Nd (kN)	A _c (m2)	TBDY-2018 Kolon Kapasitesi (kN)	TS500 Kolon Kapasitesi (kN)
26. Kat	94	-865	-1341	0,64	15360	23040
25. Kat	90,5	-1631	-2703	0,64	15360	23040
24. Kat	87	-2399	-4072	0,64	15360	23040
23. Kat	83,5	-3168	-5443	0,64	15360	23040
22. Kat	80	-3940	-6817	0,64	15360	23040
21. Kat	76,5	-4713	-8194	0,64	15360	23040
20. Kat	73	-5490	-9576	0,64	15360	23040
19. Kat	69,5	-6270	-10962	0,64	15360	23040
18. Kat	66	-7053	-12354	0,64	15360	23040
17. Kat	62,5	-7840	-13753	0,64	15360	23040
16. Kat	59	-8643	-15172	0,81	19440	29160
15. Kat	55,5	-9449	-16596	0,81	19440	29160
14. Kat	52	-10258	-18038	0,81	19440	29160
13. Kat	48,5	-11070	-19489	0,81	19440	29160
12. Kat	45	-11887	-20949	0,81	19440	29160
11. Kat	41,5	-12708	-22420	0,81	19440	29160
10. Kat	38	-13534	-23901	0,81	19440	29160
9. Kat	34,5	-14365	-25394	0,81	19440	29160
8. Kat	31	-15201	-26900	0,81	19440	29160
7. Kat	27,5	-16042	-28419	0,81	19440	29160
6. Kat	24	-16918	-29993	1,21	29040	43560
5. Kat	20,5	-17796	-31574	1,21	29040	43560
4. Kat	17	-18675	-33164	1,21	29040	43560
3. Kat	13,5	-19557	-34762	1,21	29040	43560
2. Kat	10	-20486	-36432	1,21	29040	43560
1. Kat	5	-21418	-38117	1,21	29040	43560

Çizelge 6.7: Kat Kolonları Eksenel Yük Etkisinde Kapasite Kontrolleri

Bina taşıyıcı sisteminin bir diğer düşey taşıyıcı elemanı olan çekirdek perdeleri için ön boyutlandırmasında bodrum perdeleri dışındaki süneklik düzeyi yüksek perdeler için TBDY-2018 bölüm 7.6.1'de verilen en kesit koşullarına göre kontrolleri yapılmıştır. Seçilen perde ön boyutlarının kontrolleri amacı ile deprem yüklerinin olmamasından dolayı TBDY-2018 bölüm 7.6.1.1'deki enkesit koşulları sabit (G) ve TS-498 bölüm 12 ile TBDY-2018 Tablo 4.3'teki hareketli yük azaltma katsayısı dikkate alınarak hareketli (Q) düşey yüklerinin ortak etkisi G+Q+E kombinasyonu altında hesaplanan N_{dm} eksenel basınç kuvvetlerinin en büyüğü dikkate alınmak üzere verilen $A_c \ge N_{dm}/(0.35 f_{ck})$ koşulunu sağlamalıdır. Ayrıca Çizelge 6.8'te verilen TBDY-2018 bölüm 7.6.1.2'deki kurallara göre ön tasarım yapılmış olup bu kurallar çerçevesinde perde kalınlığı 50 cm olarak seçilmiştir.

Perde eksenel yük kapasitesi 56000kN olup perdeye gelen maksimum eksenel yük 32800kN olduğundan perde en kesiti yeterlidir.

TBDY-2018 Bölüm 7.6.1.2.(a,b,c)
$b_w = 50cm \ge \frac{h_w}{16} = \frac{500}{16} = 31.25cm$
$l_w = 800cm$; $b_w = 50cm \ge \frac{l_w}{30} = \frac{800}{30} = 26.67cm$
$l_w = 800cm$; $b_w = 50cm \ge \frac{l_w}{20} = \frac{800}{20} = 40cm$
$b_w = 50cm \ge 25cm$

Çizelge 6.8: Perde ön boyutlandırma koşulları

Yapı analiz öncesi ön tasarımında düzensizlikler yönünden bakıldığında TBDY2018 bölüm 3.6'a göre incelendiğinde A2 - Döşeme Süreksizliği ve A3 - Planda Çıkıntıların Bulunması ve B3 - Taşıyıcı Sistemin Düşey Elemanlarının Süreksizliği gibi düzensizlikleri bulunmayan bir ön tasarım yapılmıştır. Diğer düzensizlik durumları analiz sonrası aşamalarında incelenecektir.

Şekil 6.5: Düşey Kolon Boyutları

6.2 BYS=1 Olan Örnek Bina İçin Analiz Aşamaları

Yüksek bina tasarımı TBDY-2018 bölüm 13.2'de verilen üç aşamada yapılmış olup buradaki şartlar esas alınarak analiz yapılıp değerlendirilmiştir.

6.2.1 Tasarım Aşaması I:DD-2 Deprem Yer Hareketi Altında Ön Tasarım Boyutlandırma

Deprem	DTS=1, 2, 3, 3a, 4, 4a			
Yer H. Düzeyi	Normal Performans Hedefi	Değerlendirme/Tasarım Yaklaşımı		
DD-4	KK	DGT		
DD-3	-	-		
DD-2	KH	DGT		
DD-1	GÖ	ŞGDT		

Çizelge 6.9: TBDY-2018 Tablo 3.4-b'ye göre Tasarım Aşaması I Performans Hedefi ve Değerlendirme/Tasarım Yaklaşımı

İlk tasarım aşaması için TBDY-2018 bölüm 13.2.1.1'deki DD-2 deprem yer hareketinin etkisi altında *Kontrollü Hasar* performans hedefini sağlamak üzere yüksek binanın *Dayanıma Göre Tasarımı* (DGT) yaklaşımı ile ön tasarım – boyutlandırması yapılmıştır.

Taşıyıcı sistem modellenirken TBDY-2018 bölüm 4.5'deki kurallar baz alınarak; kiriş ve kolon elemanları çerçeve (çubuk) sonlu elemanlar şeklinde, döşemeler rijit diyafram olarak modellenmiştir.

Kolon ve kirişlerin etkin kesit rijitlikleri TBDY-2018 bölüm 4.5.8'de verilmiş olan Çizelge 6.11'de verilen betonarme taşıyıcı sistem etkin kesit rijitlik çarpanları olarak göz önüne alınarak modellenmiştir.

Betonarme perdeler TBDY-2018 bölüm 4.5.3.7'deki kurallara uygun olacak şekilde 6 serbestlik dereceli kabuk sonlu elemanlar olarak modellenmiştir. Aynı zamanda Çizelge 6.11'de etkin rijitlik katsayıları düzlem içi ve düzlem dışı davranışa göre modellenmiştir.

Sistem modellemesinde süneklik düzeyi yüksek boşluksuz betonarme perdeler kullanıldığı için TBDY-2018 bölüm 4.3.4.5'deki devrilme momentini şartını sağlamalıdır.

$$0.40M_o < \sum M_{DEV} < 0.75M_c$$

 M_o herhangi bir deprem doğrultusunda binanın tümü için deprem yüklerinden tabanda meydana gelen toplam devrilme momenti olup; M_{DEV} ise betonarme perdenin tabanında deprem yüklerinden meydana gelen devrilme momentidir.

		$0.40M_o < \sum M_{DEV}$	$\sum M_{DEV} < 0.75 M_o$
$M_{o,X}$	982553 kNm	393013 kNm (%40)	736915 kNm (%75)
M _{DEV,X}	624308 kNm	Şart Sağlanmıştır 🗸	Şart Sağlanmıştır 🗸
M _{o,Y}	1007006 kNm	402803 kNm (%40)	755255 kNm (%75)
M _{DEV,Y}	478277 kNm	Şart Sağlanmıştır 🗸	Şart Sağlanmıştır 🗸

Çizelge 6.10: Perde devrilme momenti şartı

TBDY-2018 kapsamında istenen devrilme momenti şartı, her deprem yönü için $0.40M_o$ 'dan az olmamak ve $0.75M_o$ 'dan fazla olmamak şartıyla Çizelge 6.10'da görülen moment değerleri ile sağlanmıştır.

Döşemeler planda A2 ve A3 düzensizlikleri bulunmadığı için yarı rijit diyafram olarak modellenmiştir. Yarı rijit diyafram modellenmesi durumunda kat kütle merkezinde ve \pm %5 ek dış merkezlik etkisi deprem hesabı için tanımlanmıştır.

Çizelge 6.11: TBDY-2018 Tablo 4.2. Betonarme Taşıyıcı Sistem Elemanlarının Etkin Kesit Rijitliği Çarpanları

Betonarme Taşıyıcı Sistem Elemanları	Etkin Kesit Rijitliği Çarpanı		
Perde – Döşeme (Düzlem İçi)	Eksenel	Kayma	
Perde	0.50	0.50	
Bodrum Perdesi	0.80	0.50	
Döşeme	0.25	0.25	
Perde – Döşeme (Düzlem Dışı)	Eğilme	Kesme	
Perde	0.25	1.00	
Bodrum Perdesi	0.50	1.00	
Döşeme	0.25	1.00	
Çubuk Eleman	Eğilme	Kesme	
Bağ Kirişi	0.15	1.00	
Çerçeve Kirişi	0.35	1.00	
Çerçeve Kolonu	0.70	1.00	
Perde (Eşdeğer Çubuk)	0.50 0.50		

Yatay deprem etkileri için taşıyıcı sistemin deprem etkisi altında X ve Y doğrultusundaki ek dış merkezlik etkisinden dolayı doğrultu birleştirilmesi uygulanmış tasarıma esas yatay deprem etkisi $E_d^{(H)}$ için aşağıdaki birleşimler uygulanmalıdır.

$$E_{d}^{(H)} = \pm E_{d}^{(X)} \pm 0.3E_{d}^{(Y)}$$
$$E_{d}^{(H)} = \pm 0.3E_{d}^{(X)} \pm E_{d}^{(Y)}$$

Düşey deprem etkisi $E_d^{(Z)}$ ise TBDY-2018 bölüm 4.4.3'teki kurallar çerçevesinde özel hesap yapılmaksızın aşağıdaki hesaba uygun etki ettirilmelidir.

$$E_d^{(Z)} \approx (2/3)S_{DS}G$$

G sabit yük olup, S_{DS} ise kısa periyot tasarım spektral ivme katsayısını göstermektedir.

Taşıyıcı sistem tasarımında TBDY-2018 bölüm 4.4.4'e göre aşağıdaki birleşimler esas alınmıştır.

$$G + Q + 0.2S + E_d^{(H)} + 0.3E_d^{(Z)}$$
$$0.9G + H + E_d^{(H)} - 0.3E_d^{(Z)}$$

G sabit yük etkisini, Q hareketli yük etkisini, S kar yükü etkisini, H ise TBDY-2018 bölüm 16'ya göre yatay zemin itkisini gösteriyor olup birleşimde hesaba katılmamıştır. Bölüm 16'daki temel için birleşimler tanımlanmamıştır.

I. Aşama deprem hesabı kapsamında TBDY-2018 Tablo 4.1'e göre Taşıyıcı Sistem Davranış Katsayısı R ve Dayanım Fazlalığı Katsayısı D seçilip kullanılacaktır. Yerinde dökme betonarme bina taşıyıcı sistemlerine sahip örnek binamız, süneklik düzeyi yüksek betonarme çerçeveler ile birlikte süneklik düzeyi yüksek (boşluksuz) betonarme perdeler tarafından birlikte karşılandığı binalar olarak tasarlandığından TBDY-2018 Tablo 4.1'e göre A15'de tanımlanan taşıyıcı sisteme uymaktadır. Bu tabloya göre Taşıyıcı Sistem Davranış Katsayısı R = 7 ve Dayanım Fazlalığı Katsayısı D = 2,5 olarak alınmıştır.

TBDY-2018 bölüm 4.3.2.4'e göre b maddesinde tanımlanan koşullara uymadığından *Taşıyıcı Sistem Davranış Katsayısı* R yerine (4/5)R alınmıştır. Bu durumda R = (4/5)*7 = 5,6 alınmıştır. *Dayanım Fazlalığı Katsayısı* D'de herhangi bir değişiklik olmamıştır.

Bina analizi ETABS programı yardımıyla modellendikten sonra DD-2 deprem yer hareketi altında TBDY-2018 bölüm 4.8.2'ye göre Mod Birleştirme Yöntemi ile üç boyutlu doğrusal hesap yapılmıştır.

	Taşıyıcı		İzin Verilen
	Sistem	Dayanım	Bina
Bina Taşıyıcı Sistemi	Davranış	Fazlalığı	Yükseklik
	Katsayısı	Katsayısı	Sınıfları
	R	D	BYS
A. YERİNDE DÖKME BETONARME BİNA TAŞIYICI SİSTEML	ERİ		
A1. Süneklik Düzeyi Yüksek Taşıyıcı Sistemler			
A11. Deprem etkilerinin tamamının moment aktaran süneklik düzeyi	Q	3	PVS > 2
yüksek betonarme çerçevelerle karşılandığı binalar	0	5	$D15 \ge 5$
A12. Deprem etkilerinin tamamının süneklik düzeyi yüksek bağ kirişli	7	2.5	PVS > 2
(boşluklu) betonarme perdelerle karşılandığı binalar	/	2.5	$DTS \ge 2$
A13. Deprem etkilerinin tamamının süneklik düzeyi yüksek boşluksuz	6	2.5	PVS > 2
betonarme perdelerle karşılandığı binalar	0	2.5	$DTS \ge 2$
A14. Deprem etkilerinin moment aktaran süneklik düzeyi yüksek			
betonarme çerçeveler ile süneklik düzeyi yüksek bağ kirişli (boşluklu)	8	2.5	$BYS \ge 2$
betonarme perdeler tarafından birlikte karşılandığı (Bkz. 4.3.4.5)			
A15. Deprem etkilerinin moment aktaran süneklik düzeyi yüksek			
betonarme çerçeveler ile süneklik düzeyi yüksek boşluksuz betonarme	7	2.5	$BYS \ge 2$
perdeler tarafından birlikte karşılandığı binalar (Bkz. 4.3.4.5)			
A16. Deprem etkilerinin tamamının çatı düzeyindeki bağlantıları			
mafsallı olan ve yüksekliği 12 m'yi geçmeyen süneklik düzeyi yüksek	3	2	-
betonarme kolonlar tarafından karşılandığı tek katlı binalar			

Çizelge 6.12: TBDY-2018 Tablo 4.1. Betonarme Taşıyıcı Sistem Davranış Katsayısı, Dayanım Fazlalığı Katsayısı ve İzin Verilen Bina Yükseklik Sınıfları

TBDY-2018 bölüm 13.4.3.4'e göre azaltılmış *iç kuvvetlerin Eşdeğer Taban* Kesme Kuvveti'ne göre büyültülmesi işlemi bölüm 4.8.4'deki kurallara göre yapılacak olup aşağıda gösterilen Minimum Taban Kesme Kuvveti esas alınarak hesap yapılmalıdır.

 $V_{t,min} = 0.04 \propto_H m_t S_{DS} g$ $V_{t,min} = 0.04 \times 1.0 \times 861362 kN \times 0.4$

 $V_{t,min} = 13782kN$

 $\propto_H \le 105 m$ olduğundan $\propto_H = 1.0$ alınmıştır.

TBDY-2018 bölüm 4.8.4'e göre $V_{tx}^{(X)} < V_{tE}^{(X)}$ olması durumunda model hesap yöntemi ile azaltılan tüm iç kuvvet ve deplasmanlar $\beta_{tE}^{(X)}$ ile çarpılarak büyültülmüştür.

$$\beta_{tE}^{(X)} = \frac{\gamma_E V_{tE}^{(X)}}{V_{tx}^{(X)}} \ge 1$$

 $V_{tE}^{(X)}$, TBDY-2018 bölüm 13.4.3.4'e göre $V_{t,min}$ alınmalıdır. Fakat TBDY-2018 bölüm 4.7.1'e göre aşağıdaki kural kontrol edilmelidir.

$$\mathbf{V}_{\mathrm{tE}}^{(\mathrm{X})} = \mathbf{m}_{\mathrm{t}} \mathbf{S}_{\mathrm{aR}} \left(\mathbf{T}_{\mathrm{p}}^{(\mathrm{X})} \right) \ge 0.04 \propto_{H} m_{t} S_{DS} g$$

BYS=1 olan bina için yapılan mod birleştirme yöntemi ile üç boyutlu analiz doğrusal analizi sonucunda TBDY-2018 bölüm 4.7.3.3'e göre DTS=3 olan binalarda doğal titreşim periyodu, 4.7.3.1'deki formülden hesaplanmasına gerek olmadan aşağıdaki ampirik T_{pA} formülünden hesaplanmıştır. Deprem hesabında alınmış değer 1.4 T_{pA} değerinden fazla olmamalıdır.

$$T_{pA} = C_t H_N^{3/4} \qquad C_t = \frac{0.1}{\sqrt{A_t}} \le 0,07$$
$$A_t = \sum_j A_{wj} \left[0,2 + \left(\frac{l_{wj}}{H_N}\right)^2 \right] \le \sum_j A_{wj}$$
$$T_n \le 1,4 \times T_{pA}$$

Çizelge 6.13'e göre ampirik hâkim doğal titreşim periyodu (T_{pA}) X ve Y yönleri için ayrı ayrı hesaplanmıştır. Çizelge 6.14'e göre deprem hesabında hesaplanan değerler 1.4 T_{pA} değerinden aştığı için taban kesme kuvveti hesabındaki hâkim doğal titreşim periyodu değeri 1.4 T_{pA} değerinden hesaplanan değer alınacaktır.

$$S_{aR}(T) = \frac{S_{ae}(T)}{R_a(T)}$$

S_{ae}(T)Yatay Elastik Tasarım Spektral İvmeleri g cinsinden (TBDY-2.3.4.1)

$$R_a(T) = \frac{R}{l} \rightarrow T > T_B$$
; $R_a(T) = D + \left(\frac{R}{l} - D\right) \rightarrow T \le T_B$

Çizelge 6.15'e göre $V_{tE}^{(X,Y)} < V_{t,min}$ olduğundan $V_{tE}^{(X,Y)} = V_{t,min}$ değeri alınarak $\beta_{tE}^{(X,Y)}$ hesabı yapılmıştır.

 $\beta_{tE}^{(X,Y)}$ için γ_E çarpanı TBDY-2018 Tablo 3.6'da ki düzensizliklerin durumuna göre A1, B2 veya B3 türü düzensizliklerinden an az birinin binada bulunması durumunda 0.90; düzensizliklerden hiçbirinin binada bulunmaması durumunda 0,80 değerini alınacaktır.

TBDY-2018 Tablo 3.6'ya göre A tipi planda düzensizlik durumlarından A1-Burulma Düzensizliği eşdeğer deprem yüküne göre X ve Y yönleri için \pm %5 dışmerkezlik etkileri de gözönüne alınarak ayrı ayrı değerlendirilmiş olup n_{bi} değeri hesaplanmış olup Şekil 6.6'daki değerler elde edilmiş olup A1 düzensizliği olduğu görülmüştür. A2 ve A3 düzensizlikleri yapıda bulunmamaktadır. B tipi düşeyde düzensizlik durumları göz önüne alındığında B1 ve B3 düzensizlikleri yapıda bulunmamış olup B2 - Komşu Katlar Arası Rijitlik Düzensizliği (Yumuşak Kat) düzensizliği bulunmaktadır.

	X Yönü Perdeler			Y Yönü Perdeler		
Perde No	A_{nja}	k_{W}	A_{tj}	A_{wj}	\mathbf{l}_{wj}	A_{tj}
1	-	-	-	3	6	0,613
2	-	-	-	3	6	0,613
3	-	-	-	3	6	0,613
4	-	-	-	3	6	0,613
5	-	-	-	3	6	0,613
6	-	-	-	3	6	0,613
7	4	8	0,829	-	-	-
8	4	8	0,829	-	-	-
9	4	8	0,829	-	-	-
10	4	8	0,829	- /	-	-
	ΣA_{wj} =16	$\sum A_{wj} \geq \Sigma A_{tj}$	ΣA _{tj} =3,316	ΣA _{wj} =18	$\sum_{\mathbf{A}_{wj}} \geq \sum_{\mathbf{A}_{tj}}$	$\Sigma A_{tj}=3,678$
	$Ct = 0, 1/(At)^{(0,5)} =$		0,0549	$Ct = 0, 1/(At)^{(0,5)} =$		0,0521
	$T_{pA(X)} =$		1,657	$T_{pA(Y)} =$		1,573
	1,4 x T _{pA(X)} =		2,320	$1,4 \text{ x } T_{pA(Y)} =$		2,202

Çizelge 6.13: Ampirik T_{pA} Değeri Hesabı

Çizelge 6.14: Hesap mod periyotları

Mod Yönleri	Mod Sayısı	Periyot (s)	Ux	Uy	Σ Ux	Σ Uy	Rz
Mod Y Yönü	Mod 1	3,775	0	0,7291	0	0,7289	0
Mod B Yönü	Mod 2	3,340	0	0	0	0	0,7425
Mod X Yönü	Mod 3	2,741	0,68	0	0,68	0	0

Çizelge 6.15:
$$V_{tE}^{(X,Y)}$$
 Kontrolü

X Yönü için; $V_{tE}^{(X)} = m_t S_{aR}(T_p^{(X)})$	Y Yönü için; $V_{tE}^{(Y)} = m_t S_{aR}(T_p^{(Y)})$
1,4 x TpA(X) =2,320	1,4 x TpA(Y) =2,202
<i>S_{ae}</i> (2,320)=0,0469g	<i>S_{ae}</i> (2,202)=0,0495g
$R_a(2,321) = 5,6$	$R_a(2,205) = 5,6$
$S_{aR}(2,321) = 0,008375g$	$S_{aR}(2,205) = 0,008839g$
$V_{tE}^{(X)} = 7216 kN$	$V_{tE}^{(Y)} = 7614 kN$
$V_{tE}^{(X)} = 7216$ kN < $V_{t,min} = 13782$ kN	$V_{tE}^{(Y)} = 7614$ kN < $V_{t,min} = 13782$ kN

Şekil 6.6: Deprem yüklemelerine göre n_{bi} değişimi

Yapıda bulunan A1 ve B2 düzensizliklerinden dolayı $\gamma_E = 0,9$ alınmıştır. $\beta_{tE}^{(X)}$ denkleminde $V_{tx}^{(X)}$ TBDY-2018 bölüm 4.8.2'ye göre mod birleştirme yöntemiyle elde edilen X doğrultusundaki toplam deprem yükü 4395 kN, $V_{ty}^{(Y)}$ TBDY-2018 bölüm 4.8.2'ye göre mod birleştirme yöntemiyle elde edilen Y doğrultusundaki toplam deprem yükü olup 2797 kN olarak alınmıştır.

