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Abstract: The distinction between high-grade glioma (HGG) and low-grade glioma (LGG) is gener-
ally performed with two-dimensional (2D) image