X Yönü	Y Yönü
$\beta_{tE}^{(X)} = \frac{\gamma_E V_{tE}^{(X)}}{V_{tx}^{(X)}} \ge 1$	$\beta_{tE}^{(Y)} = \frac{\gamma_E V_{tE}^{(Y)}}{V_{ty}^{(Y)}} \ge 1$
$\beta_{tE}^{(X)} = \frac{0.9x13782}{4395} \ge 1$	$\beta_{tE}^{(Y)} = \frac{0.9x13782}{2797} \ge 1$
$\beta_{tE}^{(X)} = 2.822$	$\beta_{tE}^{(Y)} = 4,435$

Çizelge 6.16: X ve Y yönleri için azaltılmış iç kuvvetlerin ve yer değiştirmelerin eşdeğer taban kesme kuvvetine göre büyültülmesi

Çizelge 6.16'daki sonuçlara göre $\beta_{tE}^{(X,Y)}$ için hesaplanan eşdeğer taban kesme kuvveti büyütme katsayısı değerleri kullanılacaktır.

TBDY-2018 bölüm 4.8 kapsamında modal hesap yöntemlerinden mod birleştirme yöntemiyle yapılan hesap sonucunda X ve Y deprem doğrultularında her bir mod için hesaplanan taban kesme kuvveti modal etkin kütleleri'nin toplam bina kütlesinin %95'inden az olmaması kuralına göre hesaba katılması gereken yeterli titreşim modu sayısı YM göz önüne alınmış ve Çizelge 6.17'de yeterli YM gösterilmiştir.

$$\sum_{n=1}^{YM} m_{txn}^{(X)} \ge 0.95m_t \quad ; \quad \sum_{n=1}^{YM} m_{tyn}^{(Y)} \ge 0.95m_t$$

MODAI	Mod	Periyod	11	11	D	$\sum u$	$\sum u$
MODAL	Mod	(sn)	O_X	U_Y	κ _Z	Δ^{o_X}	$\sum O_{Y}$
Modal(y)	1	3,67	0	0,7286	0	0	0,7286
Modal(b)	2	3,261	0	0	0,7422	0	0,7286
Modal(x)	3	2,701	0,6803	0	0	0,6803	0,7286
Modal(y)	4	1,053	0	0,1317	0	0,6803	0,8604
Modal(b)	5	0,982	0	0	0,1398	0,6803	0,8604
Modal(x)	6	0,654	0,1926	0	0	0,8729	0,8604
Modal(y)	7	0,523	0	0	0,0492	0,8729	0,8604
:	•••	:	•••	•••	•••	:	
Modal(y)	21	0,235	0	0	0	0,9336	0,9436
Modal(b)	22	0,225	0,0001	0	0	0,9336	0,9436
Modal(x)	23	0,223	0	0	0	0,9336	0,9436
Modal(y)	24	0,215	0	0	0	0,9336	0,9436
Modal(b)	25	0,214	0	0,0157	0	0,9336	0,9593
Modal(x)	26	0,206	0,0236	0	0	0,9572	0,9593

Çizelge 6.17: Modal kütle katkısı oranları

TBDY-2018 bölüm 13.2'de *Tasarım Aşaması I* için DD-2 deprem yer hareketinde Kontrollü Hasar (KH) performans hedefini sağlamak üzere yüksek binanın *Dayanıma* göre Tasarım (DGT) yaklaşımıyla çözümü için bölüm 4'te verilen kurallar göz önünde bulundurulması istenmiştir. Bu kapsamda bölüm 4.9'da verilen *Göreli Kat Ötelemelerinin Sınırlandırılması* ve *İkinci Mertebe Etkileri* kontrolünün yapılması gerekmektedir.

TBDY-2018 bölüm 4.9.1 kapsamında herhangi bir deprem doğrultusunda herhangi bir kolon veya perde için azaltılmış deprem yüklerine göre, ardışık iki kat arasındaki yer değiştirme farkını ifade eden *azaltılmış göreli kat ötelenmesi* ($\Delta_i^{(X,Y)}$) ile elde edilmektedir.

$$\Delta_i^{(X,Y)} = u_i^{(X,Y)} - u_{i-1}^{(X,Y)}$$

X veya Y deprem doğrultusundaki, binanın i'ninci katındaki kolon veya perdeler için *etkin göreli kat ötelenmesi* ($\delta_i^{(X,Y)}$) aşağıdaki denklem yardımıyla elde edilmiştir.

$$\delta_i^{(X,Y)} = \frac{R}{I} \Delta_i^{(X,Y)}$$

Şekil 6.7: Göreli kat ötelenmelerinin sınırlandırılması için değerlendirilen elemanlar

Deprem doğrultusu için binanın herhangi bir i'inci katındaki perdelerde veya kolonlarda, $\delta_i^{(X,Y)}$ için kat içindeki en yüksek değeri $\delta_{i,max}^{(X,Y)}$ hesaplanıp, aşağıda verilen TBDY-2018 bölüm 4.9.1.3.b'deki koşulu sağlamak durumundadır.

$$\lambda \frac{\delta_{i,max}^{(X,Y)}}{h_i} \le 0,016 \ \kappa$$

 $\lambda = \frac{S_{ae-DD3}(T_{px})}{S_{ae-DD2}(T_{px})} \rightarrow \lambda_X = 0,386 ; \ \lambda_Y = 0,385; \quad \boldsymbol{\kappa} = 1 \text{ (Betonarme Bina)}$

Çizelge 6.18: X Deprem Yönü Göreli Kat Ötelenmesi Seçili Kolon Kontrolü

Kat	h _i cm	$u_i^{(X)}$ mm	$\Delta_i^{(X)}$ mm	$\delta_i^{(X)}$ mm	$\lambda rac{\delta_{i,max}^{(X)}}{h_i}$
+94.0m	350	31,782	1,194	6,6864	0,0007
+90.5m	350	30,588	1,378	7,7168	0,0009
+87.0m	350	29,21	1,424	7,9744	0,0009
+83.5m	350	27,786	1,426	7,9856	0,0009
+80.0m	350	26,36	1,427	7,9912	0,0009
+76.5m	350	24,933	1,426	7,9856	0,0009
+73.0m	350	23,507	1,424	7,9744	0,0009
+69.5m	350	22,083	1,419	7,9464	0,0009
+66.0m	350	20,664	1,413	7,9128	0,0009
+62.5m	350	19,251	1,413	7,9128	0,0009
+59.0m	350	17,838	1,377	7,7112	0,0009
+55.5m	350	16,461	1,37	7,672	0,0008
+52.0m	350	15,091	1,352	7,5712	0,0008
+48.5m	350	13,739	1,328	7,4368	0,0008
+45.0m	350	12,411	1,298	7,2688	0,0008
+41.5m	350	11,113	1,266	7,0896	0,0008
+38.0m	350	9,847	1,226	6,8656	0,0008
+34.5m	350	8,621	1,183	6,6248	0,0007
+31.0m	350	7,438	1,137	6,3672	0,0007
+27.5m	350	6,301	1,082	6,0592	0,0007
+24.0m	350	5,219	0,999	5,5944	0,0006
+20.5m	350	4,22	0,939	5,2584	0,0006
+17.0m	350	3,281	0,87	4,872	0,0005
+13.5m	350	2,411	0,81	4,536	0,0005
+10.0m	500	1,601	1,048	5,8688	0,0005
+5.0m	500	0,553	0,553	3,0968	0,0002
+0.0m		0		MAX	0,0009

Çizelge 6.18'e göre seçili kolon için X deprem yönü kontrolü sonucunda 0,0009 $\leq 0,016$ olduğundan dolayı şartları sağlamıştır.

Kat	h _i cm	$u_i^{(Y)}$ cm	$\Delta_i^{(Y)}$ cm	$\delta_i^{(Y)}$ cm	$\lambda rac{\delta_{i,max}^{(Y)}}{h_i}$
+94.0m	350	63,843	1,597	8,9432	0,0007
+90.5m	350	62,246	1,856	10,3936	0,0008
+87.0m	350	60,39	1,961	10,9816	0,0009
+83.5m	350	58,429	2,03	11,368	0,0009
+80.0m	350	56,399	2,113	11,8328	0,0009
+76.5m	350	54,286	2,205	12,348	0,0009
+73.0m	350	52,081	2,302	12,8912	0,0009
+69.5m	350	49,779	2,399	13,4344	0,0009
+66.0m	350	47,38	2,498	13,9888	0,0009
+62.5m	350	44,882	2,616	14,6496	0,0009
+59.0m	350	42,266	2,661	14,9016	0,0008
+55.5m	350	39,605	2,751	15,4056	0,0008
+52.0m	350	36,854	2,828	15,8368	0,0008
+48.5m	350	34,026	2,891	16,1896	0,0008
+45.0m	350	31,135	2,938	16,4528	0,0008
+41.5m	350	28,197	2,969	16,6264	0,0008
+38.0m	350	25,228	2,981	16,6936	0,0008
+34.5m	350	22,247	2,97	16,632	0,0007
+31.0m	350	19,277	2,94	16,464	0,0007
+27.5m	350	16,337	2,88	16,128	0,0007
+24.0m	350	13,457	2,713	15,1928	0,0006
+20.5m	350	10,744	2,579	14,4424	0,0006
+17.0m	350	8,165	2,381	13,3336	0,0005
+13.5m	350	5,784	2,134	11,9504	0,0005
+10.0m	500	3,65	2,499	13,9944	0,0005
+5.0m	500	1,151	1,151	6,4456	0,0002
+0.0m		0		MAX	0,0009

Çizelge 6.19: Y Deprem Yönü Göreli Kat Ötelenmesi Seçili Kolon Kontrolü

Çizelge 6.19'a göre seçili kolon için Y deprem yönü kontrolü sonucunda 0,0009 $\leq 0,016$ olduğundan dolayı şartları sağlamıştır.

Kat	h_i cm	$u_i^{(Y)}$ cm	$\Delta_i^{(Y)}$ cm	$\delta^{(Y)}_i$ cm	$\lambda rac{\delta_{i,max}^{(Y)}}{h_i}$
+94.0m	350	31,915	1,388	7,7728	0,0009
+90.5m	350	30,527	1,394	7,8064	0,0009
+87.0m	350	29,133	1,407	7,8792	0,0009
+83.5m	350	27,726	1,418	7,9408	0,0009
+80.0m	350	26,308	1,422	7,9632	0,0009
+76.5m	350	24,886	1,425	7,98	0,0009
+73.0m	350	23,461	1,423	7,9688	0,0009
+69.5m	350	22,038	1,42	7,952	0,0009
+66.0m	350	20,618	1,414	7,9184	0,0009
+62.5m	350	19,204	1,403	7,8568	0,0009
+59.0m	350	17,801	1,39	7,784	0,0009
+55.5m	350	16,411	1,373	7,6888	0,0008
+52.0m	350	15,038	1,354	7,5824	0,0008
+48.5m	350	13,684	1,33	7,448	0,0008
+45.0m	350	12,354	1,303	7,2968	0,0008
+41.5m	350	11,051	1,27	7,112	0,0008
+38.0m	350	9,781	1,233	6,9048	0,0008
+34.5m	350	8,548	1,189	6,6584	0,0007
+31.0m	350	7,359	1,14	6,384	0,0007
+27.5m	350	6,219	1,084	6,0704	0,0007
+24.0m	350	5,135	1,02	5,712	0,0006
+20.5m	350	4,115	0,952	5,3312	0,0006
+17.0m	350	3,163	0,873	4,8888	0,0005
+13.5m	350	2,29	0,784	4,3904	0,0005
+10.0m	500	1,506	0,924	5,1744	0,0004
+5.0m	500	0,582	0,582	3,2592	0,0003
+0.0m		0		MAX	0,0009

Çizelge 6.20: X Deprem Yönü Göreli Kat Ötelenmesi Seçili Perde Kontrolü

Çizelge 6.20'ye göre seçili perde için X deprem yönü kontrolü sonucunda 0,0009 $\leq 0,016$ olduğundan dolayı şartları sağlamıştır.

Kat	$h_i \ m cm$	$u_i^{(Y)}$ cm	$\Delta_i^{(Y)}$ cm	$\delta_i^{(Y)}$ cm	$\lambda rac{\delta_{i,max}^{(Y)}}{h_i}$
+94.0m	350	64,03	1,826	10,2256	0,0009
+90.5m	350	62,204	1,891	10,5896	0,0009
+87.0m	350	60,313	1,947	10,9032	0,0009
+83.5m	350	58,366	2,02	11,312	0,0009
+80.0m	350	56,346	2,106	11,7936	0,0009
+76.5m	350	54,24	2,201	12,3256	0,0009
+73.0m	350	52,039	2,299	12,8744	0,0009
+69.5m	350	49,74	2,399	13,4344	0,0009
+66.0m	350	47,341	2,497	13,9832	0,0009
+62.5m	350	44,844	2,594	14,5264	0,0009
+59.0m	350	42,25	2,676	14,9856	0,0009
+55.5m	350	39,574	2,758	15,4448	0,0008
+52.0m	350	36,816	2,831	15,8536	0,0008
+48.5m	350	33,985	2,893	16,2008	0,0008
+45.0m	350	31,092	2,941	16,4696	0,0008
+41.5m	350	28,151	2,975	16,66	0,0008
+38.0m	350	25,176	2,988	16,7328	0,0008
+34.5m	350	22,188	2,978	16,6768	0,0007
+31.0m	350	19,21	2,941	16,4696	0,0007
+27.5m	350	16,269	2,875	16,1	0,0007
+24.0m	350	13,394	2,759	15,4504	0,0006
+20.5m	350	10,635	2,613	14,6328	0,0006
+17.0m	350	8,022	2,409	13,4904	0,0005
+13.5m	350	5,613	2,128	11,9168	0,0005
+10.0m	500	3,485	2,36	13,216	0,0004
+5.0m	500	1,125	1,125	6,3	0,0003
+0.0m		0		MAX	0,0009

Çizelge 6.21: Y Deprem Yönü Göreli Kat Ötelenmesi Seçili Perde Kontrolü

Çizelge 6.21'e göre seçili perde için Y deprem yönü kontrolü sonucunda 0,0009 $\leq 0,016$ olduğundan dolayı şartları sağlamıştır.

TBDY-2018 bölüm 4.9.2 kapsamında herhangi bir deprem doğrultusundaki her bir i'inci katındaki *İkinci Mertebe Gösterge Değeri* $\theta_{II,i}^{(X,Y)}$ değeri hesaplanarak kontrol yapılmıştır.

$$\theta_{II,i}^{(X,Y)} = \frac{(\Delta_i^{(X,Y)})_{ort} \sum_{k=i}^N w_k}{V_i^{(X,Y)} h_i}$$

Yukardaki bağıntı aracılığıyla hesaplanan değer $\theta_{II,max}^{(X,Y)} \leq 0,12 \frac{D}{C_h R}$ sınırını aşmamalıdır. Bu bağıntıdaki C_h ise betonarme binalar için TBDY-2018 bölüm 4.9.2.2'ye göre 0,5 alınmıştır.

Kat	$h_i \ m cm$	$(\Delta_i^{(X)})_{ort}$ mm	w _k kN	$\frac{\Sigma w_k}{\mathrm{kN}}$	V _i ^(X) kN	$ heta_{II}^{(X)}$
+94.0m	350	1,291	34918	34918	2018,27	0,0064
+90.5m	350	1,386	32183	67100	3518,24	0,0076
+87.0m	350	1,4155	32183	99283	4562,86	0,0088
+83.5m	350	1,422	32183	131466	5208,12	0,0103
+80.0m	350	1,4245	32183	163649	5548,31	0,0120
+76.5m	350	1,4255	32183	195831	5692,84	0,0140
+73.0m	350	1,4235	32183	228014	5747,37	0,0161
+69.5m	350	1,4195	32183	260197	5793,63	0,0182
+66.0m	350	1,4135	32183	292379	5884,29	0,0201
+62.5m	350	1,408	32183	324562	6037,59	0,0216
+59.0m	350	1,3835	32698	357260	6248,10	0,0226
+55.5m	350	1,3715	32698	389959	6499,98	0,0235
+52.0m	350	1,353	32698	422657	6768,61	0,0241
+48.5m	350	1,329	32698	455355	7034,84	0,0246
+45.0m	350	1,3005	32698	488054	7291,36	0,0249
+41.5m	350	1,268	32698	520752	7540,92	0,0250
+38.0m	350	1,2295	32698	553450	7797,89	0,0249
+34.5m	350	1,186	32698	586149	8082,88	0,0246
+31.0m	350	1,1385	32698	618847	8420,43	0,0239
+27.5m	350	1,083	32698	651546	8835,84	0,0228
+24.0m	350	1,0095	33940	685485	9353,08	0,0211
+20.5m	350	0,9455	33940	719425	9976,90	0,0195
+17.0m	350	0,8715	33940	753364	10674,97	0,0176
+13.5m	350	0,797	33940	787304	11394,95	0,0157
+10.0m	500	0,986	37029	824333	12100,58	0,0134
+5.0m	500	0,5675	37029	861361	12510,99	0,0078
					MAX	0,0250

Çizelge 6.22: X Deprem Yönü İkinci Mertebe Gösterge Değeri

Çizelge 6.22'deki $\theta_{II,max}^{(X)} \leq 0,12.D/(C_hR)=0,107$ şartını sağlamış ve ikinci mertebe etkilerinin tasarıma esas iç kuvvetlerin hesabında gözönüne alınması gerek bulunmamaktadır.

Kat	h _i cm	$(\Delta_i^{(Y)})_{ort}$ cm	w _k kN	$\frac{\Sigma w_k}{\mathrm{kN}}$	V _i ^(Y) kN	$ heta_{II}^{(Y)}$
+94.0m	350	1,7115	34918	34918	2560,55	0,0067
+90.5m	350	1,8735	32183	67101	4151,89	0,0087
+87.0m	350	1,954	32183	99284	4994,56	0,0111
+83.5m	350	2,025	32183	131467	5381,04	0,0141
+80.0m	350	2,1095	32183	163650	5601,94	0,0176
+76.5m	350	2,203	32183	195833	5842,69	0,0211
+73.0m	350	2,3005	32183	228016	6152,57	0,0244
+69.5m	350	2,399	32183	260199	6502,89	0,0274
+66.0m	350	2,4975	32183	292382	6842,30	0,0305
+62.5m	350	2,605	32183	324565	7139,48	0,0338
+59.0m	350	2,6685	32698	357263	7386,31	0,0369
+55.5m	350	2,7545	32698	389961	7602,95	0,0404
+52.0m	350	2,8295	32698	422659	7807,21	0,0438
+48.5m	350	2,892	32698	455357	8019,62	0,0469
+45.0m	350	2,9395	32698	488055	8248,13	0,0497
+41.5m	350	2,972	32698	520753	8492,91	0,0521
+38.0m	350	2,9845	32698	553451	8742,29	0,0540
+34.5m	350	2,974	32698	586149	8980,01	0,0555
+31.0m	350	2,9405	32698	618847	9197,99	0,0565
+27.5m	350	2,8775	32698	651545	9405,49	0,0570
+24.0m	350	2,736	33940	685485	9652,35	0,0555
+20.5m	350	2,596	33940	719425	10012,32	0,0533
+17.0m	350	2,395	33940	753365	10542,68	0,0489
+13.5m	350	2,131	33940	787305	11239,07	0,0427
+10.0m	500	2,4295	37029	824334	12060,65	0,0332
+5.0m	500	1,138	37029	861363	12644,26	0,0155
					MAX	0,0570

Çizelge 6.23: Y Deprem Yönü İkinci Mertebe Gösterge Değeri

Çizelge 6.23'teki $\theta_{II,max}^{(Y)} \leq 0,12.D/(Ch.R)=0,107$ şartını sağlamış ve ikinci mertebe etkilerinin tasarıma esas iç kuvvetlerin hesabında gözönüne alınması gerekli değildir.

TBDY-2018 kapsamında bölüm 13'te verilen kurallar çerçevesinde *Tasarım Aşaması-I* için verilen kurallar çerçevesinde DD-2 deprem yer hareketinde etkisinde, Dayanıma Göre Tasarım (DGT) hesap esaslarına göre yapılmış ve *Kontrollü Hasar (KH)* performans hedefinin sağlandığı görülmüştür.

6.2.2.1 Tasarım Aşaması I:DD-2 Deprem Yer Hareketi Altında Kolon, Perde ve Kirişlerin Ön Tasarımı

Bu bölümde belirli kolon, perde ve kirişlerin tasarımı yapılmış olup geri kalan elemanlar tablolarla gösterilmektedir.

C21 Kolonu

Şekil 6.8: Donatılandırması yapılan C21 kolon gösterimi

Şekil 6.8'de gösterilen betonarme kolon tasarımında TBDY-2018 bölüm 7.3.1'deki enkesit koşullarına göre boyutlandırılan kolonlar için $0,4 \ge N_{dm}/A_c \times f_{ck}$ şartı Şekil 6.9'da gösterilmiştir.

Şekil 6.9: TBDY-2018 bölüm 7.3.1.2 Kolon Eksenel Kuvvet Kontrolü

TBDY-2018 bölüm 7.3.2'ye göre kolonlarda boyuna donatı alanı, brüt kesitin %1'den az, %4'ünden fazla olmaz.

 $A_{sv,min} \ge A_C \times 0,01 = 110 \times 110 \times 0,01 = 121 cm^2$

Ön görülen boyuna donatı 44@30 = 311cm² olup, donatı pursantajı $\rho = \%2,57$ seçilmiştir.

TBDY-2018 bölüm 7.3.4.1a'ya göre düşeyde seçilen etriye aralığı s, 10 cm alınmış olup, bölüm 7.3.4.1b'ye göre enine donatı koşullarına uygun olarak dizayn edilmiştir.

$$\begin{split} A_{sh,1} &\geq 0,3.\,s.\,b_k.\,[(A_c/A_{ck}) - 1].\,(f_{ck}/f_{ywk}) \\ A_{sh,1} &\geq 0,3.10.102.\,[(110^2/102^2) - 1].\,(60MPa/420MPa) \ = 7,13cm^2 \\ A_{sh,2} &\geq 0,075.\,s.\,b_k.\,(f_{ck}/f_{ywk}) \\ A_{sh,2} &\geq 0,075.10.102.\,(60MPa/420MPa) \ = 10,93cm^2 \\ &\quad 6\,\mathrm{kol}\,\varnothing16\,(\mathrm{Etriye}) = 12,06\mathrm{cm}2 \end{split}$$

Maksimum gerekli alan A_{sh,2} göz önüne alındığında, seçilen enine donatı planı Şekil 6.'da gösterilmiştir.

Şekil 6.10: C21 110x110 Kolonu Donatı Planı

TBDY-2018 bölüm 7.3.7.5'e göre kolon enine donatısının tasarımında esas alınacak V_e kesme kuvveti, yük katsayıları ile arttırılmış düşey yükler ile deprem yüklerinin ortaklaşa etkisi altında hesaplanan kesme kuvveti V_d'den daha küçük olmayacaktır ve aşağıdaki diğer koşulları sağlamalıdır.

$$V_e \le V_r$$

 $V_e \le 0.85 Aw \sqrt{f_{ck}}$

TBDY-2018 bölüm 7.3.7.6'ya göre kolon enine donatısının V_e kesme kuvvetine hesabı yapılırken betonun kesme kuvvetine katkısı V_c, TS500'e göre belirlenmelidir. Bölüm 7.4.3.1'de tanımlanan kolon sarılma bölgesindeki enine donatı hesabında, aşağıdaki şartların sağlanması durumunda V_c = 0 alınmalıdır.

 $\frac{V_{DxE}}{V_{G+Q+DxE}} > 0.5 \qquad N_d \le 0.05 A_c f_{ck} \Rightarrow V_c = 0 \text{ alinmiştir!}$

- ∨ G+Q = 17,54kN DxV_E = 1325kN
 V_e = V_{G+Q} + V_{DxE} = 1342,54kN
 $\frac{V_{DxE}}{V_e} = \frac{1325}{1342,54} = 0,98 > 0,5 √√√$
- N_d = 838kN ≤ 0,05(1,1m × 1,1m)60000kN/m² = 3630kN ✓ ✓ ✓
 ○ V_c = 0 alinmiştir.

►
$$V_r = V_w + (V_c = 0) = V_w = \frac{A_{sw}}{s} f_{ywd} d = \frac{11,50 cm^2}{10 cm} 36,5 kN/cm^2 110 cm = 4617 kN$$

- $\circ \quad V_e = 1343 \ kN < V_r = 4617 \ kN \checkmark \checkmark \checkmark$
- $V_e = 1343 \text{ kN} \le 0.85 \times 1.1 \times 1.1 \times \sqrt{60000} = 7967 \text{ kN} \checkmark \checkmark \checkmark$

Yukarıda hesaplanan TBDY-2018 bölüm 7.3.4.1b'ye göre hesaplanan enine donatı miktarı kolonlar için gerekli kesme güvenliğini sağlamaktadır.

Kolon tasarımı için hesaplanan kolon boyuna donatıları için oluşturulan akma yüzeyinde, tasarımda elde edilen deprem yüklerinin ve düşey yüklerin ortaklaşa etkisi altında yönetmelikçe gerekli olan yük kombinasyonları için elde edilen normal kuvvete karşılık gelen M2-2 ve M3-3 moment etkileşim diyagramları C21 kolonu için Şekil 6.11 ve Şekil 6.12'de verilmiştir. Akma yüzeyi, dizayn yükleri üç boyutlu gösterimi Şekil 6.13'de gösterilmiştir.

Şekil 6.11: C21 Kolonu N-M33 Diyagramı

Şekil 6.13: C21 Kolonu Akma Yüzeyi ve Dizayn Yükleri

Şekil 6.14: P1 Perdesi Kat Planı Yerleşimi

Şekil 6.14'te gösterilen P1 betonarme perde tasarımında TBDY-2018 bölüm 7.6.1'deki enkesit koşullarına göre boyutlandırılan perdeler için $A_c \ge N_{dm}/(0.35 \times f_{ck})$ şartını sağlanmalıdır. Şekil 6.15'de perde eksenel yüklemesi ve kapasite sınırları gösterilmiştir. Şekil 6.16 ve Şekil 6.17'de ise X ve Y yönleri için tasarım eğilme momenti ile çözümden bulunan moment değerleri karşılaştırılması gösterilmiştir.

Şekil 6.16: M2-2 Tasarım Eğilme Momenti

Şekil 6.17: M3-3 Tasarım Eğilme Momenti

TBDY-2018 bölüm 7.6.2'ye göre bina yüksekliği boyunca kritik perde yüksekliği belirlenir ve perde kritik yüksekliği boyunca bölüm7.6.3 ve bölüm 7.6.5'deki kurallar uygulanmıştır.

TBDY-2018 bölüm 7.6.2.1'e göre $H_w/l_w > 2$ olan perdelerin planda her iki ucunda perde uç bölgeleri oluşturulmuştur. Burada H_w binanın temel üstünden veya perdenin brüt kesit eğilme rijitliğinin yarıya indiği seviyeden itibaren ölçülen perde yüksekliği olup, l_w ise perdenin plandaki uzunluğudur. Döşemelerin rijit diyafram olarak tanımlandığı binalarda ise H_w ve H_{cr} büyüklükleri zemin kat döşemesinden itibaren yukarıya doğru gözönüne alınmıştır.

 $H_w = 94m$, $l_w = 16,50m$;

94/16,50=5,7 > 2 → Kritik perde yüksekliği boyunca perde uç bölgeleri uygulanmıştır.

TBDY-2018 bölüm 7.6.2.2'ye göre temel üstünden ya da perdenin plandaki uzunluğunun %20'den daha fazla küçüldüğü seviyeden itibaren *kritik perde yüksekliği* 21_w değerinin aşmamak üzere, aşağıda verilen kuralların en elverişsiz olanına göre seçilmelidir.

 $2l_w \ge H_{cr} \ge \max[l_w; H_w/6]$ 2 × 16,50m ≥ H_{cr} ≥ max[16m; 94/6] → 33m ≥ H_{cr} ≥ 16m Seçilen H_{cr} = 24 m olup ilk altı katı kapsamaktadır. (2x5m+4x3,5m) Yukarda belirlenen kritik perde yüksekliği boyunca TBDY-2018 bölüm 7.6.2.3'e göre tüm uç bölgelerin plandaki uzunluğunun perdenin plandaki toplam uzunluğuna oranı %20'den ve en az perde kalınlığının iki katı kadar olmalıdır. Kritik perde yüksekliğinin üstünde kalan perde boyunca, perdenin tüm uç bölgelerinin uzunluğunun perdenin plandaki toplam uzunluğuna oranı %10'dan ve perde kalınlığından daha az olmamalıdır. Şekil 6.18'de P1 bölgesi perde uç bölgesi düzenlemesi gösterilmiştir.

Şekil 6.18: P1 Perdesi Kritik Yükseklik ve Kritik Yüksekliğin Üstündeki Kısımda Oluşan Perde Uç Bölgelerinin Boyutlandırılması

Perde uç bölgeleri için TBDY-2018 bölüm 7.6.5.1'e göre kritik perde yüksekliği boyunca perde uç bölgelerinin her birinde toplam düşey donatı alanının perde brüt enkesit alanına oranı en az 0,002 olmalıdır. Bu yüksekliğin dışında ise 0,001'den daha az olmamalıdır. Perde uç bölgesinin geometrisindeki ve donatısındaki geçiş üç kat boyunca kademeli olarak yapılmıştır. Perde uç bölgelerindeki boyuna donatı oranı 0,03'ü geçmemelidir.

Kritik perde yüksekliği boyunca uç bölgesi düşey donatı hesabı;

$$\begin{aligned} \frac{A_{sb,min}}{l_w b_w} &\geq 0,002 \quad ; \quad \rho_{b,min} = \frac{A_{sb,min}}{0,2l_w \times b_w} = \frac{0,002 \times l_w b_w}{0,2l_w \times b_w} = 0,01 \\ A_{sb,min1} &= 330 \times 50 \times 0,01 = 165 cm^2 \rightarrow 54\emptyset 20 \ (169 cm^2 > A_{sb,min}) \\ A_{sb,min2} &= 125 \times 50 \times 0,01 = 62,5 cm^2 \rightarrow 24\emptyset 20 \ (76 cm^2 > A_{sb,min}) \\ \text{Kritik perde yüksekliği dışında uç bölgesi düşey donatı hesabı;} \\ \frac{A_{sb,min}}{l_w b_w} &\geq 0,001 \quad ; \quad \rho_{b,min} = \frac{A_{sb,min}}{0,1l_w \times b_w} = \frac{0,001 \times l_w b_w}{0,1l_w \times b_w} = 0,01 \\ A_{sb,min1} &= 165 \times 50 \times 0,01 = 82,5 cm^2 \rightarrow 30\emptyset 20 \ (95 cm^2 > A_{sb,min1}) \\ A_{sb,min2} &= 70 \times 50 \times 0,01 = 35 cm^2 \rightarrow 16\emptyset 20 \ (50,3 cm^2 > A_{sb,min2}) \\ A_{sb,min3} &= 100 \times 50 \times 0,01 = 50 cm^2 \rightarrow 20\emptyset 20 \ (62 cm^2 > A_{sb,min3}) \end{aligned}$$

Perde uç bölgeleri TBDY-2018 bölüm 7.6.5.2b'ye göre kritik perde yüksekliği boyunca perde uç bölgelerine yatay donatı hesabı için kolonların sarılma bölgelerinde ki hesabın ikinci koşulu $A_{sh,2} \ge 0,075. s. b_k. (f_{ck}/f_{ywk})$ formülünden belirlenen enine donatının en az 2/3'ü konulması gerekir.

Kritik perde yüksekliği boyunca uç bölgesi yatay donatı hesabı;

Donatı aralığı s, 50mm'den daha az ve 150mm'den daha fazla olamaz. Aynı zamanda perde kalınlığının 1/3'ünden ve boyuna donatı çapının 6 katından fazla olamaz. Seçilen s donatı aralığı = 10cm

 $50mm \leq s = 100mm \leq 150mm$

 $s=100mm\ \leq b/3=167mm$

 $s = 100 mm \le 6 \mathcal{O}_l = 120 mm$

$$A_{sh,2} \ge 0,075 \times 10 cm \times 42 cm \times \left(\frac{60MPa}{420MPa}\right) = 4,5 cm^2$$

 $\binom{2}{3}A_{sh,2} = 3cm^2 \rightarrow Başlık bölgesi için seçilen donatı 4 kollu Ø12/10cm$

Kritik perde yüksekliği dışında uç bölgesi yatay donatı hesabı;

Donatı aralığı s, perde kalınlığından ve 200mm'den daha fazla olamaz.

Seçilen s donatı aralığı = 15cm

 $50mm \leq s = \! 150mm \leq 200mm$

$$A_{sh,2} \ge 0,075 \times 15 cm \times 42 cm \times \left(\frac{60MPa}{420MPa}\right) = 6,75 cm^2$$

 $(2/3)A_{sh,2} = 4,5cm^2 \rightarrow Başlık bölgesi için seçilen donatı 4 kollu Ø12/15cm$

Perde uç bölgelerinin dışında kalan perde gövdesi için TBDY-2018 bölüm 7.6.3'e gerekli donatı aralığı ve miktarı hesaplanmıştır.

 $A_{sg,min} \ge 0,0025 \times 100 cm \times 42 cm = 10,5 cm^2/m$ (1m için gerekli donatı miktarı) $A_{sg,min} = 10,5 cm^2/m \rightarrow Seçilen gövde donatısı = 20/12/20 \ge A_{sg,min}$

TBDY-2018 bölüm 7.6.3.3'e göre kritik perde yüksekliği boyunca perde gövdelerinin her iki yüzündeki donatı ağları, her bir metrekare perde yüzünde en az 10 adet; bu yüksekliğin dışında ise her bir metrekarede en az 4 adet olmak üzere özel deprem çirozu ile karşılıklı bağlanmıştır.

P1 perdesi için hazırlanan donatılandırma Şekil 6.19 ve şekil 6.20'de gösterildiği gibidir.

TBDY-2018 bölüm 7.6.6.3'e göre $H_w/l_w > 2$ koşulunu sağlayan perdelerde, gözönüne alınmış herhangi bir kesitin enine donatı hesabında esas alınmış tasarım kesme kuvveti TBDY-2018 denklem 7.16'ya göre V_e ile hesaplanmış olup;

$$V_e = \beta_v \frac{(M_p)_t}{(M_d)_t} V_d$$

Ve denklemindeki kesme kuvveti dinamik büyütme katsayısı $\beta_v = 1,5$ alınmıştır.

$$V_{e22} = 1.5 \frac{1235785kNm}{163711kNm} V_{d22} = 11.32 V_{d22}$$
$$V_{e22} = 11.32 V_{d22} > 1.2 \times D \times V_{d22} = 3.0V_{d22}$$
$$V_{e22} = 3.0V_{d22} \rightarrow V_{e22} = 16381kN$$

TBDY-2018 bölüm 7.6.7'e göre perdelerin kesme güvenliği şartının sağlanması istenmiştir. Yukarıda hesaplanan V_e, TBDY-2018 denklem 7.18 ve denklem 7.19'daki şartları sağlamalıdır.

$$V_{e} \leq V_{r} = A_{ch}(0.65f_{ctd} + \rho_{sh}f_{ywd})$$

$$V_{e} \leq 0.85A_{ch}\sqrt{f_{ck}} \quad (Boşluksuz \, perdeler)$$

$$V_{r} = 16.875m^{2}(0.65 \times \frac{0.35\sqrt{60}}{1.5} \times 1000kN/m^{2} + \rho_{sh} \times \frac{420}{1.15} \times 1000kN/m^{2})$$

$$4 \, kol \, \emptyset 12/10 \rightarrow \rho_{sh} = \frac{4 \times 1.13}{50 \times 10} = 9.048E - 3$$

$$V_{r} = 19825kN + 6.16E6kN \times 9.048E - 3 = 55734kN \geq 16381kN \checkmark \checkmark \checkmark$$

$$V_{e} \leq 0.85 \times 16.875m^{2}\sqrt{60MPa} \times 1000 = 111106kN \quad \checkmark \checkmark \checkmark$$

Şekil 6.19: P1 Perdesi Kritik Yüksekliğindeki Donatılandırma

Şekil 6.20: P1 Perdesi Kritik Yüksekliği Dışındaki Donatılandırma

Perde tasarımı için hesaplanan kolon boyuna donatıları için oluşturulan akma yüzeyinde, tasarımda elde edilen düşey yüklerin ve deprem yüklerinin ortak etkisi altında yönetmelikçe gerekli olan yük kombinasyonları için elde edilen normal kuvvete karşılık gelen M2-2 ve M3-3 moment etkileşim diyagramları P1 perdesi için Şekil 6.21 ve Şekil 6.22'de verilmiştir. Akma yüzeyi, dizayn yükleri üç boyutlu gösterimi Şekil 6.23'de gösterilmiştir.

Şekil 6.21: P1 Perdesi Kritik Perde Yüksekliğinde N-M33 Diyagramı

Şekil 6.22: P1 Perdesi Kritik Perde Yüksekliğinde N-M22 Diyagramı

Şekil 6.23: P1 Perdesi Akma Yüzeyi ve Dizayn Yükleri

+34.5 Kotu A Aksı Kiriş Hesabı

TBDY-2018 bölüm 7.4.1'deki enkesit koşullarına göre boyutlandıran kirişlerin tasarımında bina çerçevesindeki örnek kiriş çözümü için A aksı +34.5m kotundaki kirişler seçilmiş olup Şekil 6.24'te gösterilen kirişlerin örnek tasarımı yapılmıştır.

Şekil 6.24: +34.5 Kotu Aksı Kirişleri

TBDY-2018 bölüm 7.4.1.2'e göre kiriş olarak boyutlandırılıp donatılandırılacak taşıyıcı sistem elemanlarının, tasarım eksenel basınç kuvveti $0,1 \ge N_d/(A_c \times f_{ck})$ şartını sağlaması zorunludur. Aksi durumda bu elemanlar kolon olarak boyutlandırılarak donatılandırılmıştır. Kesitlere gelen eksenel yüklere göre şartlar sağlanmış ve kiriş kesiti

gibi çözümlere devam edilmiştir. Hesap yapılmış kirişlere gelen maksimum mesnet ve açıklık momentleri ile kirişe gelen kesme kuvvetleri Çizelge 6.24'te gösterilmiştir.

							Ü	st Donatı		Alt	Donatı		
Kiriş	b (m)	h (m)	d (m)		Md (kNm)	Md (kNm)	Mon. Don.	Mesnt İlav.	As cm ²	Açık. Don.	Mesnt İlav.	As cm ²	
				Sol Mesnet	358,69		5Ad. Ø14	5Ad. Ø20	23,4	7Ad. Ø20	-	22	
B7	0,8	0,6	0,04	Açıklık		214,98	5Ad. Ø14		7,7	7Ad. Ø20	-	22	
				Sağ Mesnet	233,54		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
				Sol Mesnet	306,16		5Ad. Ø14	5Ad. Ø20	20,3	7Ad. Ø20	-	22	
B20	0,8	0,6	0,04	Açıklık		210,78	5Ad. Ø14		7,7	7Ad. Ø20	-	22	
				Sağ Mesnet	297,17		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
				Sol Mesnet	302,15		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
B31	0,8	0,6	0,04	Açıklık		209,46	5Ad. Ø14		7,7	7Ad. Ø20	-	22	
				Sağ Mesnet	301,06		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
					Sol Mesnet	301,06		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22
B46	0,8	0,6	0,04	Açıklık		209,46	5Ad. Ø14		7,7	7Ad. Ø20	-	22	
				Sağ Mesnet	302,15		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
				Sol Mesnet	297,17		5Ad. Ø14	5Ad. Ø20	20,3	7Ad. Ø20	-	22	
B54	0,8	0,6	0,04	Açıklık		210,78	5Ad. Ø14		7,7	7Ad. Ø20	-	22	
				Sağ Mesnet	306,16		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
				Sol Mesnet	233,54		5Ad. Ø14	4Ad. Ø20	20,3	7Ad. Ø20	-	22	
B67	0,8	0,6	0,04	Açıklık		215,98	5Ad. Ø14		7,7	7Ad. Ø20	-	22	
				Sağ Mesnet	358,69		5Ad. Ø14	5Ad. Ø20	23,4	7Ad. Ø20	-	22	

Çizelge 6.24: A Aksı +34.5 kotu Kiriş Tasarım Yükleri

TBDY-2018 bölüm 7.4.5'e göre kirişlerin kesme güvenliği şartının sağlanması istenmiştir. Kirişlerde enine donatı hesabında esas alınmış kesme kuvveti V_e , depremin

soldan sağa yada tersine etkimesi durumları için ayrı ayrı ve en elverişsiz sonuçları elde edilecek olup V_e kesme hesabı Çizelge 6.25'te gösterilmiştir.

Kiriş		Vg+q Düşey Yük (kN)	Vy Deprem Etkisi Mak. (kN)	Vy Deprem Etkisi Min. (kN)	D x Vy, max. (kN)	D x Vy, min. (kN)	D x Vy, max. (kN)	D x Vy, max. (kN)
D7	Sol Mes.	-176	28	-28	70	-70	-106	-246
В/	Sağ Mes.	152	28	-28	70	-70	222	82
D20	Sol Mes.	-168	29	-29	73	-73	-95	-241
B20	Sağ Mes.	165	29	-29	73	-73	238	92
P 21	Sol Mes.	-166	30	-30	75	-75	-91	-241
B31	Sağ Mes.	166	30	-30	75	-75	241	91
P 46	Sol Mes.	-166	30	-30	75	-75	-91	-241
D 40	Sağ Mes.	166	30	-30	75	-75	241	91
P 54	Sol Mes.	-165	29	-29	73	-73	-92	-238
В54	Sağ Mes.	168	29	-29	73	-73	241	95
B67	Sol Mes.	-152	28	-28	70	-70	-82	-222
B67	Sağ Mes.	176	28	-28	70	-70	246	106

Çizelge 6.25: A Aksı +34.5 Kotu Kiriş Kesme Yükleri

TBDY-2018 bölüm 7.4.5.2'ye göre hesaplanan kesme kuvvetleri V $_{\rm e}$, TBDY-2018 denklem 7.10'daki şartları sağlamalıdır.

$$V_e \le V_r$$

 $V_e \le 0.85 b_w d \sqrt{f_{ck}}$ (Boşluksuz perdeler)

$$V_r = V_c + V_w \tag{TS500 denk 8.3}$$

$$V_c = 0.8V_{cr}$$
 (TS500 denk 8.4)

$$V_{cr} = 0,65. f_{ctd}. b_w. d(1 + \gamma \frac{N_d}{A_c}) = 0,8V_{cr}$$
 (TS500 denk 8.2)

$$V_w = \frac{A_{sw}}{s} \cdot f_{ywd} \cdot d \tag{TS500 denk 8.5}$$

Sarılma bölgesi için düşünülen etriye 2 kollu Ø10 etriye olarak hesap edilmiştir. (A_{sw}=1,58cm²)
$V_r = 526kN + 323kN = 849kN > V_e = 246kN$ $V_e = 246kN \le 0.85 \times 0.8m \times 0.56m \times \sqrt{60MPa} \times 1000 \frac{kN}{m^2} = 2950kN$

B7 kirişi için yapılmış donatılandırma Şekil 6.25'teki gibi olmuştur.

Şekil 6.25: B7 Kirişi Donatılandırması

6.2.2 Tasarım Aşaması II:DD-4 Deprem Yer Hareketi Altında Kesintisiz Kullanım Performans Değerlendirmesi

Donrom	DTS=1, 2, 3, 3a, 4, 4a				
Yer H. Düzeyi	Normal Performans Hedefi	Değerlendirme/Tasarım Yaklaşımı			
DD-4	KK	DGT			
DD-3	-	-			
DD-2	KH	DGT			
DD-1	GÖ	ŞGDT			

Çizelge 6.26: TBDY-2018 Tablo 3.4-b'ye göre Tasarım Aşaması II Performans Hedefi ve Değerlendirme/Tasarım Yaklaşımı

Ön tasarımı yapılan taşıyıcı sistem elemanları TBDY-2018 bölüm 13.2.2.'da verilen kurallar çerçevesinde TBDY-2018 Tablo 3.4(b)'ye göre DTS=3 gözönüne alındığında *normal performans hedefi* için DD-4 deprem yer hareketinin etkisi altında *Kesintisiz Kullanım* performans hedefini sağlamak üzere yüksek binanın *Dayanıma Göre Tasarımı* (DGT) yaklaşımı ile performans değerlendirmesi yapılmış olup performansının yetersiz olması durumunda Tasarım Aşaması I'e geri dönülerek ön tasarım iyileştirilerek, tekrar değerlendirilecek olup performansının yeterli görülmesi durumunda bir sonraki aşama olan Tasarım Aşaması III'e göre değerlendirilmelidir.

Taşıyıcı sistem modellenirken TBDY-2018 bölüm 4.5'deki kurallar baz alınarak; kiriş ve kolon elemanları çerçeve (çubuk) sonlu elemanlar şeklinde, döşemeler rijit diyafram olarak modellenmiştir. Kolon ve kirişlerin etkin kesit rijitlikleri TBDY-2018 bölüm 13.5.2.3'te verilen kurallar çerçevesinde Çizelge 6.27'da verilen betonarme taşıyıcı sistem etkin kesit rijitlik çarpanları olarak göz önüne alınarak modellenmiştir.

Betonarme perdeler TBDY-2018 bölüm 4.5.3.7'deki kurallara uygun olacak şekilde 6 serbestlik dereceli kabuk sonlu elemanlar olarak modellenmiştir. Aynı zamanda TBDY-2018 bölüm 13.5.2.3'te verilen kurallara uygun olacak şekilde Çizelge 6.27'deki etkin rijitlik katsayıları düzlem içi ve düzlem dışı davranışa göre modellenmiştir.

Betonarme Taşıyıcı Sistem Elemanları	Etkin Ke: Çar	sit Rijitliği panı
Perde – Döşeme (Düzlem İçi)	Eksenel	Kayma
Perde	0.75	1.00
Bodrum Perdesi	1.00	1.00
Döşeme	0.50	0.80
Perde – Döşeme (Düzlem İçi)	Eğilme	Kesme
Perde	1.00	1.00
Bodrum Perdesi	1.00	1.00
Döşeme	0.50	1.00
Çubuk Eleman	Eğilme	Kesme
Bağ Kirişi	0.30	1.00
Çerçeve Kirişi	0.70	1.00
Çerçeve Kolonu	0.90	1.00
Perde (Eşdeğer Çubuk)	0.80	1.00

Çizelge 6.27: TBDY-2018 Tablo 13.1 Betonarme Taşıyıcı Sistem Elemanların BYS=1 Binalar İçin II.Aşamada Uygulanmış Etkin Kesit Rijitliği Çarpanları

Yüksek binalar normal performans hedefi için doğrusal hesaba dayalı DGT yaklaşımının uygulanması durumunda TBDY-2018 bölüm 13.5.2.4'e göre ek dış merkezlik durumu gözönüne alınmamıştır. TBDY-2018 bölüm 13.5.2.5'e göre sönüm oranı %2,5 alınmış olup, TBDY-2018 bölüm 13.5.3.3.c'ye göre deprem hesabının Mod Birleştirme Yöntemi ile yapılması durumunda %2,5 sönüm oranına karşı gelen yatay elastik tasarım spektral ivmesi değerleri $S_{ae}(T)$ 'nin elde edilmesi için, %5 sönüm oranı için verilen spektral ivme değerleri 1.25 katsayısı ile çarpılarak hesaplanmış ve Şekil 6.26'da gösterilmiştir. Modal hesap yöntemleri ile yapılması durumunda TBDY-2018 bölüm 13.5.3.3'e göre iç kuvvetlerin hesabında R/I=1 ve D=1 alınmıştır. Aynı zamanda Tasarım Aşaması I için verilen TBDY-2018 bölüm 13.4.3.4'de verilen *minimum taban kesme kuvveti* koşulu uygulanmamıştır.

Şekil 6.26: Sönüm Oranı %2,5 olan DD-4 Depremi Yatay Elastik Tasarım Spektrumu

Sistem modellemesinde süneklik düzeyi yüksek boşluksuz betonarme perdeler kullanıldığı için TBDY-2018 bölüm 4.3.4.5'deki devrilme momentini şartını sağlamalıdır.

$$0.40 M_o < \sum M_{DEV} < 0.75 M_o$$

 M_o herhangi bir deprem doğrultusunda binanın tümü için deprem yüklerinden tabanda meydana gelen toplam devrilme momenti olup; M_{DEV} ise betonarme perdenin tabanında deprem yüklerinden meydana gelen devrilme momentidir.

		$0.40 M_o < \sum M_{DEV}$	$\sum M_{DEV} < 0.75 M_o$
M _{o,X}	1069399 kNm	427760 kNm (%40)	802050 kNm (%75)
M _{DEV,X}	644730 kNm	Şart Sağlanmıştır 🗸	Şart Sağlanmıştır 🗸
M _{o,Y}	826117 kNm	330447 kNm (%40)	619588 kNm (%75)
M _{DEV,Y}	390455 kNm	Şart Sağlanmıştır 🗸	Şart Sağlanmıştır 🗸

Çizelge 6.28: Perde devrilme momenti şartı

TBDY-2018 kapsamında istenen devrilme momenti şartı, her deprem yönü için $0.40M_0$ 'dan az olmamak ve $0.75M_0$ 'dan fazla olmamak şartıyla Çizelge 6.28'de görülen moment değerleri ile sağlanmıştır.

Döşemeler planda A2 ve A3 düzensizlikleri bulunmadığı için yarı rijit diyafram olarak modellenmiştir. Yarı rijit diyafram modellenmesi durumunda kat kütle merkezinde deprem hesabı için tanımlanmış olup ek dış merkezlik etkisi gözönüne alınmamıştır.

Yatay deprem etkileri için taşıyıcı sistemin deprem etkisi altında X ve Y doğrultusundaki ek dış merkezlik etkisinden dolayı doğrultu birleştirilmesi uygulanmış tasarıma esas yatay deprem etkisi $E_d^{(H)}$ için aşağıdaki birleşimler uygulanmıştır.

$$\begin{split} & E_{d}{}^{(H)} {=} \pm E_{d}{}^{(X)} \pm 0.3 E_{d}{}^{(Y)} \\ & E_{d}{}^{(H)} {=} \pm 0.3 E_{d}{}^{(X)} \pm E_{d}{}^{(Y)} \end{split}$$

Düşey deprem etkisi $E_d^{(Z)}$ ise TBDY-2018 bölüm 4.4.3'teki kurallar çerçevesinde özel hesap yapılmaksızın aşağıdaki hesaba uygun etki ettirilmiştir.

$$E_d^{(Z)} \approx (2/3)S_{DS}G$$

G sabit yük olup, S_{DS} ise kısa periyot tasarım spektral ivme katsayısını göstermektedir.

Taşıyıcı sistem tasarımında TBDY-2018 bölüm 4.4.4'e göre aşağıdaki birleşimler esas alınmalıdır.

$$G + Q + 0.2S + E_d^{(H)} + 0.3E_d^{(Z)}$$
$$0.9G + H + E_d^{(H)} - 0.3E_d^{(Z)}$$

G sabit yük etkisini, Q hareketli yük etkisini, S kar yükü etkisini, H ise TBDY-2018 bölüm 16'ya göre yatay zemin itkisini gösteriyor olup birleşimde hesaba katılmamalıdır. Bölüm 16'daki temel için birleşimler tanımlanmamıştır.

II. Aşama deprem hesabı kapsamında TBDY-2018 Tablo 4.1'e göre Taşıyıcı Sistem Davranış Katsayısı R ve Dayanım Fazlalığı Katsayısı D seçilmeyecek olup bölüm 13.5.3.3'de verilen kurallar çerçevesinde Bina Önem Katsayısı (I) = 1 olarak alındığından R=1 ve D=1 olarak alınmıştır.

Bina analizi ETABS programı yardımıyla modellendikten sonra DD-4 deprem yer hareketi altında TBDY-2018 bölüm 4.8.2'ye göre Mod Birleştirme Yöntemi ile üç boyutlu doğrusal hesap yapılmıştır.

TBDY-2018 bölüm 13.4.3.4'e göre Minimum Taban Kesme Kuvveti gözönüne alınmayacağından bölüm 4.8.4'deki kurallara göre azaltılmış iç kuvvetlerin Eşdeğer Taban Kesme Kuvveti'ne göre büyültülmesi uygulanmalıdır. TBDY-2018 bölüm 4.8.4'e göre $V_{tx}^{(X)} < V_{tE}^{(X)}$ olması durumunda model hesap yöntemi ile azaltılan tüm iç kuvvet ve deplasmanlar $\beta_{tE}^{(X)}$ ile çarpılarak büyültülmelidir.

$$\beta_{tE}^{(X)} = \frac{\gamma_E V_{tE}^{(X)}}{V_{tx}^{(X)}} \ge 1$$
$$V_{tE}^{(X)} = m_t S_{aR} \left(T_p^{(X)} \right) \ge 0.4 m_t I S_{DS} g$$

BYS=1 olan bina için yapılan mod birleştirme yöntemi ile üç boyutlu analiz doğrusal analizi sonucunda TBDY-2018 bölüm 4.7.3.3e göre DTS=3 olan tüm binalarda hakim doğal titreşim periyodu, 4.7.3.1'deki formülden hesaplanmaksızın, doğrudan aşağıdaki ampirik T_{pA} formülünden hesaplanmıştır. Deprem hesabında alınan değer 1.4 T_{pA} değerinden fazla olmamalıdır.

$$T_{pA} = C_t H_N^{3/4} \qquad C_t = \frac{0.1}{\sqrt{A_t}} \le 0.07$$
$$A_t = \sum_j A_{wj} \left[0.2 + \left(\frac{l_{wj}}{H_N}\right)^2 \right] \le \sum_j A_{wj}$$
$$T_p \le 1.4 \times T_{pA}$$

Çizelge 6.29'a göre ampirik hakim doğal titreşim periyodu (T_{pA}) X ve Y yönleri için ayrı ayrı hesaplanmıştır. Çizelge 6.30'a göre Y yönü deprem hesabında hesaplanan mod değeri 1.4 T_{pA} değerinden aştığı için taban kesme kuvveti hesabındaki hakim doğal titreşim periyodu değeri 1.4 T_{pA} değerinden; X yönü deprem hesabında hesaplanan mod değeri 1. 4 T_{pA} değerini aşmadığı için taban kesme kuvveti hesabındaki hakim doğal titreşim periyodu değeri hesaplanan mod değeri alınacaktır.

$$S_{aR}(T) = \frac{S_{ae}(T)}{R_a(T)}$$

S_{ae}(T)Yatay Elastik Tasarım Spektral İvmeleri g cinsinden (TBDY-2.3.4.1)

$$R_a(T) = \frac{R}{I} \rightarrow T > T_B$$
; $R_a(T) = D + \left(\frac{R}{I} - D\right) \rightarrow T \le T_B$

	-	X Yönü Perdelo	er	Y	Y Yönü Perdele	r
Perde No	A_{wj}	\mathbf{l}_{wj}	A_{tj}	A_{wj}	\mathbf{l}_{wj}	A_{tj}
1	-	-	-	3	6	0,613
2	-	-	-	3	6	0,613
3	-	-	-	3	6	0,613
4	-	-	-	3	6	0,613
5	-	-	-	3	6	0,613
6	-	-	-	3	6	0,613
7	4	8	0,829	-	-	-
8	4	8	0,829	-	-	-
9	4	8	0,829	-	-	-
10	4	8	0,829	- /	-	-
	ΣA _{wj} =16	$\Sigma A_{wj} \geq \Sigma A_{tj}$	ΣA _{tj} =3,316	$\Sigma A_{wj} = 18$	$\sum A_{wj} \geq \Sigma A_{tj}$	$\Sigma A_{tj} = 3,678$
	$Ct = 0, 1/(At)^{(0,5)} =$		0,0549	$Ct = 0, 1/(At)^{(0,5)} =$		0,0521
	T _{pA}	(X) =	1,657	T _{pA}	$(\mathbf{Y}) =$	1,573
	1,4 x 7	$\Gamma_{pA(X)} =$	2,320	1,4 x T	$p_{PA(Y)} =$	2,202

Çizelge 6.29: Ampirik T_{pA} Değeri Hesabı

Çizelge 6.30: Hesap mod periyotları

Mod Yönleri	Mod Sayısı	Periyot (s)	Ux	Uy	ΣUx	Σ Uy	Rz
Mod Y Yönü	Mod 1	2,709	0	0,733	0	0,733	0
Mod B Yönü	Mod 2	2,425	0	0	0	0	0,7464
Mod X Yönü	Mod 3	2,093	0,68	0	0,68	0	0

Çizelge 6.31: $V_{tE}^{(X,Y)}$ Kontrolü

X Yönü için; $V_{tE}^{(X)} = m_t S_{aR}(T_p^{(X)})$	Y Yönü için; $V_{tE}^{(Y)} = m_t S_{aR}(T_p^{(Y)})$
Tp(X) =2,093	1,4 x TpA(Y) =2,202
<i>S_{ae}</i> (2,093)=0,0179g	<i>S_{ae}</i> (2,202)=0,017g
$R_a(2,093) = \frac{R}{I} = 1$	$R_a(2,202) = \frac{R}{I} = 1$
$S_{aR}(2,093) = 0,0179g$	$S_{aR}(2,202) = 0,017g$
$V_{tE}^{(X)} = 15418$ kN	$V_{tE}^{(Y)} = 14643 kN$
m_t =861362kN; I=1; S_{DS} =(1,25x0,091)	m_t =861362kN; I=1; S_{DS} =(1,25x0,091)
$V_{tE}^{(X)} = 0.4 m_t I S_{DS} g = 39209 \text{ kN}$	$V_{tE}^{(Y)} = 0.4 m_t I S_{DS} g = 39209 \text{ kN}$
$V_{tE}^{(X)} = 15418$ kN < $V_{t,min} = 39209$ kN	$V_{tE}^{(Y)} = 14643N < V_{t,min} = 39209kN$

Çizelge 6.31'e göre $V_{tE}^{(X,Y)}$ 'den büyük olan değerler alınarak $\beta_{tE}^{(X,Y)}$ hesabı yapılmıştır.

 $\beta_{tE}^{(X,Y)}$ için γ_E çarpanı TBDY-2018 Tablo 3.6'da ki düzensizliklerin durumuna göre A1, B2 veya B3 türü düzensizliklerinden an az birinin binada bulunması durumunda 0.90; düzensizliklerden hiçbirinin binada bulunmaması durumunda 0,80 değerini alınmıştır.

TBDY-2018 Tablo 3.6'ya göre A tipi planda düzensizlik durumlarından A2 ve A3 düzensizliği olmadığı görülmüş olup, A1-Burulma Düzensizliği eşdeğer deprem yüküne göre X ve Y yönleri için \pm %5 dışmerkezlik etkileri de gözönüne alınmadan ayrı ayrı değerlendirilmiş ve n_{bi} değerleri hesaplanmış olup Şekil 6.27'deki değerler elde edilmiştir. Bunun sonucunda A1 düzensizliği olmadığı görülmüştür. B tipi düşeyde düzensizlik durumları göz önüne alındığında B1 ve B3 düzensizlikleri yapıda bulunmamış olup B2 - Komşu Katlar Arası Rijitlik Düzensizliği (Yumuşak Kat) düzensizliği bulunmaktadır.

Şekil 6.27: Deprem yüklemelerine göre n_{bi} değişimi

Yapıda bulunan A1 ve B2 düzensizliklerinden dolayı $\gamma_E = 0.9$ alınmıştır. $\beta_{tE}^{(X)}$ denkleminde $V_{tx}^{(X)}$ TBDY-2018 bölüm 4.8.2'ye göre mod birleştirme yöntemiyle elde edilen X doğrultusundaki toplam deprem yükü olup 18463 kN, $V_{ty}^{(Y)}$ TBDY-2018 bölüm 4.8.2'ye göre mod birleştirme yöntemiyle elde edilen Y doğrultusundaki toplam deprem yükü olup 11998 kN olarak alınmıştır.

X Yönü	Y Yönü
$\beta_{tE}^{(X)} = \frac{\gamma_E V_{tE}^{(X)}}{V_{tx}^{(X)}} \ge 1$	$\beta_{tE}^{(Y)} = \frac{\gamma_E V_{tE}^{(Y)}}{V_{ty}^{(Y)}} \ge 1$
$\beta_{tE}^{(X)} = \frac{0.9x39209}{18463} \ge 1$	$\beta_{tE}^{(Y)} = \frac{0.9x39209}{11998} \ge 1$
$\beta_{tE}^{(X)} = 1,91$	$\beta_{tE}^{(Y)} = 2,94$

Çizelge 6.32 X ve Y yönleri için azaltılmış iç kuvvetlerin ve yer değiştirmelerin eşdeğer taban kesme kuvvetine göre büyültülmesi

Çizelge 6.32'deki sonuçlara göre $\beta_{tE}^{(X,Y)}$ için hesaplanan eşdeğer taban kesme kuvveti büyütme katsayısı değerleri kullanılmıştır.

TBDY-2018 bölüm 4.8 kapsamında modal hesap yöntemlerinden mod birleştirme yöntemiyle yapılan hesap sonucunda X ve Y deprem doğrultularında her bir mod için hesaplanan taban kesme kuvveti modal etkin kütlelerinin toplam bina kütlesinin %95'inden az olmaması kuralına göre hesaba katılması gereken yeterli titreşim modu sayısı YM göz önüne alınmış ve Çizelge 6.33'te yeterli YM gösterilmiştir.

$$\sum_{n=1}^{YM} m_{txn}^{(X)} \ge 0.95 m_t \quad ; \quad \sum_{n=1}^{YM} m_{tyn}^{(Y)} \ge 0.95 m_t$$

Çizelge 6.33: Modal kütle katkısı oranları

MODAL	Mod	Periyod	U_X	U_Y	R_Z	$\sum U_{\mathbf{v}}$	$\sum U_{v}$
		(sn)					
Modal(y)	1	2,709	0	0,7326	0	0,2175	0
Modal(b)	2	2,425	0	0	0,7464	0,2175	0
Modal(x)	3	2,093	0,6777	0	0	0,2175	0,2652
Modal(y)	4	0,79	0	0,1303	0	0,5385	0,2652
Modal(b)	5	0,735	0	0	0,1359	0,5385	0,2652
Modal(x)	6	0,501	0,1901	0	0	0,5385	0,5518
Modal(y)	7	0,39	0	0	0,0506	0,5385	0,5518
÷	:	÷	:	:	÷	÷	:
Modal(y)	82	0,055	0,0000	0,0038	0	0,9452	0,9482
Modal(b)	83	0,052	0,0002	0,0000	0	0,9452	0,9487
Modal(x)	84	0,051	0,0027	0,0000	0	0,9453	0,9559
Modal(y)	85	0,047	0,0000	0,0033	0	0,953	0,9559
Modal(b)	86	0,046	0,0000	0,0000	0	0,9531	0,956
Modal(x)	87	0,044	0,0012	0,0000	0	0,9531	0,9587

TBDY-2018 bölüm 13'de verilen *Tasarım Aşaması II* performans değerlendirmesi için DD-4 deprem yer hareketi altında *Kesintisiz Kullanım* performans

hedefinin sağlanması için bölüm 13.5.5.2'de verilen kurallar çerçevesinde değerlendirme yapılmıştır. Bu kapsamda normal performans hedefi için bölüm 4.8'e göre doğrusal modal hesap yöntemlerinin yapılması durumunda;

- TBDY-2018 bölüm 13.3.1'de tanımlanan sünek davranışa sahip elemanlardaki iç kuvvetler için etki(talep)/kapasite oranı E/K=1.5değerinin aşmaması istenmiştir.
- TBDY-2018 bölüm 13.3.2.2 ve 13.3.2.3'te tanımlanan ve sünek davranışa sahip olmayan iç kuvvetler için etki(talep)/kapasite oranı *E/K=0.7* değerinin aşmaması istenmiştir.

İç kuvvet kapasitelerinin hesabında karakteristik malzeme dayanımları yerine Çizelge 6.34'te verilen ortalama (beklenen) malzeme dayanımları kullanılmış ve iç kuvvet kapasiteleri hesaplanmıştır.

Çizelge 6.34: TBDY-2018 Tablo 5.1. Beklenen (Ortalama) Malzeme Dayanımları

Beton	$f_{ce} = 1.3 f_{ck}$
Donatı Çeliği	$f_{ye} = 1.2 f_{yk}$
Yapı Çeliği (S235)	$f_{ye} = 1.5 f_{yk}$
Yapı Çeliği (S275)	$f_{ye} = 1.3 f_{yk}$
Yapı Çeliği (S355)	$f_{ys} = 1.1 f_{yk}$
Yapı Çeliği (S460)	$f_{ye} = 1.1 f_{yk}$

Sünek davranışa sahip elemanlar için hesaplanan iç kuvvetlerin kesitlerin moment kapasitesine oranı olan E/K oranı 1.5 değerini aşmaması istenmiştir. Aşağıda verilen Şekil 6.28, Şekil 6.29 ve Şekil 6.30'da verilen kolon, kiriş ve perde için her kat içerisinde E/K oranları hesaplanmış olup, her kat için bu oranlarının ortalaması şekillerde gösterilmiştir.

TBDY-2018 kapsamında bölüm 13'te verilen kurallar çerçevesinde *Tasarım Aşaması-II* için verilen kurallar çerçevesinde DD-4 deprem yer hareketinin etkisinde, Dayanıma Göre Tasarım (DGT) hesap esaslarına göre yapılmış ve *Kesintisiz Kullanım (KK)* performans hedefinin sağlandığı görülmüştür.

Şekil 6.28: Tasarım Aşaması II Kolonların Ortalama E/K Oranları

Şekil 6.29: Tasarım Aşaması II Perdelerin Ortalama E/K Oranları

Şekil 6.30: Tasarım Aşaması II Kirişlerin Ortalama E/K Oranları

6.2.3 Tasarım Aşaması III:DD-1 Deprem Yer Hareketi Altında Göçmenin Önlenmesi Performans Değerlendirmesi

Deprem Yer H. N Düzeyi	DTS=1, 2, 3, 3a, 4, 4a				
	Normal Performans Hedefi	Değerlendirme/Tasarım Yaklaşımı			
DD-4	KK	DGT			
DD-3	-	-			
DD-2	KH	DGT			
DD-1	GÖ	ŞGDT			

Çizelge 6.35: TBDY-2018 Tablo 3.4-b'ye göre Tasarım Aşaması III Performans Hedefi ve Değerlendirme/Tasarım Yaklaşımı

Ön tasarımı yapılan taşıyıcı sistem elemanları TBDY-2018 bölüm 13.2.3'de verilen kurallar çerçevesinde TBDY-2018 Tablo 3.4(b)'ye göre DTS=3 gözönüne alındığında *normal performans hedefi* için DD-1 depremin etkisi altında *Göçmenin Önlenmesi* performans hedefine ulaşmak için yüksek binanın *Şekil Değiştirmeye Göre Değerlendirme ve Tasarım* (ŞGDT) yaklaşımı ile performans değerlendirmesi yapılmış, performansının yetersiz olması durumunda Tasarım Aşaması I'e geri dönülerek ön tasarım iyileştirilerek, tekrar değerlendirilmelidir.

Bu performans hedefine ulaşmak için, III. Aşama 'da yüksek bina taşıyıcı sisteminin zaman tanım alanı için uygulanan üç boyutlu doğrusal olmayan hesabı neticesinde TBDY-2018 bölüm 13.6.4'e göre elde edilen şekil değiştirmeye esas şekil değiştirme, göreli kat ötelemesi ve iç kuvvet taleplerinin bölüm 13.6.5'te bahsedilen performans sınırlarından küçük olacağı gösterilmelidir.

Taşıyıcı sistem modellenirken TBDY-2018 bölüm 5.4'deki modelleme kuralları uygulanmıştır. TBDY-2018 bölüm 5.2.2.3'deki yük birleşimi esas alınmış olup zaman tanım alanında hesap yapıldığı taktirde doğrusal olmayan yatay deprem hesabında yatayda birbirine dik X ve Y doğrultularındaki deprem bileşenleri bölüm 2.5 uyarınca eş zamanlı tanımlandığı için birleştirilmiş yatay deprem etkisi doğrudan olacak şekilde elde edilmektedir. Bölüm 13.6.2.4'e göre sönüm oranı %2,5 alınmıştır. TBDY-2018 bölüm 5.4.1.6'ya göre performans değerlendirmesi yapılmış süneklik düzeyi yüksek yeni betonarme taşıyıcı sistemler, kapasite tasarım ilkeleri ve diğer sünek tasarım kurallarına göre yapılan ön tasarım sebebiyle kesme hasarı, çevrim içi dayanım azalması, donatı bindirme boyu yetersizliği, kolon-kiriş birleşim bölgesi hasarı, sargı donatısı yetersizliği etkileri taşıyıcı sistem ve çevrimsel davranış modellerinde dikkate alınmayabileceği yönetmelikçe belirtilmiştir.

Çerçeve kiriş ve kolon elemanları çerçeve (çubuk) sonlu elemanlar şeklinde modellenmiştir. Nonlineer davranış, elemanların uçlarında tanımlanan sonlu plastik şekil değiştirme bölgelerinde TBDY-2018 bölüm 5.3.1'e göre yığılı plastik davranışı ile modellenmiştir. Yığılı plastik davranış modelinde iç kuvvetlerin plastik kapasitelerine eriştiği sonlu uzunluktaki bölgeler boyunca, plastik şekil değiştirmenin düzgün yayılı biçimde oluşturduğu varsayımı ile plastik mafsal boyu olarak adlandırdığımız plastik şekil değiştirme bölgesinin uzunluğu L_p, çalışan doğrultudaki kesit boyu h yüksekliğinin yarısı alınmıştır. (L_p = 0,5h) Plastik şekil değiştirmeyi temsil eden plastik mafsallar TBDY-2018 bölüm 5.4.2.3'e göre kirişlerin veya kolonların net açıklıklarının uçlarına konulmuştur. Çizelge 6.36'ya göre farklı kiriş ve kolon kesitleri için plastik mafsal boyları gösterilmiştir. Gösterilen plastik mafsal boyları programa girilmemiş olup 0,5 katsayısı olarak tanıtılmıştır.

Çizelge 6.36: Kolon ve Kiriş Plastik Mafsal Boyları (L_p)

Kolon Kesitleri	Plastik Mafsal Boyu (L _p = 0,5h)
BS 110x110	110/2 = 55 cm
BS 90x90	90/2 = 45 cm
BS 80x80	80/2 = 40 cm
Kiriş Kesitleri	
BB 60x80	60/2 = 30 cm
BB 80x80	80/2 = 40 cm
BB 80x50	80/2 = 40 cm

Betonarme plastik mafsal kesitlerinin etkin akma momentlerinin hesabında TBDY-2018 bölüm 5.3.1.5'e göre Çizelge 6.34'teki ortalama malzeme dayanımları için beton için 1,3 ve çelik donatı için 1,2 katsayıları ile arttırılmış ve betonun basınç birim şekil değiştirmesi 0,0035, donatı çeliğinin birim şekil değiştirmesi 0,01 ve düşey yüklerden gelen eksenel kuvvetler dikkate alınmıştır. Doğrusal olmayan analizlerde programa tanıtılan beton ve donatı çeliği malzeme modellerine ait arttırılmış gerilme şekil değiştirme grafikleri sırasıyla Şekil 6.31 ve Şekil 6.32'de verilmiştir.

Şekil 6.31: C60 Beton Malzeme Modeli

Şekil 6.32: B420C Donatı Çeliği ETABS Malzeme Modeli

Döşemeler rijit diyafram olarak modellenmiştir. Betonarme perdeler ise TBDY-2018 bölüm 4.5.3.7'deki kurallara uygun olacak şekilde 6 serbestlik dereceli kabuk sonlu elemanlar olarak modellenmiştir.

Kolon, kiriş ve perdelerin etkin kesit rijitlikleri için TBDY-2018 bölüm 5.4.5'teki formüller çerçevesinde plastik mafsal dönmesi (θy), akma momenti (My) ve kesme açıklığına (Ls=kesitteki moment/kesme kuvveti oranı) bağlı olarak hesaplanan örnek benzer kesit rijitlikleri ile TBDY-2018 Tablo 4.2'de verilen kesit rijitliklerinin yakın olduğu görülmüştür. Hesaplamalarda işlem kolaylığı açısından farklı kesitler için ayrı ayrı hesaplanarak kesitlere tanıtılması vakit alacağından TBDY-2018 Tablo 4.2'deki kesit rijitlik katsayıları kabulü yapılmıştır.

Binanın herhangi bir i'inci katındaki A1 türü burulma düzensizliği katsayısı n_{bi} değeri Şekil 6.6'da gösterilmiş olup $n_{bi} < 1,5$ olduğundan dolayı ek dış merkezlik etkisi gözardı edilmiştir.

Kolonlar eksenel yük etkisinde elemanlar olduğundan bu elemanlara Interaction P-M2-M3 şeklinde ve kirişler için ise eğilme etkisinde olduğundan M3 şeklinde yığılı plastik mafsal modeli tanıtılmıştır. ETABS programına TBDY-2018 bölüm 5.4.3'deki kurallar dahilinde modellenen betonarme yapıya hesaplamaların daha hızlı olması amacı ile ETABS programı arka yüzünde tanımlı olan "American Society of Civil Engineers" tarafından hazırlanan ASCE 41-17 (2017) yönetmeliğindeki kirişler için Tablo 10.7 ve kolonlar için Tablo 10.8 ve Tablo 10.9 plastik mafsal tanımı yönetmeliğimizle uyumluluk gösterdiğinden otomatik olarak tanımlanmıştır.

Perde elemanları için TBDY-2018 bölüm 5.4.3.2'deki belirtilen yüksek binalarda bağ kirişli ve boşluksuz perde parçaları için plastik mafsal modeli kullanılmamıştır. Bu elemanlar için kesit lifli modellinin kullanılması zorunludur. Bu yöntemde ETABS programı ara yüzünde perdelerin nonlineer analizi için lifli kesit tanımlaması Şekil 6.33'teki ara yüz aracılığıyla her perde başlık ve gövde bölgesi için tanımlanmıştır. Perde beton katmanına perde başlıklarında sarılmış beton, gövde bölgelerinde sarılmamış beton özellikleri atanmıştır. Kolon ve kirişlerde olduğu gibi perdelerde de "American Society of Civil Engineers" tarafından hazırlanan ASCE 41-17 (2017) yönetmeliğinde plastik mafsal tanımı TBDY-2018 ile uyumluluk gösterdiğinden otomatik olarak tanımlanmıştır.

Wall Hinge Reinforcement

Şekil 6.33: Perdelerin Nonlineer Analizi için Donatı Tanımı

Yapının doğrusal olmayan dinamik analizlerinde 50 yılda aşılma olasılığı %2 olan, sönüm oranı %2,5 olan DD-1 depremi spektrum eğrisi ile 11 depremin ivme kayıtları uyumlu olacak şekilde ölçeklendirilerek hesap yapılmıştır.

Yapının zaman tanım alanında doğrusal olmayan analizlerde kullanmak amacıyla seçilen depremlerin moment büyüklükleri 6,0-8,0 Mw arasındadır. İvme kayıtlarının alındığı istasyonların deprem odağına 210m ile 30km arasında değişiklik göstermiştir. Deprem kayıtlarının en büyük yer ivmesi hızı 400-600m/s arasında değişiklik göstermiştir. "Pacific Earthquake Engineering Research Center(PEER,2019)"a ait internet sitesinden Çizelge 6.37'deki deprem kayıtları alınmıştır. Yapımıza etkiyecek DD-1 düzeyindeki yatay elastik tasarım spektrumumuz başlangıç ivmesi (PGA) 0,295g olup; seçilen 11 deprem kaydının ortalama başlangıç ivmesi (PGA) 0,345g olarak seçilmiştir.

 \times

No	No. Vil Deprem Adı	Dominana A di	M	İstasıyan Adı	PGA	PGV	PGD	Süre
INO	No Yil Deprem Adı		WW	Istasyon Adi	(g)	(cm/sn)	(cm)	(sn)
1	1984	Morgan Hill	6,19	Gilroy Array #6	0,370	11	2,1	30
2	1986	N. Palm Springs	6,06	Cabazon	0,300	8,5	1,8	21
3	1986	Chalfant Valley-02	6,19	Bishop-Paradise Lodge	0,230	5,3	2,5	40
4	1986	Kalamata, Greece-01	6,2	Kalamata	0,360	21	5,5	29
5	1987	Superstition Hills-02	6,54	El Centro Imp. Co. Cent	0,440	40	17	10
6	1992	Cape Mendocino	7,01	Shelter Cove Airport	0,300	15	0,5	37
7	1992	Joshua Tree, CA	6,10	Whitewater Trout Farm	0,290	11	2,3	28
8	1999	Kocaeli	7,51	Arcelik	0,250	14	15	30
9	1999	Kocaeli	7,51	Fatih	0,250	20	22	150
10	1999	Chi-Chi, Taiwan-04	6,20	CHY074	0,470	33	10	130
11	1999	Duzce, Turkey	7,14	IRGM 498	0,530	25	15,5	35

Çizelge 6.37: Analizlerde Kullanılmış Deprem Kayıtlarının Özellikleri

Seçilen deprem kayıtları TBDY-2018 bölüm 2.5.2'deki kuralları çerçevesinde üç boyutlu hesap için seçilen deprem kayıtlarının iki yatay bileşenine ait spektrumlarının kareleri toplamının karekökü alınarak bileşke yatay spektrum elde edilmiştir. 0,2T_p ile 1,5T_p periyotları arasındaki genlikler, tasarım spektrum eğrisinin aynı aralığındaki genliklere oranı 1.3 katından daha az olmayacak şekilde SeismoMatch-2018 programı yardımıyla ölçeklendirilmiştir. Ölçeklendirilmesi yapılmış deprem kayıtlarının her iki bileşkesi de aynı ölçek katsayıları ile ölçeklendirilmiştir. Şekil 6.34 ve Şekil 6.35'te sırasıyla X ve Y yönlü deprem kayıtlarının ölçeklendirilmemiş spektrum eğrileri gösterilmiş olup, Şekil 6.36 ve Şekil 6.37'de sırasıyla X ve Y yönlü ölçeklendirilmiştir.

Şekil 6.34: Ölçeklendirilmemiş X Yönlü Deprem Kayıt Spektrumları

Şekil 6.35: Ölçeklendirilmemiş Y Yönlü Deprem Kayıt Spektrumları

Taşıyıcı sistem elemanlarının değerlendirilmesinde, TBDY-2018 bölüm 5.2.2.1'de verilen deprem etkisinin, düşey yük etkisiyle birleşimi olan;

$$G + Q_e + 0,2S + E_d^{(H)} + 0,3E_d^{(Z)}$$

denklemi kullanılmıştır. Ölçeklendirilmiş bu eğriler ETABS programına veri girişi yapıldıktan sonra yatayda birbirine dik X ve Y deprem bileşenleri birlikte eş zamanlı olarak tanımlanarak, $E_d^{(H)}$ deprem etkisi oluşturulmuştur. $E_d^{(Z)}$ düşey deprem etkisi ise

bölüm 4.4.3'e göre belirlenmiş ve $(2/3)S_{DS}G$ olarak alınmıştır. G sabit yük etkisini, S kar yükü etkisini ve Q_e etkin hareketli yük etkisi olup n hareketli yük katılım katsayısı ile $Q_e = n. Q$ olarak hesaplanmıştır.

Şekil 6.36: Ölçeklendirilmiş X Yönlü Deprem Kayıt Spektrumları

Şekil 6.37: Ölçeklendirilmiş Y Yönlü Deprem Kayıt Spektrumları

TBDY-2018 bölüm 13.6.5'e göre Tasarım Aşaması III için performans değerlendirilmesinde incelenen yapımız sünek davranışa sahip elemanlardan oluştuğu

için bölüm 13.6.4.1'e göre değerlendirmeye esas şekil değiştirme talepleri yapılan hesaplarda (en az 2x11=22) elde edilen sonuçların en büyük mutlak değerlerinin ortalaması alınarak hesaplanmıştır. Buna göre bölüm 13.6.5.1'e göre DD-1 deprem yer hareketinin etkisi altında normal performans hedefi olarak *Göçmenin Önlenmesi* (GÖ) performans hedefinin sağlanması istenmiştir. Bölüm 13.6.5.1.a 'ya göre sünek davranışa sahip betonarme elemanlarda hesaplanan değerlendirmeye esas şekil değiştirme talepleri bölüm 5.8.1'de *Göçmenin Önlenmesi* (GÖ) *Performans Düzeyi* için performans değerlendirilmesinde kullanılmak üzere, yığılı plastik davranış modeline göre hesaplanan plastik dönmeler için izin verilen sınır, kesite etkiyen eksenel kuvvet ve TBDY-2018 EK.5A'ya göre hesaplanan Şekil 6.31 ve Şekil 6.32'deki beton ve donatı çeliği modelleri dikkate alınarak yapılan eğrilik analizi sonucunda TBDY-2018 Denk 5.6'ya göre hesaplanmış olan sınır değerini aşmamalıdır.

$$\theta_P^{(G\ddot{0})} = \frac{2}{3} \left[\left(\phi_u - \phi_y \right) L_P \left(1 - 0.5 \frac{L_P}{L_S} \right) + 4.5 \phi_u d_b \right] \text{ (TBDY-2018 Denk.5.6)}$$

Kontrollü Hasar (KH) Performans Düzeyi için TBDY-2018 Denk.5.6'daki dönme değerinden yola çıkarak $\theta_p^{(KH)} = 0,75 \ \theta_p^{(GÖ)}$ sınır değerini, Sınırlı Hasar (SH) Performans Düzeyi için ise bölüm 5.4.5.2'de tanımlanmış bulunan etkin kesit rijitlikleri kullanılarak yapılan hesapta SH performans düzeyi için taşıyıcı sistemde plastik mafsal oluşumuna izin verilmeyecek olup $\theta_p^{(SH)} = 0$ alınmalıdır.

Yapı içerisinde kat içerisinde tip kolonlar kullanıldığı için kolonlar için kat içerisindeki tip kolonların performans hedefi yüzdelik dilimler şeklinde kat kat Şekil 6.39'de, Şekil 6.38'de ise kolonların performans grafiğindeki hasar bölgesi gösterilmiştir. gösterilmiştir. Şekilde ilk altı kat için C110x110, sonraki on kat için C90x90 ve son on kat için ise C80x80 kolon tipinin simetrik olmasından dolayı X ve Y yönlerindeki depremler altında en olumsuz durumu göz önüne alınmıştır. Plastik mafsal oluşmayan kolonlar SH performans düzeyi kabul edilerek grafiğe yansıtılmıştır.

Şekil 6.38: Kolon Hasar Bölgeleri

Şekil 6.39: Kolonların Deprem Etkisi Altında Performans Durumu

Yapılan yirmi iki analizin sonucunda kat içerisinde farklı depremlerde farklı kirişler Şekil 6.40'de görülen hasar yüzdelerine ulaşmaktadır. Yapılan hesaplamalardan (2x11=22) değerlendirmeye esas sonuçların ortalaması baz alınarak değerlendirildiğinde Şekil 6.41'de kirişlerin performans grafiğindeki hasar bölgesi, Şekil 6.42'de ise kirişlerin değerlendirmeye esas sonuçlarına göre hasar bölgesi durumu gösterilmiştir.

Şekil 6.40: Kat Kirişlerin Farklı Depremlerde Hasar Durumu Yüzdeleri

Şekil 6.41: Kat Kirişlerin Değerlendirmeye Esas Sonuçlara Göre Hasar Durumu Yüzdeleri

Şekil 6.43'te gösterilen bina genelindeki kirişlerin hasar yüzdeleri, Şekil 6.41'den de anlaşılabileceği gibi üst katlara çıkıldıkça KH seviyesinde artış göstermiş ve %86'sı SH seviyesinde iken, %14'lük kısmı ise KH seviyesinde gerçekleşmiştir.

Şekil 6.42: Kiriş Hasar Bölgesi

Şekil 6.43: Binadaki Tüm Kirişlerde Oluşan Hasar Durumu Yüzdeleri

Yapı içerisindeki perde kesiti sabit olarak merkezden her katta aynı çıktığından değerlendirmede kattaki perdelerin performans durumu grafiğe yansıtılmıştır. Bu kapsamda perde kesitindeki dönmeler ve buna karşılık gelen performans durumu irdelenmiş ve Şekil 6.44'te hasar bölgesi, Şekil 6.45'te ise hasar yüzdeleri gösterilmiştir.

Şekil 6.44: Perde Hasar Bölgeleri

Şekil 6.45: Kat Perdelerinin Performans Durumu

TBDY-2018 bölüm 13.6.5'e göre *normal performans hedefi olarak Göçmenin Önlenmesi* (GÖ) için sünek davranışa sahip elemanlarda bölüm 5.8.1'e göre verilen sınır değerlerinin aşılmadığı gösterilmiş GÖ performans hedefi sağlanmıştır.

TBDY-2018 bölüm 13.6.5.2'e göre III. Aşama'da DD-1 deprem yer hareketi altında yüksek bina taşıyıcı sistemi için yapılan doğrusal olmayan hesap sonucunda her bir kat gözönüne alınmış, 2x11=22 deprem sonucunun ortalama göreli kat ötelenmesi

oranı 0,03'ü, tek bir depremden elde edilen en büyük göreli kat ötelenmesi oranı ise 0,045'i geçmemiş olup Şekil 6.46'daa ortalama göreli kat ötelenmesi oranları, Şekil 6.47'de ise en büyük göreli kat ötelenmesi oranı için yapılan kontrollerin analizi mevcuttur.

Şekil 6.46: X-Y Deprem Yönü Seçili Kolon İçin Ortalama Göreli Kat Ötelenmesi Kontrolü

Şekil 6.47: X-Y Deprem Yönü Seçili Kolon İçin En Büyük Göreli Kat Ötelenmesi Kontrolü

Şekil 6.48 ve Şekil 6.49'da ise seçili perdeler için TBDY-2018 bölüm 13.6.5.2'e göre göreli kat ötelenmesi ortalama ve en büyük değerleri incelenmiştir.

Şekil 6.48: X-Y Deprem Yönü Seçili Perde İçin Ortalama Göreli Kat Ötelenmesi Kontrolü

Şekil 6.49: X-Y Deprem Yönü Seçili Perde İçin En Büyük Göreli Kat Ötelenmesi Kontrolü

TBDY-2018 bölüm 13 kapsamında Tasarım Aşaması III için dönme talepleri ve göreli kat ötelenmeleri incelenmiş olup hedef performans düzeyi olan *Göçmenin Önlenmesi* (GÖ) performansı sağlanarak BYS=1 olan binalar için tasarım aşamaları sonuçlandırılmıştır.

6.3 BYS=2 Olan Örnek Bina İçin Analiz Aşamaları

Çizelge 6.38: TBDY-2018 Tablo 3.4-a'ya göre BYS=2 Performans Hedefi ve Değerlendirme/Tasarım Yaklaşımı

Deprem Yer H. Düzeyi	DTS=1, 2, 3, 3a, 4, 4a			
	Normal Performans Hedefi	Değerlendirme/Tasarım Yaklaşımı		
DD-3	-	-		
DD-2	KH	DGT		
DD-1	_	-		

Çalışma kapsamında bu bölümde Bölüm 6.1'de BYS=1 olan zemin kotu +0 kabul edilerek ilk iki katı 5m ve geri kalan 24 kat 3,5m olup toplam 26 kat ve toplam yüksekliği 94m olan bir binanın hesap modeli tasarımı yapılmış olup en üstten bir kat silinerek ilk iki katı 5m ve geri kalan 23 kat 3,5m olup toplamı 25 kat ve toplam yüksekliği 90.5m olan BYS=2 olan bina analizi yapılmıştır. Hesap modeli tasarımında çalışmanın amacı doğrultusunda en üst kat silinmiş ve döşeme yükleri BYS=1 ile aynı uygulanmış olup bu bölüm için tekrar bir hesap modeli tasarımı yapılmamıştır.

Yapılan ön tasarım için döşeme kalınlığı 20 cm, süneklik düzeyi yüksek kiriş yükseklikleri 60 cm seçilmiş olup genişlikler ise perdeler arası kirişler hariç 80 cm seçilmiştir. Perdeler arasındaki kirişlerin genişliği ise perde genişliği kadar 50 cm yüksekliği ise 80 cm olarak alınmıştır. Bina taşıyıcı sisteminin kolon elemanları Şekil 6.5'de gösterildiği gibi ilk 6 katta 110cmx110 cm, 7. kattan 17. kata kadar 90 cm x 90 cm ve 17.kattan 25. kata kadar ise 80cm x 80cm olarak tasarım korunmuştur. Bir diğer düşey taşıyıcı elemanı olan çekirdek perdeleri için ön boyutlandırmasında bodrum perdeleri dışındaki süneklik düzeyi yüksek perde kalınlığı 50 cm olarak korunmuştur.

TBDY-2018 Tablo3.1'de verilen bina kullanım sınıfları ve bina önem katsayısı işyerleri için seçilmiş olup BKS = 3 ve Bina Önem Katsayısı = 1.0'dır. Bina kullanım sınıfı ve DD-2 deprem yer hareketi düzeyinde *kısa periyot spektral ivme katsayısı*na bağlı olarak Çizelge 6.5'ten DTS=3 olarak belirlenmiştir.

TBDY-2018 bölüm 3.5.1'e göre DD2 deprem yer hareketi etkisi altında BYS=2 ve DTS=3 olan binalar için *Dayanıma Göre Tasarım* yaklaşımı ile normal performans hedefi olarak *Kontrollü Hasar* performans seviyesinin sağlanarak tasarım ve boyutlandırması istenmiştir.

Taşıyıcı sistem modellenirken BYS=1 olan binalardaki gibi BYS=2 olan binalarda da TBDY-2018 bölüm 4.5'deki kurallar baz alınarak; kiriş ve kolon elemanları

çerçeve (çubuk) sonlu elemanlar şeklinde, döşemeler rijit diyafram olarak modellenmiştir. Kolon ve kirişlerin etkin kesit rijitlikleri TBDY-2018 bölüm 4.5.8'de verilmiş olan Çizelge 6.11'de verilen betonarme taşıyıcı sistem etkin kesit rijitlik çarpanları olarak göz önüne alınarak modellenmiştir. Betonarme perdeler TBDY-2018 bölüm 4.5.3.7'deki kurallara uygun olacak şekilde 6 serbestlik dereceli kabuk sonlu elemanlar olarak modellenmiştir. Aynı zamanda Çizelge 6.11'de etkin rijitlik katsayıları düzlem içi ve düzlem dışı davranışa göre modellenmiştir.

Boşluksuz perdelerin kullanılması durumunda TBDY-2018 bölüm 4.3.4.5'deki devrilme momenti şartını sağlamalıdır.

$$0.40M_o < \sum M_{DEV} < 0.75M_o$$

 M_o herhangi bir deprem doğrultusunda binanın tamamı için tabanda meydana gelen deprem kaynaklı toplam devrilme momenti olup; M_{DEV} ise betonarme perdenin tabanında deprem kaynaklı meydana gelen devrilme momentidir.

		$0.40 M_o < \sum M_{DEV}$	$\sum M_{DEV} < 0.75 M_o$
M _{o,X}	883410 kNm	353364 kNm (%40)	662558 kNm (%75)
M _{DEV,X}	426320 kNm	Şart Sağlanmıştır 🗸	Şart Sağlanmıştır 🗸
M _{o,Y}	883410 kNm	353364 kNm (%40)	662558 kNm (%75)
M _{DEV,Y}	571365 kNm	Şart Sağlanmıştır 🗸	Şart Sağlanmıştır 🗸

Çizelge 6.39: Perde devrilme momenti şartı

TBDY-2018 kapsamında istenen devrilme momenti şartı, her deprem yönü için $0.40M_0$ 'dan az olmamak ve $0.75M_0$ 'dan fazla olmamak şartıyla Çizelge 6.39'da görülen moment değerleri ile sağlanmıştır.

Döşemeler planda A2 ve A3 düzensizlikleri bulunmadığı için yarı rijit diyafram olarak modellenmiştir. Yarı rijit diyafram modellenmesi durumunda kat kütle merkezinde ve \pm %5 ek dış merkezlik etkisi deprem hesabı için tanımlanmıştır.

Yatay deprem etkileri için taşıyıcı sistemin deprem etkisi altında X ve Y doğrultusundaki ek dış merkezlik etkisinden dolayı doğrultu birleştirilmesi uygulanmış tasarıma esas yatay deprem etkisi $E_d^{(H)}$ için aşağıdaki birleşimler uygulanmalıdır.

$$E_{d}^{(H)} = \pm E_{d}^{(X)} \pm 0.3E_{d}^{(Y)}$$
$$E_{d}^{(H)} = \pm 0.3E_{d}^{(X)} \pm E_{d}^{(Y)}$$

Düşey deprem etkisi $E_d^{(Z)}$ ise TBDY-2018 bölüm 4.4.3'teki kurallar çerçevesinde özel hesap yapılmaksızın aşağıdaki hesaba uygun etki ettirilmelidir.

$$E_d^{(Z)} \approx (2/3)S_{DS}G$$

G sabit yük olup, S_{DS} ise kısa periyot tasarım spektral ivme katsayısını belirtmektedir.

Taşıyıcı sistem tasarımında TBDY-2018 bölüm 4.4.4'e göre aşağıdaki birleşimler esas alınmalıdır.

$$G + Q + 0.2S + E_d^{(H)} + 0.3E_d^{(Z)}$$
$$0.9G + H + E_d^{(H)} - 0.3E_d^{(Z)}$$

G sabit yük etkisini, Q hareketli yük etkisini, S kar yükü etkisini, H ise TBDY-2018 bölüm 16'ya göre yatay zemin itkisini gösteriyor olup birleşimde hesaba katılmamıştır. Bölüm 16'daki temel için birleşimler tanımlanmamıştır.

BYS=2 için deprem hesabı kapsamında TBDY-2018 Tablo 4.1'e göre *Taşıyıcı* Sistem Davranış Katsayısı R ve Dayanım Fazlalığı Katsayısı D seçilip kullanılmıştır. Yerinde dökme betonarme bina taşıyıcı sistemlerine sahip örnek binamız, süneklik düzeyi yüksek betonarme çerçevelerle birlikte süneklik düzeyi yüksek (boşluksuz) betonarme perdeler tarafından birlikte karşılandığı binalar olarak tasarlandığından Çizelge 6.11'de verilen TBDY-2018 Tablo 4.1'e göre A15'de tanımlanan taşıyıcı sisteme uymaktadır. Bu tabloya göre *Taşıyıcı Sistem Davranış Katsayısı* R = 7 ve *Dayanım Fazlalığı Katsayısı* D = 2,5 olarak alınmıştır.

BYS=2 bina analizi ETABS programı yardımıyla modellendikten sonra DD-2 deprem yer hareketi altında TBDY-2018 bölüm 4.8.2'ye göre Mod Birleştirme Yöntemi ile üç boyutlu doğrusal hesap yapılmıştır. Bu hesap sırasında azaltılmış *iç kuvvetlerin Eşdeğer Taban Kesme Kuvveti'ne göre büyültülmesi işlemi* bölüm 4.8.4'deki kurallara göre yapılmalıdır.

TBDY-2018 bölüm 4.8.4'e göre $V_{tx}^{(X)} < \gamma_E V_{tE}^{(X)}$ olması durumunda model hesap yöntemi ile azaltılan tüm iç kuvvet ve deplasmanlar $\beta_{tE}^{(X)}$ ile çarpılarak büyültülmüştür.

$$\beta_{tE}^{(X)} = \frac{\gamma_E V_{tE}^{(X)}}{V_{tx}^{(X)}} \ge 1$$

 $V_{tE}^{(X)}$, TBDY-2018 Denk 4.21 ile hesaplanan *toplam eşdeğer deprem yükünü* (taban kesme kuvvetini), $V_{tx}^{(X)}$ ise bölüm 4.8.2'e göre x doğrultusunda elde edilen *toplam deprem yükünü* göstermektedir. Şekil 6.50'de X ve Y yönleri için katlara gelen kesme kuvveti diyagramı gösterilmiştir.

 $V_{tE}^{(X)} = \Delta F_{NE}^{(X)} + \sum_{i=1}^{N} F_{iE}^{(X)}$ TBDY2018 – Denk 4.21 $V_{tE}^{(X,Y)} = 28059kN$

Şekil 6.50: X ve Y Yönü Eşdeğer Deprem Yüklemesinde Katlara Gelen Kesme Kuvvetleri

 $\beta_{tE}^{(X,Y)}$ için γ_E çarpanı TBDY-2018 Tablo 3.6'da ki düzensizliklerin durumuna göre A1, B2 veya B3 türü düzensizliklerinden an az birinin binada bulunması durumunda 0,90; düzensizliklerden hiçbirinin binada bulunmaması durumunda 0,80 değerini alınmalıdır.

TBDY-2018 Tablo 3.6'ya göre A tipi planda düzensizlik durumlarından A1-Burulma Düzensizliği eşdeğer deprem yüküne göre X ve Y yönleri için \pm %5 dışmerkezlik etkileri de gözönüne alınarak ayrı ayrı değerlendirilmiştir. n_{bi} değeri hesaplanmış olup Çizelge 6.45'teki değerler elde edilmiş olup A1 düzensizliği olduğu görülmüştür. A2 ve A3 düzensizlikleri yapıda bulunmamaktadır. B tipi düşeyde düzensizlik durumları göz önüne alındığında B1 ve B3 düzensizlikleri yapıda bulunmamış olup B2 - Komşu Katlar Arası Rijitlik Düzensizliği (Yumuşak Kat) düzensizliği bulunmaktadır. Yapıda bulunan A1 ve B2 düzensizliklerinden dolayı $\gamma_E = 0,9$ alınmalıdır. $\beta_{tE}^{(X)}$ denkleminde $V_{tx}^{(X)}$ TBDY-2018 bölüm 4.8.2'ye göre mod birleştirme yöntemiyle elde edilen X doğrultusundaki toplam deprem yükü 4447 kN, $V_{ty}^{(Y)}$ TBDY-2018 bölüm 4.8.2'ye göre mod birleştirme yöntemiyle elde edilen Y doğrultusundaki toplam deprem yükü olup 2862 kN olarak alınmıştır. Çizelge 6.40'daki sonuçlara göre $\beta_{tE}^{(X,Y)}$ için hesaplanan eşdeğer taban kesme kuvveti büyütme katsayısı değerleri kullanılmıştır.

Şekil 6.51: Deprem yüklemelerine göre n_{bi} değişimi

Çizelge 6.40: X ve Y yönleri için azaltılmış iç kuvvetlerin ve yer değiştirmelerin eşdeğer taban kesme kuvvetine göre büyültülmesi

X Yönü	Y Yönü
$\beta_{tE}^{(X)} = \frac{\gamma_E V_{tE}^{(X)}}{V_{tx}^{(X)}} \ge 1$	$\beta_{tE}^{(Y)} = \frac{\gamma_E V_{tE}^{(Y)}}{V_{ty}^{(Y)}} \ge 1$
$\beta_{tE}^{(X)} = \frac{0.9 \times 28059}{4447} \ge 1$	$\beta_{tE}^{(Y)} = \frac{0.9 \times 28059}{2862} \ge 1$
$\beta_{tE}^{(X)} = 5,679$	$\beta_{tE}^{(Y)} = 8,824$

TBDY-2018 bölüm 4.8 kapsamında modal hesap yöntemlerinden mod birleştirme yöntemiyle yapılan hesap sonucunda X ve Y deprem doğrultularında her bir mod için hesaplanan taban kesme kuvveti modal etkin kütlelerinin toplam bina kütlesinin %95'inden az olmaması kuralına göre hesaba katılması gereken yeterli titreşim modu sayısı YM göz önüne alınmış ve Çizelge 6.41'de yeterli YM gösterilmiştir.

$$\sum_{n=1}^{YM} m_{txn}^{(X)} \ge 0.95 m_t \quad ; \quad \sum_{n=1}^{YM} m_{tyn}^{(Y)} \ge 0.95 m_t$$

TBDY-2018 bölüm 4'e göre BYS=2 için DD-2 deprem yer hareketinde Kontrollü Hasar (KH) performans hedefine ulaşmak için yüksek binanın Dayanıma Göre Tasarım (DGT) yaklaşımıyla çözümü yapılmıştır. Bu kapsamda bölüm 4.9'da verilen Göreli Kat Ötelemelerinin Sınırlandırılması ve İkinci Mertebe Etkileri kontrolünün yapılması gerekmektedir.

MODAL	Mod	Periyod	U _X	U _Y	R _z	$\sum U_X$	$\sum U_Y$
		(sn)					
Modal(y)	1	3,499	0	0,7286	0	0	0,7282
Modal(b)	2	3,117	0	0	0,7424	0	0,7286
Modal(x)	3	2,552	0,6816	0	0	0,6816	0,7282
Modal(y)	4	0,999	0	0,133	0	0,6816	0,8611
Modal(b)	5	0,937	0	0	0,141	0,6816	0,8611
Modal(x)	6	0,619	0,1938	0	0	0,8754	0,8611
: -				÷	÷		:
Modal(y)	25	0,209	0	0	0	0,935	0,9445
Modal(b)	26	0,209	0	0	0	0,935	0,9445
Modal(x)	27	0,204	0	0,0153	0	0,935	0,9599
Modal(y)	28	0,200	0	0	0	0,935	0,9599
Modal(b)	29	0,199	0,0222	0	0	0,9572	0,9599
Modal(x)	30	0,198	0	0	0	0,9572	0,9599

Çizelge 6.41: Modal kütle katkısı oranları

Şekil 6.52: Göreli kat ötelenmelerinin sınırlandırılması için değerlendirilen elemanlar

TBDY-2018 bölüm 4.9.1 kapsamında herhangi bir deprem doğrultusunda perde veya kolon için azaltılmış deprem yüklerine göre, ardışık iki kat arasındaki yer değiştirme farkını ifade eden *azaltılmış göreli kat ötelenmesi* ($\Delta_i^{(X,Y)}$) ile elde edilmelidir.

$$\Delta_i^{(X,Y)} = u_i^{(X,Y)} - u_{i-1}^{(X,Y)}$$

X veya Y deprem doğrultusundaki, binanın i'ninci katındaki perde veya kolonlar için *etkin göreli kat ötelenmesi* ($\delta_i^{(X,Y)}$) aşağıdaki denklem yardımıyla elde edilmiştir.

$$\delta_i^{(X,Y)} = \frac{R}{I} \Delta_i^{(X,Y)}$$

Her bir deprem doğrultusu için, binanın herhangi bir i'inci katındaki perde veya kolonlarda, $\delta_i^{(X,Y)}$ için kat içindeki en büyük değeri $\delta_{i,max}^{(X,Y)}$ hesaplanıp, aşağıda verilen TBDY-2018 bölüm 4.9.1.3.b'deki koşulu sağlamak durumundadır.

$$\lambda \frac{\delta_{i,max}^{(X,Y)}}{h_i} \le 0,016 \ \kappa$$

$$\lambda = \frac{S_{ae-DD3}(T_{px})}{S_{ae-DD2}(T_{px})} \rightarrow \lambda_X = 0,385 ; \ \lambda_Y = 0,385; \ \kappa = 1 \text{ (Betonarme Bina)}$$

Kat	h_i cm	$u_i^{(X)}$ mm	$\Delta_i^{(X)}$ mm	$\delta_i^{(X)}$ mm	$\lambda rac{\delta_{i,max}^{(X)}}{h_i}$
+90.5m	3500	60,10	2,35	16,43	0,0018
+87.0m	3500	57,75	2,71	18,99	0,0021
+83.5m	3500	55,04	2,80	19,62	0,0022
+80.0m	3500	52,23	2,81	19,65	0,0022
+76.5m	3500	49,43	2,81	19,64	0,0022
+73.0m	3500	46,62	2,81	19,64	0,0022
+69.5m	3500	43,82	2,80	19,57	0,0022
+66.0m	3500	41,02	2,79	19,52	0,0022
+62.5m	3500	38,23	2,79	19,54	0,0022
+59.0m	3500	35,44	2,72	19,05	0,0021
+55.5m	3500	32,72	2,71	18,96	0,0021
+52.0m	3500	30,01	2,68	18,73	0,0021
+48.5m	3500	27,34	2,63	18,40	0,0020
+45.0m	3500	24,71	2,57	18,02	0,0020
+41.5m	3500	22,13	2,51	17,56	0,0019
+38.0m	3500	19,62	2,43	17,03	0,0019
+34.5m	3500	17,19	2,35	16,44	0,0018
+31.0m	3500	14,84	2,26	15,80	0,0017
+27.5m	3500	12,58	2,15	15,06	0,0017
+24.0m	3500	10,43	1,99	13,91	0,0015
+20.5m	3500	8,45	1,87	13,10	0,0014
+17.0m	3500	6,57	1,74	12,17	0,0013
+13.5m	3500	4,84	1,62	11,34	0,0013
+10.0m	5000	3,22	2,10	14,71	0,0011
+5.0m	5000	1,11	1,11	7,80	0,0006
		0,00		MAX	0,0022

Çizelge 6.42: X Deprem Yönü Göreli Kat Ötelenmesi Seçili Kolon Kontrolü

Çizelge 6.42'ye göre seçili kolon için X deprem yönü kontrolü sonucunda 0,0022 $\leq 0,016$ olduğundan dolayı şartları sağlamıştır.

Kat	h _i cm	$u_i^{(Y)}$ mm	$\Delta_i^{(Y)}$ mm	$\delta_i^{(Y)}$ mm	$\lambda rac{\delta_{i,max}^{(Y)}}{h_i}$
+90.5m	350	120,81	3,20	22,37	0,0025
+87.0m	350	117,61	3,72	26,03	0,0029
+83.5m	350	113,89	3,93	27,52	0,0030
+80.0m	350	109,96	4,07	28,48	0,0031
+76.5m	350	105,89	4,23	29,64	0,0033
+73.0m	350	101,66	4,42	30,93	0,0034
+69.5m	350	97,24	4,61	32,25	0,0035
+66.0m	350	92,64	4,81	33,64	0,0037
+62.5m	350	87,83	5,04	35,30	0,0039
+59.0m	350	82,79	5,14	35,99	0,0040
+55.5m	350	77,64	5,33	37,30	0,0041
+52.0m	350	72,32	5,49	38,43	0,0042
+48.5m	350	66,83	5,62	39,35	0,0043
+45.0m	350	61,21	5,73	40,09	0,0044
+41.5m	350	55,48	5,80	40,59	0,0045
+38.0m	350	49,68	5,83	40,83	0,0045
+34.5m	350	43,85	5,82	40,75	0,0045
+31.0m	350	38,02	5,77	40,40	0,0044
+27.5m	350	32,25	5,66	39,64	0,0044
+24.0m	350	26,59	5,34	37,39	0,0041
+20.5m	350	21,25	5,09	35,60	0,0039
+17.0m	350	16,16	4,70	32,91	0,0036
+13.5m	350	11,46	4,22	29,54	0,0032
+10.0m	500	7,24	4,96	34,69	0,0027
+5.0m	500	2,29	2,29	16,00	0,0012
+0.0m		0,00		MAX	0,0045

Çizelge 6.43: Y Deprem Yönü Göreli Kat Ötelenmesi Seçili Kolon Kontrolü

Çizelge 6.43'e göre seçili kolon için Y deprem yönü kontrolü sonucunda 0,0045 ≤ 0,016 olduğundan dolayı şartları sağlamıştır.

Kat	$h_i \ m cm$	$u_i^{(Y)}$ mm	$\Delta_i^{(Y)}$ mm	$\delta_i^{(Y)}$ mm	$\lambda rac{\delta_{i,max}^{(Y)}}{h_i}$
+90.5m	3500	60,35	2,73	19,10	0,0021
+87.0m	3500	57,62	2,74	19,19	0,0021
+83.5m	3500	54,88	2,77	19,39	0,0021
+80.0m	3500	52,11	2,79	19,52	0,0021
+76.5m	3500	49,32	2,80	19,59	0,0022
+73.0m	3500	46,52	2,80	19,61	0,0022
+69.5m	3500	43,72	2,80	19,59	0,0022
+66.0m	3500	40,92	2,79	19,52	0,0021
+62.5m	3500	38,13	2,77	19,40	0,0021
+59.0m	3500	35,36	2,75	19,22	0,0021
+55.5m	3500	32,62	2,72	19,01	0,0021
+52.0m	3500	29,90	2,68	18,76	0,0021
+48.5m	3500	27,22	2,63	18,44	0,0020
+45.0m	3500	24,59	2,58	18,07	0,0020
+41.5m	3500	22,01	2,52	17,63	0,0019
+38.0m	3500	19,49	2,45	17,12	0,0019
+34.5m	3500	17,04	2,36	16,53	0,0018
+31.0m	3500	14,68	2,27	15,86	0,0017
+27.5m	3500	12,42	2,16	15,09	0,0017
+24.0m	3500	10,26	2,03	14,22	0,0016
+20.5m	3500	8,23	1,90	13,27	0,0015
+17.0m	3500	6,33	1,74	12,20	0,0013
+13.5m	3500	4,59	1,57	10,98	0,0012
+10.0m	5000	3,02	1,85	12,96	0,0010
+5.0m	5000	1,17	1,17	8,20	0,0006
		0,00		MAX	0,0022

Çizelge 6.44: X Deprem Yönü Göreli Kat Ötelenmesi Seçili Perde Kontrolü

Çizelge 6.44'e göre seçili perde için X deprem yönü kontrolü sonucunda 0,0022 $\leq 0,016$ olduğundan dolayı şartları sağlamıştır.
Kat	h _i cm	$u_i^{(Y)}$ mm	$\Delta_i^{(Y)}$ mm	$\delta_i^{(Y)}$ mm	$\lambda rac{\delta_{i,max}^{(Y)}}{h_i}$
+90.5m	350	121,18	3,66	25,60	0,0028
+87.0m	350	117,52	3,79	26,53	0,0029
+83.5m	350	113,73	3,90	27,31	0,0030
+80.0m	350	109,83	4,05	28,34	0,0031
+76.5m	350	105,79	4,22	29,55	0,0033
+73.0m	350	101,56	4,41	30,87	0,0034
+69.5m	350	97,15	4,61	32,24	0,0035
+66.0m	350	92,55	4,80	33,61	0,0037
+62.5m	350	87,75	5,00	35,00	0,0039
+59.0m	350	82,75	5,17	36,18	0,0040
+55.5m	350	77,58	5,34	37,38	0,0041
+52.0m	350	72,24	5,49	38,46	0,0042
+48.5m	350	66,74	5,63	39,39	0,0043
+45.0m	350	61,12	5,73	40,14	0,0044
+41.5m	350	55,38	5,81	40,66	0,0045
+38.0m	350	49,57	5,85	40,93	0,0045
+34.5m	350	43,73	5,84	40,86	0,0045
+31.0m	350	37,89	5,77	40,42	0,0044
+27.5m	350	32,12	5,65	39,57	0,0044
+24.0m	350	26,46	5,43	38,03	0,0042
+20.5m	350	21,03	5,15	36,07	0,0040
+17.0m	350	15,88	4,76	33,29	0,0037
+13.5m	350	11,12	4,21	29,46	0,0032
+10.0m	500	6,91	4,68	32,73	0,0025
+5.0m	500	2,24	2,24	15,65	0,0012
+0.0m		0,00		MAX	0,0045

Çizelge 6.45: Y Deprem Yönü Göreli Kat Ötelenmesi Seçili Perde Kontrolü

Çizelge 6.45'e göre seçili perde için Y deprem yönü kontrolü sonucunda 0,0045 ≤ 0,016 olduğundan dolayı şartları sağlamıştır.

TBDY-2018 bölüm 4.9.2 kapsamında herhangi bir deprem doğrultusundaki her bir i'inci katındaki *İkinci Mertebe Gösterge Değeri* $\theta_{II,i}^{(X,Y)}$ değeri hesaplanarak kontrol yapılmalıdır.

$$\theta_{II,i}^{(X,Y)} = \frac{(\Delta_i^{(X,Y)})_{ort} \sum_{k=i}^N w_k}{V_i^{(X,Y)} h_i}$$

Yukardaki bağıntı aracılığıyla hesaplanan değer $\theta_{II,max}^{(X,Y)} \leq 0.12 \frac{D}{C_h R}$ sınırını aşmamalıdır. Bu bağıntıdaki C_h ise betonarme binalar için TBDY-2018 bölüm 4.9.2.2'ye göre 0,5 alınmıştır.

Kat	h _i cm	$(\Delta_i^{(X)})_{ort}$ mm	w _k kN	$\frac{\Sigma w_k}{\mathrm{kN}}$	V _i ^(X) kN	$ heta_{II}^{(X)}$
+90.5m	350	2,538	34917,7	34918	4145,62	0,0061
+87.0m	350	2,727	32182,7	67100	7207,43	0,0073
+83.5m	350	2,7865	32182,7	99283	9332,59	0,0085
+80.0m	350	2,798	32182,7	131466	10632,00	0,0099
+76.5m	350	2,8025	32182,7	163649	11305,37	0,0116
+73.0m	350	2,803	32182,7	195831	11583,55	0,0135
+69.5m	350	2,797	32182,7	228014	11686,04	0,0156
+66.0m	350	2,788	32182,7	260197	11786,89	0,0176
+62.5m	350	2,781	32182,7	292379	11993,57	0,0194
+59.0m	350	2,733	32698,6	325078	12343,23	0,0206
+55.5m	350	2,7115	32698,6	357777	12825,22	0,0216
+52.0m	350	2,678	32698,6	390475	13384,63	0,0223
+48.5m	350	2,6315	32698,6	423174	13965,28	0,0228
+45.0m	350	2,578	32698,6	455872	14530,99	0,0231
+41.5m	350	2,5135	32698,6	488571	15073,44	0,0233
+38.0m	350	2,439	32698,6	521270	15612,59	0,0233
+34.5m	350	2,355	32698,6	553968	16191,48	0,0230
+31.0m	350	2,261	32698,6	586667	16867,61	0,0225
+27.5m	350	2,154	32698,6	619365	17700,87	0,0215
+24.0m	350	2,009	32698,6	652064	18748,63	0,0200
+20.5m	350	1,883	32698,6	684763	20026,48	0,0184
+17.0m	350	1,7405	32698,6	717461	21466,43	0,0166
+13.5m	350	1,5945	32698,6	750160	22955,25	0,0149
+10.0m	500	1,9765	37028,7	787188	24412,85	0,0127
+5.0m	500	1,1425	37028,7	824217	25253,45	0,0075
					MAX	0,0233

Çizelge 6.46: X Deprem Yönü İkinci Mertebe Gösterge Değeri

Çizelge 6.46'daki $\theta_{II,max}^{(X)} \leq 0,12.D/(C_h.R)=0,0857$ şartını sağlamış ve ikinci seviye etkilerinin tasarıma tabii iç kuvvetlerin hesaplanmasında gözönüne alınmasına gerek yoktur.

Kat	h _i cm	$(\Delta_i^{(Y)})_{ort}$ mm	w _k kN	$\sum w_k$ kN	V _i ^(Y) kN	$ heta_{II}^{(Y)}$
+90.5m	350	3,4265	34917,7	34918	5221,75	0,0065
+87.0m	350	3,754	32182,7	67100	8438,63	0,0085
+83.5m	350	3,916	32182,7	99283	10130,42	0,0110
+80.0m	350	4,0585	32182,7	131466	10889,94	0,0140
+76.5m	350	4,228	32182,7	163649	11324,38	0,0175
+73.0m	350	4,414	32182,7	195831	11812,56	0,0209
+69.5m	350	4,6065	32182,7	228014	12455,56	0,0241
+66.0m	350	4,8035	32182,7	260197	13180,62	0,0271
+62.5m	350	5,0215	32182,7	292379	13876,06	0,0302
+59.0m	350	5,1555	32698,6	325078	14472,57	0,0331
+55.5m	350	5,334	32698,6	357777	14970,42	0,0364
+52.0m	350	5,492	32698,6	390475	15402,78	0,0398
+48.5m	350	5,624	32698,6	423174	15824,37	0,0430
+45.0m	350	5,7305	32698,6	455872	16280,48	0,0458
+41.5m	350	5,804	32698,6	488571	16783,03	0,0483
+38.0m	350	5,84	32698,6	521270	17307,17	0,0503
+34.5m	350	5,8295	32698,6	553968	17808,21	0,0518
+31.0m	350	5,7725	32698,6	586667	18256,35	0,0530
+27.5m	350	5,658	32698,6	619365	18672,91	0,0536
+24.0m	350	5,3875	32698,6	652064	19164,41	0,0524
+20.5m	350	5,119	32698,6	684763	19888,12	0,0504
+17.0m	350	4,729	32698,6	717461	20969,35	0,0462
+13.5m	350	4,2145	32698,6	750160	22396,24	0,0403
+10.0m	500	4,8155	37028,7	787188	24076,70	0,0315
+5.0m	500	2,2605	37028,7	824217	25245,93	0,0148
					MAX	0,0536

Çizelge 6.47: Y Deprem Yönü İkinci Mertebe Gösterge Değeri

Çizelge 6.47'deki $\theta_{II,max}^{(Y)} \leq 0,12.D/(Ch.R)=0,0857$ şartını sağlamış ve ikinci seviye etkilerinin tasarıma tabii iç kuvvetlerin hesaplanmasında gözönüne alınmasına gerek yoktur.

TBDY-2018 bölüm 4 kapsamında verilen kurallar uygulanarak DD-2 deprem yer hareketi etkisinde, Dayanıma Göre Tasarım (DGT) esaslarına göre incelenen BYS=2 olan binamız göreli kat ötelenmesi ve ikinci mertebe etkilerinin hesaplanan sınırlarının içerisinde kalarak istenilen *Kontrollü Hasar (KH)* performans hedefinin sağlandığı görülmüştür.

7. SONUÇLAR ve ÖNERİLER

Artan sanayileşme, şehir merkezlerinde nitelikli arsaların azalması ve inşaat yapım teknolojilerinin ilerlemesi özellikle 80'li yıllardan itibaren yapıların kat sayısının hızla artmasına neden olmuştur. Şehirlerin prestij ve gelişmişlik simgeleri olarak gösterilen yüksek yapılar özellikle yapısal analiz ile uğraşan inşaat mühendisleri için özel ve dikkatli bir tasarım süreci gerektirmektedir.

Kat sayısına bağlı olarak genel kabul görmüş yüksek bina tanımı 2019 yılında yürürlüğe girmiş olan Türkiye Bina Deprem Yönetmeliği (TBDY-2018) ile yapılmıştır. Depremselliği yüksek olan bölgelerde zeminden itibaren 70 m'den daha yüksek binalar için yüksek bina olarak kabul edilmiştir. Bu binalara oldukça ayrıntılı tasarım kuralları yönetmelikçe öngörülerek yeni bölüm yönetmelikçe mühendislerin kullanımına sunulmuştur.

Yüksek yapıların diğer yapılardan bağımsız olarak deprem etkisi altındaki davranışları oldukça karmaşıktır. Hali hazırda 2019 deprem yönetmeliğinin yüksek olmayan binalar için olan bölümleri ve şekil değiştirmeye göre tasarım ilkeleri mühendislerce hazmedilmeye çalışılırken yüksekliği çok fazla olan bu binalar için performans tabanlı analiz yapmak çoğu yapı mühendisi için zorlu bir süreç olarak görülmektedir. Bu nedenle yüksek yapılarda yapılacak olan performans tabanlı analiz naliz sonuçlarının doğru yorumlanması önem arz etmektedir. Bu netenle yekillenmesine sebep olmuştur.

Bu tez çalışması kapsamında, TBDY-2018 BYS=1 olan bina ile BYS=2 olan bina tasarımlarında temel alınacak olan düşey, yatay ve özel yüklerin etki ettirilmesiyle birlikte ETABS programı yardımıyla modellemesi ve yönetmelik kapsamındaki analiz türü uygulanarak BYS-1 ve BYS-2 olan iki farklı yapının değerlendirilip karşılaştırılması yapılmıştır.

Çalışma içinde tamamıyla TBDY-2018 ilgili hesap prosedürleri izlenmiştir. Çalışmanın sonunda hesap prosedürlerinin uygulanması sırasındaki önemli hususlar ve karşılaşılan zorluklar burada çalışmanın sonuçları olarak maddelenmiştir.

Yüksek yapı tasarımında TBDY-2018'de belirtilen önemli hususlar;

 Bina yüksekliğine ve Deprem Tasarım Sınıfı'na bağlı olarak tanımlanan Bina Yükseklik Sınıfları BYS=1 olan binalar Yüksek Bina olarak kabul edilmiştir. 2) Görüldüğü gibi, Tasarım Sınıfı DTS = 1, 2, 3, 3a, 4 ve 4a olan binalar için Normal Performans Hedefleri öngörülürken, Deprem Tasarım Sınıfı DTS = 1a ve 2a olan binalar için ise, İleri Performans Hedefleri tanımlanmıştır.

3) Toplumsal olarak alışıla gelen öneme sahip binalar için Dayanıma Göre Tasarım (DGT) yaklaşımı kullanılarak Kontrollü Hasar (KH) performans hedefinin sağlanması (Normal Performans Hedefi) öngörülmüştür. Buna karşılık, toplumsal açıdan önemli ve yüksek binalarda ise, daha ayrıntılı tasarım ve değerlendirme yaklaşımları öngörülmüştür.

 4) Yüksek deprem seviyesinde doğrusal olmayan şekil değiştirmeler önemli olacağı için Şekil Değiştirmeye Dayalı Tasarım yaklaşımının kullanılması öngörülmüştür.

5) Yüksek binaların tasarımı, üç performans hedefini sağlamak üzere üç aşamada yapılmaktadır. Bu aşamalara geçmeden önce yapının deprem tasarım sınıfına bağlı olarak performans hedefini belirlemek gerekmektedir.

6) 1. Aşamada DD-2 Deprem Yer Hareketi Altında Ön Tasarım (Boyutlandırma),
2. Aşamada DD - 4 veya DD-3 Deprem Yer Hareketi Altında Kesintisiz Kullanım veya Sınırlı Hasar Performans Hedefi İçin Değerlendirme (İyileştirme), 3. Aşamada ise DD-1 Deprem Yer Hareketi Altında Göçmenin Önlenmesi veya Kontrollü Hasar Performans Hedefi İçin Değerlendirme (İyileştirme ve Son Tasarım).

Çalışmanın sırasında yönetmelik maddelerinin uygulanmasında bazı zorluklar ve net olmayan hükümlerle karşılaşılmıştır. Aşağıda ilgili kısımlar maddelenmiştir;

 1) 1. Aşamada DD-2 Deprem Yer Hareketi Altında Ön Tasarım (Boyutlandırma),
 2. Aşamada DD - 4 veya DD-3 Deprem Yer Hareketi Altında Kesintisiz Kullanım veya Sınırlı Hasar Performans Hedefi İçin Değerlendirme (İyileştirme), 3. Aşamada ise DD-1 Deprem Yer Hareketi Altında Göçmenin Önlenmesi veya Kontrollü Hasar Performans Hedefi İçin Değerlendirme (İyileştirme ve Son Tasarım).

2) Tez kapsamında incelenen yüksek yapıda karmaşık bir dinamik davranış söz konusudur. Düşük kat sayısı olan binalarda genellikle birinci modun etkisi belirleyicidir. Yüksek kat sayısı bulunan binalarda yüksek modların etkisi belirgin olarak ortaya çıkar. Bazı durumlarda ise mod şekilleri tasarımı yönlendirir. BYS=1 olan binada Tasarım Aşaması I ve Tasarım Aşaması II'ye göre yapılan Mod Birleştirme analizlerinde %95 kütle katılım oranına bakıldığında Tasarım Aşaması I için 25. mod ve Tasarım Aşaması II için 85. Modda ulaştığı görülmüştür. 3) TBDY-2018'de "Süneklik düzeyi yüksek bağ kirişli (boşluklu) veya boşluksuz yerinde dökme veya önüretimli betonarme perdeler ile merkezi, dışmerkez veya burkulması önlenmiş çelik çaprazlı çerçevelerin moment aktaran süneklik düzeyi yüksek çerçevelerle birlikte kullanıldığı binalarda, perdelerin veya çaprazlı çerçevelerin tabanında deprem yüklerinden meydana gelen devrilme momentlerinin toplamı, binanın tümü için deprem yüklerinden tabanda meydana gelen toplam devrilme momentinin %40'ından az, %75'inden fazla olmayacaktır." denilmektedir. Burada üst sınır koşulunun sağlanamaması durumunda R ve D katsayıları ile izin verilen en üst BYS dikkate alınırken alt sınır koşulunun sağlanamaması durumunda ise R ve D katsayılarında değişiklik yapılmayacak, ancak izin verilen en üst BYS'nin bir fazlası dikkate alınacaktır. Yüksek binalarda alt sınırın kurtarmaması durumunda BYS'nin bir fazlasını nasıl alınabileceği söylenmemiştir. Fakat bu durumda taşıyıcı sistem değiştirilerek perde miktarının artırılması ve/veya perdelerin dağıtılarak daha fazla moment almasını sağlanması daha uygun gözükmektedir.

4) TBDY-2018 binanın kenar akslarında bulunan perde/perdelerin veya çelik çaprazlı çerçeve/çerçevelerin sahip olduğu taban devrilme momentlerinin toplamı, mevcut doğrultuda binanın tamamı için deprem yüklerinden oluşan toplam taban devrilme momenti Mo 'ın 1/6'sından az olmayacaktır. Yeni yönetmelik ile birlikte perdelerin bina içerisinde özellikle dış akslarda yeterli miktarda konumlandırılarak belli bir devrilme momentinin alması istenmiştir. Dış akslarda perdelerin yeterli miktarda devrilme momentini karşılayamaması ya da olmaması durumunda, kat planında gelişi güzel yerleştirilmiş fakat aynı aks üzerindeki toplam taban devrilmesinde belli bir yüzdeyi karşılayamaması durumunda Taşıyıcı Sistem Davranış Katsayısı (R) %20 oranında azaltılarak binanın deprem yükünün artırılarak perdelerin bina içerisinde belli bir oranda devrilme momentinin alması istenmiştir.

5) TBDY-2018 göre binada periyot sınırlaması yapılarak hesaplanan minimum taban kesme kuvveti ile bölüm 13 Denk. 13.1'e göre hesaplanan minimum taban kesme kuvveti neredeyse 2 katına çıkarılmış ve Tasarım Aşaması 1 için iç kuvvetler arttırılmıştır.

6) BYS=1 için Tasarım Aşaması I ve Tasarım Aşaması II'ye göre yapılan Mod Birleştirme analizlerinde %95 kütle katılım oranına bakıldığında Tasarım Aşaması I için 25.mod ve Tasarım Aşaması II için 85. Modda ulaştığı görülmüştür. BYS=2 olan binada ise 27. Modda kütle katılım oranına ulaşmaktadır. 7) TBDY-2018 bölüm 13.3.1'de verilen E/K<1,5 oranına göre Çizelge 6.40'a göre E/K oranına bakıldığında perdelerdeki zorlamalar ilk 3 katta belirgin şekildedir. Seçilen Hcr=24 m ise kolon kesit değişiklikleri baz alınarak ilk kat boyunca seçilmiştir. E/K oranları ve kat yükseklikleri incelendiğinde kat yüksekliklerinin perde etkilerindeki belirgin etkisi görülmektedir. Özellikle Hcr seçiminde kolon kesit değişimleri ve kat yükseklik değişimlerinin dikkatte alınması önem arz etmektedir.

8) Çizelge 6.41'e göre kirişler için E/K diyagramı incelendiğinde yüksek binalarda deprem etkisiyle oluşan salkım hareketinin etkisi ile karşılıklı perde kolları arasında bulunan BS50x80 kirişlerinin yük aktarımında etkin zorlanmalara maruz kaldığı görülmüştür.

9) Zaman Tanım Alanında Nonlineer Analizi için tanımlanması istenen ortalama malzeme tanıtımı için özellikle sargılı ve sargısız beton malzeme dayanımı tanıtımında ETABS gibi manuel programlarda malzeme kesitindeki donatı miktarlarına göre programa farklı malzemeler tanıtılması gerekmektedir. Paket programlar olmaksızın bu tip programlarda işlem yapılması analiz süresinden öte veri girişinide oldukça uzun süreler aldırmaktadır.

10) Zaman Tanım Alanında Nonlineer Analiz için TBDY-2018 bölüm 5.4.5'te verilmiş olan etkin kesit rijitliklerinin kullanılması istenmiştir. Kolon, kiriş, perde ve bağ kirişi elemanları için TBDY-2018 Denk 5.2'de bulunan etkin akma momenti, etkin akma momenti ile kesme açıklığına bağlı olan etkin kesit rijitlikleri formülü farklılık gösteren tüm kesit elemanları için tek tek hesaplanarak ETABS programına tanıtılması gerekmektedir. ASCE'ce eksenel kuvvetlere göre önerilen kesit rijitliği katsayılarının kullanılması hesap kolaylığı bakımından daha uygun olduğu görülmüştür. TBDY-2018 ile birlikte paket programlara olan yönlendirmeler daha da artmıştır.

11) Zaman Tanım Alanında Nonlineer Analiz için TBDY-2018'e göre 11 deprem kaydının seçilmiştir. Bu analizlerde kullanılacak deprem kayıtlarının seçiminde seçilen depremlerin yakın/uzak depremlerin binanın nonlineer davranışı üzerindeki etkileri ayrıntılı incelenmelidir.

12) Bu tez çalışmasında zaman tanım alanında nonlineer analiz için ETABS programı vasıtasıyla İntel®Core[™] i7-7700HQ CPU @2.80GHz işlemcili 16GB bellek (RAM) bilgisayar kullanılmıştır. Zaman tanım alanında uygulanan analiz için 11 deprem kaydı zaman adımlarını 0,5s aralığında tutarak X ve Y yönleri için uyguladığımızda neredeyse 10 saate yakın sürmekte ve bilgisayar bellek kaydında büyük yerler kaplamaktadır.

Tez çalışmasında seçilen bina oldukça basit bir taşıyıcı sisteme sahiptir. Burada amaç bu basit binanın çözümünde temel zorlukların tespit edilmesi ve yönetmeliğin bu çerçeveden irdelenmesidir. Bu açıdan yönetmeliğin tüm detaylarını irdeleme şansı olmamış fakat genel bir çerçeve çizilmiştir. 2018 deprem yönetmeliğinde yüksek binalar gibi bölümlerin incelenmesinden gelecekte inşaat mühendisleri için şimdiye kadarkinden çok daha fazla akademik altyapıya ihtiyaç duyacakları kesin gözükmektedir. Akademik alt yapısı yüksek olan mühendislerin bir araç olarak kullandıkları paket programlarına yorum yapabilmeleri daha kolay olacak ve uygulamadaki düşüncenin aksine paket programları mühendisleri esir alamayacaktır.

KAYNAKLAR

- **ASCE/SEI, 2017,** Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- Arslan, Y., 2009, Çok Katlı Betonarme Bir Binanın Deprem Performansının Doğrusal ve Doğrusal Olmayan Yöntemler Kullanılarak Belirlenmesi ve Karşılaştırılması, Yüksek Lisans Tezi, İ.T.Ü.
- Aydınoğlu, N., 2013, Deprem Etkisi Altında Yüksek Binalarda Tasarım Sorunları, TMMOB İnşaat Mühendisleri Odası-2013, İzmir.
- **Başot, T., 2010,** Betonarme Yüksek Bir Binada DBYBHY ile İYBDY İlkelerinin Doğrusal Olmayan Dinamik Çözümleme ile Karşılaştırılması, Yüksek Lisans Tezi, İ.T.Ü.
- Budak, E. ve Sucuoğlu, H., 2015, Yüksek Yapıların Performans Esaslı Tasarımı, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, TDMSK-2015, İzmir.
- Coşkun, E., 2006, Yüksek Binaların Gelişimi ve Tasarım İlkeleri [online], İstanbul Kültür Üniversitesi, <u>http://web.iku.edu.tr/~ecoskun/semineryap%C4%B12006.pdf</u> [Ziyaret Tarihi: 11 Mart 2017].
- Deierlein, G., Reinhorn, A. ve Willford, M., 2010, Nonlinear Structural Analysis For Seismic[online], NEHRP, <u>https://www.nehrp.gov/pdf/nistgcr10-917-5.pdf</u>[Ziyaret Tarihi: 18Mart 2018].
- DBYBHY, 2007, Deprem Bölgesinde Yapılacak Binalar Hakkında Yönetmelik.
- Esin, D., 2005, Statik İtme Analizi Yöntemiyle Mevcut Bir Yapının İncelenmesi ve Uygulanması, Yüksek Lisans Tezi, İ.T.Ü.
- **Gözütok, B., 2011,**Betonarme Yüksek Bir Yapının Deprem Performansının Zaman Tanım Alanında Doğrusal Olmayan Çözümleme Yöntemi Kullanılarak Belirlenmesi. Yüksek Lisans Tezi, İ.T.Ü.
- Gülsoy, İ., 2003, Betonarme Tüp Sistem Bir Yapının Tasarımı, Yüksek Lisans Tezi, İ.T.Ü.
- Heintz, Jon A., 2011, PEER/ATC-72-1 Modeling and Acceptance Criteria for Tall Buildings [online], Berkeley University, <u>http://peer.berkeley.edu/events/wpcontent/uploads/2011/03/TBI-PBEE-Sem-ATC-72-1_heintz.pdf</u>[Ziyaret Tarihi: 18 Mart 2018].
- **IBC**, 2012, International Building Code.
- Işık, M., 2008, Çok Katlı Betonarme Yapılarda Taşıyıcı Sistem Etkisi, Yüksek Lisans Tezi, İ.T.Ü.
- **İYBDY**, 2008, İstanbul Yüksek Binalar Deprem Yönetmeliği.

- Karaçöp, A., 2010, Betonarme Bir Yüksek Binanın İstanbul Yüksek Binalar Deprem Yönetmeliğine Göre İncelenmesi, Yüksek Lisans Tezi, İ.T.Ü.
- LATBSDC, 2014, An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angles Region[online], <u>http://www.tallbuildings.org/</u> [Ziyaret Tarihi: 4 Şubat 2017].
- Öke, A., Yüksek Binalar ve Problemleri [online], TMMOB, <u>https://www.mmo.org.tr/sites/default/files/b6dd7db9af49e67_ek.pdf</u>[Ziyaret Tarihi: 4 Şubat 2017].
- Paltun, S., Gültekin, A. ve Çelebi, G., 2015, Binaların Aerodinamik Biçimsel Yapısının İrdelenmesi: Bina Formu ve Rüzgar İlişkisi, 2nd International Sustainable Buildings Symposium, ISBS-2015, Ankara.
- Sesigür, H., Çelik Yapılar Taşıyıcı Sistem Düzenleme İlkeleri[online], İstanbul Teknik Üniversitesi, <u>http://web.itu.edu.tr/haluk/celik/yuksek binalar sunum.pdf</u>[Ziyaret Tarihi: 10Mart 2018].
- Saral, E., 2015, Betonarme Yüksek Binaların Doğrusal Olmayan Analiz Yöntemleri ile Deprem Performanslarının Belirlenmesi, D.E.Ü.
- TBDY, 2018, Türkiye Bina Deprem Yönetmeliği.
- TS-500, 2002, Betonarme Yapıların Tasarım ve Kuralları.

TS-498, 1987, Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri.

- Tunç, G. ve Tanfener, T., 2016,2007 ve 2016 Türkiye Bina Deprem Yönetmeliklerinin Örneklerle Mukayesesi, 3. Ulusal Yapı Kongresi ve Sergisi Teknik Tasarım, Güvenlik ve Erişilebilirlik, TMMOB Mimarlar Odası-2016, Ankara.
- **Ünerdem, Y., 2011,** 30 Katlı Betonarme Bir Binanın Deprem Performansının Zaman Tanım Alanında Çözümleme Uygulanarak Belirlenmesi, İ.T.Ü.

EKLER

EK-1: Kule Site AVM DD2,DD4 ve DD1 AFAD Deprem Raporu

Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması

Kullanıcı Girdileri

Rapor Başlığı:	KuleSite Plaza	
Deprem Yer Hareketi Düzeyi	DD-1	50 yılda aşılma olasılığı %2 (tekrarlanma periyodu 2475 yıl) olan deprem yer hareketi düzeyi
Yerel Zemin Sınıfı	ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar
Enlem:	37.89°	
Boylam	32.49°	

Çıktılar

$S_s =$	0.692	
---------	-------	--

 $S_1 = 0.149$

PGA = 0.295

PGV=14.354

S_S: Kısa periyot harita spektral ivme katsayısı [boyutsuz]

S₁: 1.0 saniye periyot için harita spektral ivme katsayısı [boyutsuz]

PGA : En büyük yer ivmesi [g]

PGV : En büyük yer hızı [cm/sn]

Yerel Zemin Sınıfları

Varal		Üst 30 metrede ortalama					
Zemin Sınıfı	Zemin Cinsi	(V _S) ₃₀ [m/s]	(N ₆₀) ₃₀ [darbe/30 cm]	(<i>C</i> _u) ₃₀ [kPa]			
ZA	Sağlam, sert kayalar	> 1500	-	-			
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-			
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250			
ZD	Orta sıkı - sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 - 250			
ZE	Gevşek kum, çakıl veya yumuşak - katı kil tabakaları veya $PI > 20$ ve $w > \%$ 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($C_u < 25$ kPa) içeren profiller	< 180	< 15	< 70			
ZF	 Sahaya özel araştırma ve değerlendirme gerektiren zeminler : 1) Deprem etkisi altında çökme ve potansiyel göçme riskine sahip zeminler (sıvılaşabilir zeminler, yüksek derecede hassas killer, göçebilir zayıf çimentolu zeminler vb.), 2) Toplam kalınlığı 3 metreden fazla turba ve/veya organik içeriği yüksek killer, 3) Toplam kalınlığı 8 metreden fazla olan yüksek plastisiteli (<i>Pl</i> > 50) killer , 4) Çok kalın (> 35 m) yumuşak veya orta katı killer. 						

Yerel Zemin Sınıfı	Kısa periyot bölgesi için <i>Yerel Zemin Etki Katsayısı F_S</i>					
	S _S ≤ 0.25	S _S = 0.50	S _S = 0.75	S _S = 1.00	S _S = 1.25	S _S ≥ 1.50
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.9	0.9	0.9	0.9	0.9	0.9
ZC	1.3	1.3	1.2	1.2	1.2	1.2
ZD	1.6	1.4	1.2	1.1	1.0	1.0
ZE	2.4	1.7	1.3	1.1	0.9	0.8
ZF	Sahaya özel zemin davranış analizi yapılacaktır.					

Yerel Zemin Etki Katsayıları

Yerel Zemin Sınıfı ZC ve $S_{\rm S}$ =0.692 için $F_{\rm S}$ =1.223

Yerel Zemin Sınıfı	1.0 saniye periyot için <i>Yerel Zemin Etki Katsayısı F</i> 1					
	S ₁ ≤ 0.10	S ₁ = 0.20	S ₁ = 0.30	S ₁ = 0.40	S ₁ = 0.50	$S_1 \ge 0.60$
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.8	0.8	0.8	0.8	0.8	0.8
ZC	1.5	1.5	1.5	1.5	1.5	1.4
ZD	2.4	2.2	2.0	1.9	1.8	1.7
ZE	4.2	3.3	2.8	2.4	2.2	2.0
ZF	Sahaya özel zemin davranış analizi yapılacaktır.					

Yerel Zemin Sınıfı ZC ve $S_1 = 0.149$ için $F_1 = 1.500$

Tasarım Spektral İvme Katsayıları

 $S_{\text{DS}} = S_{\text{S}} F_{\text{S}} = 0.692 \text{ x} 1.223 = 0.846$ $S_{\text{D1}} = S_1 F_1 = 0.149 \text{ x} 1.500 = 0.224$

 $S_{\rm DS}\,$: Kısa periyot tasarım spektral ivme katsayısı [boyutsuz]

 $S_{\rm D1}\,$: 1.0 saniye periyot için tasarım spektral ivme katsayısı [boyutsuz]

Yatay Elastik Tasarım Spektrumu

Düşey Elastik Tasarım Spektrumu

Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması

Kullanıcı Girdileri

Rapor Başlığı	KuleSite Plaza	
Deprem Yer Hareketi Düzeyi	DD-2	50 yılda aşılma olasılığı %10 (tekrarlanma periyodu 475 yıl) olan deprem yer hareketi düzeyi
Yerel Zemin Sınıfı	ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar
Enlem	37.89°	
Boylam	32.49°	

Çıktılar

 $S_{\rm S} = 0.308$

 $S_1 = 0.073$

PGA = 0.134

PGV = 0.134

 $S_{\rm S}$: Kısa periyot harita spektral ivme katsayısı [boyutsuz]

S₁: 1.0 saniye periyot için harita spektral ivme katsayısı [boyutsuz]

PGA : En büyük yer ivmesi [g]

PGV : En büyük yer hızı [cm/sn]

Yerel Zemin Sınıfları

Manal		Üst 30 metrede ortalama					
Zemin Sınıfı	Zemin Cinsi	(V _S) ₃₀ [m/s]	(N ₆₀) ₃₀ [darbe/30 cm]	(<i>C</i> _u) ₃₀ [kPa]			
ZA	Sağlam, sert kayalar	> 1500	-	-			
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-			
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250			
ZD	Orta sıkı – sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 - 250			
ZE	Gevşek kum, çakıl veya yumuşak – katı kil tabakaları veya $PI > 20$ ve $w > \%$ 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($C_u < 25$ kPa) içeren profiller	< 180	< 15	< 70			
ZF	 Sahaya özel araştırma ve değerlendirme gerektiren zeminler: 1) Deprem etkisi altında çökme ve potansiyel göçme riskine sahip zeminler (sıvılaşabilir zeminler, yüksek derecede hassas killer, göçebilir zayıf çimentolu zeminler vb.), 2) Toplam kalınlığı 3 metreden fazla turba ve/veya organik içeriği yüksek killer, 3) Toplam kalınlığı 8 metreden fazla olan yüksek plastisiteli (<i>Pl</i> > 50) killer, 4) Çok kalın (> 35 m) yumuşak veya orta katı killer. 						

Yerel Zemin Sınıfı		Kısa periyot bölgesi için <i>Yerel Zemin Etki Katsayısı F_S</i>					
	S _S ≤ 0.25	S _S = 0.50	S _S = 0.75	S _S = 1.00	S _S = 1.25	S _S ≥ 1.50	
ZA	0.8	0.8	0.8	0.8	0.8	0.8	
ZB	0.9	0.9	0.9	0.9	0.9	0.9	
ZC	1.3	1.3	1.2	1.2	1.2	1.2	
ZD	1.6	1.4	1.2	1.1	1.0	1.0	
ZE	2.4	1.7	1.3	1.1	0.9	0.8	
ZF	Sahaya özel zemin davranış analizi yapılacaktır.						

Yerel Zemin Etki Katsayıları

Yerel Zemin Sınıfı ZC ve $S_S = 0.308$ için $F_S = 1.300$

Yerel Zemin Sınıfı	1.0 saniye periyot için <i>Yerel Zemin Etki Katsayısı F</i> 1					
	S ₁ ≤ 0.10	S ₁ = 0.20	S ₁ = 0.30	S ₁ = 0.40	S ₁ = 0.50	$S_1 \ge 0.60$
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.8	0.8	0.8	0.8	0.8	0.8
ZC	1.5	1.5	1.5	1.5	1.5	1.4
ZD	2.4	2.2	2.0	1.9	1.8	1.7
ZE	4.2	3.3	2.8	2.4	2.2	2.0
ZF	Sahaya özel zemin davranış analizi yapılacaktır.					

Yerel Zemin Sınıfı ZC ve S₁ =0.073 için F_1 =1.500

Tasarım Spektral İvme Katsayıları

 $S_{\text{DS}} = S_{\text{S}} F_{\text{S}} = 0.308 \text{ x} 1.300 = 0.400$ $S_{\text{D1}} = S_1 F_1 = 0.073 \text{ x} 1.500 = 0.109$

 $S_{\text{DS}}\,$: Kısa periyot tasarım spektral ivme katsayısı [boyutsuz]

 $\rm S_{D1}\,$: 1.0 saniye periyot için tasarım spektral ivme katsayısı [boyutsuz]

Yatay Elastik Tasarım Spektrumu

Düşey Elastik Tasarım Spektrumu

Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması

Kullanıcı Girdileri

Rapor Başlığı	KuleSite Plaza	
Deprem Yer Hareketi Düzeyi	DD-3	50 yılda aşılma olasılığı %50 (tekrarlanma periyodu 72 yıl) olan deprem yer hareketi düzeyi
Yerel Zemin Sınıfı	ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar
Enlem	37.89°	
Boylam	32.49°	

Çıktılar

 $S_{\rm S} = 0.101$

 $S_1 = 0.028$

PGA = 0.044

PGV = 0.044

 $S_{\rm S}$: Kısa periyot harita spektral ivme katsayısı [boyutsuz]

S₁: 1.0 saniye periyot için harita spektral ivme katsayısı [boyutsuz]

PGA : En büyük yer ivmesi [g]

PGV : En büyük yer hızı [cm/sn]

Yerel Zemin Sınıfları

Manal		Üst 30 metrede ortalama					
Zemin Sınıfı	erel emin Zemin Cinsi کامار		(N ₆₀) ₃₀ [darbe/30 cm]	(<i>C</i> _u) ₃₀ [kPa]			
ZA	Sağlam, sert kayalar	> 1500	-	-			
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-			
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250			
ZD	Orta sıkı – sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 - 250			
ZE	Gevşek kum, çakıl veya yumuşak – katı kil tabakaları veya $PI > 20$ ve $w > \%$ 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($C_u < 25$ kPa) içeren profiller	< 180	< 15	< 70			
ZF	 Sahaya özel araştırma ve değerlendirme gerektiren zeminler: 1) Deprem etkisi altında çökme ve potansiyel göçme riskine sahip zeminler (sıvılaşabilir zeminler, yüksek derecede hassas killer, göçebilir zayıf çimentolu zeminler vb.), 2) Toplam kalınlığı 3 metreden fazla turba ve/veya organik içeriği yüksek killer, 3) Toplam kalınlığı 8 metreden fazla olan yüksek plastisiteli (<i>Pl</i> > 50) killer, 4) Çok kalın (> 35 m) yumuşak veya orta katı killer. 						

Yerel Zemin Sınıfı	Kısa periyot bölgesi için <i>Yerel Zemin Etki Katsayısı F_S</i>					
	S _S ≤ 0.25	S _S = 0.50	S _S = 0.75	S _S = 1.00	S _S = 1.25	S _S ≥ 1.50
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.9	0.9	0.9	0.9	0.9	0.9
ZC	1.3	1.3	1.2	1.2	1.2	1.2
ZD	1.6	1.4	1.2	1.1	1.0	1.0
ZE	2.4	1.7	1.3	1.1	0.9	0.8
ZF		Sahi	aya özel zemin davı	ranış analizi yapılac	caktır.	

Yerel Zemin Etki Katsayıları

Yerel Zemin Sınıfı ZC ve $S_S = 0.101$ için $F_S = 1.300$

Yerel Zemin Sınıfı	1.0 saniye periyot için <i>Yerel Zemin Etki Katsayısı F</i> 1					
	S ₁ ≤ 0.10	S ₁ = 0.20	S ₁ = 0.30	S ₁ = 0.40	S ₁ = 0.50	$S_1 \ge 0.60$
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.8	0.8	0.8	0.8	0.8	0.8
ZC	1.5	1.5	1.5	1.5	1.5	1.4
ZD	2.4	2.2	2.0	1.9	1.8	1.7
ZE	4.2	3.3	2.8	2.4	2.2	2.0
ZF	Sahaya özel zemin davranış analizi yapılacaktır.					

Yerel Zemin Sınıfı ZC ve S₁ =0.028 için F_1 =1.500

Tasarım Spektral İvme Katsayıları

 $S_{\text{DS}} = S_{\text{S}} F_{\text{S}} = 0.101 \text{ x} 1.300 = 0.131$ $S_{\text{D1}} = S_1 F_1 = 0.028 \text{ x} 1.500 = 0.042$

 $S_{\text{DS}}\,$: Kısa periyot tasarım spektral ivme katsayısı [boyutsuz]

 $\rm S_{D1}\,$: 1.0 saniye periyot için tasarım spektral ivme katsayısı [boyutsuz]

Yatay Elastik Tasarım Spektrumu

Düşey Elastik Tasarım Spektrumu

Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması

Kullanıcı Girdileri

Rapor Başlığı	KuleSite Plaza	
Deprem Yer Hareketi Düzeyi	DD-4	50 yılda aşılma olasılığı %68 (tekrarlanma periyodu 43 yıl) olan deprem yer hareketi düzeyi
Yerel Zemin Sınıfı	ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar
Enlem	37.89°	
Boylam	32.49°	

Çıktılar

 $S_{\rm S} = 0.070$

 $S_1 = 0.020$

PGA = 0.031

PGV = 0.031

 $S_{\rm S}$: Kısa periyot harita spektral ivme katsayısı [boyutsuz]

S₁: 1.0 saniye periyot için harita spektral ivme katsayısı [boyutsuz]

PGA : En büyük yer ivmesi [g]

PGV : En büyük yer hızı [cm/sn]

Yerel Zemin Sınıfları

Manal		Üst 30 metrede ortalama					
Zemin Sınıfı	ו n Zemin Cinsi ו		(N ₆₀) ₃₀ [darbe/30 cm]	(<i>C</i> _u) ₃₀ [kPa]			
ZA	Sağlam, sert kayalar	> 1500	-	-			
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-			
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250			
ZD	Orta sıkı – sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 - 250			
ZE	Gevşek kum, çakıl veya yumuşak – katı kil tabakaları veya $PI > 20$ ve $w > \%$ 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($C_u < 25$ kPa) içeren profiller	< 180	< 15	< 70			
ZF	 Sahaya özel araştırma ve değerlendirme gerektiren zeminler: 1) Deprem etkisi altında çökme ve potansiyel göçme riskine sahip zeminler (sıvılaşabilir zeminler, yüksek derecede hassas killer, göçebilir zayıf çimentolu zeminler vb.), 2) Toplam kalınlığı 3 metreden fazla turba ve/veya organik içeriği yüksek killer, 3) Toplam kalınlığı 8 metreden fazla olan yüksek plastisiteli (<i>PI</i> > 50) killer, 4) Çok kalın (> 35 m) yumuşak veya orta katı killer. 						

Yerel Zemin Sınıfı	Kısa periyot bölgesi için <i>Yerel Zemin Etki Katsayısı F_S</i>					
	S _S ≤ 0.25	S _S = 0.50	S _S = 0.75	S _S = 1.00	S _S = 1.25	S _S ≥ 1.50
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.9	0.9	0.9	0.9	0.9	0.9
ZC	1.3	1.3	1.2	1.2	1.2	1.2
ZD	1.6	1.4	1.2	1.1	1.0	1.0
ZE	2.4	1.7	1.3	1.1	0.9	0.8
ZF		Sah	aya özel zemin davı	ranış analizi yapılac	caktır.	

Yerel Zemin Etki Katsayıları

Yerel Zemin Sınıfı ZC ve $S_S = 0.070$ için $F_S = 1.300$

Yerel Zemin Sınıfı	1.0 saniye periyot için <i>Yerel Zemin Etki Katsayısı F</i> 1					
	S ₁ ≤ 0.10	S ₁ = 0.20	S ₁ = 0.30	S ₁ = 0.40	S ₁ = 0.50	$S_1 \ge 0.60$
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.8	0.8	0.8	0.8	0.8	0.8
ZC	1.5	1.5	1.5	1.5	1.5	1.4
ZD	2.4	2.2	2.0	1.9	1.8	1.7
ZE	4.2	3.3	2.8	2.4	2.2	2.0
ZF	Sahaya özel zemin davranış analizi yapılacaktır.					

Yerel Zemin Sınıfı ZC ve S₁ =0.020 için F_1 =1.500

Tasarım Spektral İvme Katsayıları

 $S_{\text{DS}} = S_{\text{S}} F_{\text{S}} = 0.070 \text{ x} 1.300 = 0.091$ $S_{\text{D1}} = S_1 F_1 = 0.020 \text{ x} 1.500 = 0.030$

 $S_{\text{DS}}\,$: Kısa periyot tasarım spektral ivme katsayısı [boyutsuz]

 $S_{\text{D1}}\,$: 1.0 saniye periyot için tasarım spektral ivme katsayısı [boyutsuz]

Yatay Elastik Tasarım Spektrumu

Düşey Elastik Tasarım Spektrumu

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı	:	İlyas Furkan KAPIDAŞ
Uyruğu	:	T.C.
Doğum Yeri ve Tarihi	:	Konya, 1993
Telefon	:	05345224998
Faks	:	
E-Posta	:	kapidasilyasfurkan@gmail.com

EĞİTİM

Derece		Adı	İlçe	İl	Bitirme Yılı
Lise	:	Selçuklu Ana	adolu Lisesi, KON	ЛYA	2011
Üniversite	:	Necmettin E	rbakan Üniversite	esi, KONYA	2016
Yüksek Lisan	s :	Konya Tekn	ik Üniversitesi, K	ONYA	2019
Doktora	:				

İŞ DENEYİMLERİ

Yıl	Kurum	Görevi
08.2016-08.2017	MEGA STEEL Proje	Proje Mühendisi
09.2017-07.2018	AHSEN Çelik Yapı	Proje Mühendisi
07.2018- ~	MEGA STEEL Proje	Proje Mühendisi

UZMANLIK ALANI

Betonarme ve çelik yapıların mevcut standartlara uygun projelendirilmesi.

YABANCI DİLLER

İngilizce

YAYINLAR

- Altın, M. ve Kapıdaş, İ. F., 2017, Hatalı Kurulan Kalıp ve İskeleler Sonucu Meydana Gelen İş Kazalarının İnşaat Maliyetine ve Ülke Ekonomisine Olan Etkileri, Selçuk-Teknik Dergisi Sayı:16, Konya.
- Kapıdaş, İ. F. Ve Arslan M.H., 2019, Evaluation of Reinforced Concrete High Buildings Within the Context of TBDY-2018, International Symposium for Environmental Science and Engineering Research (ISESER2019), Konya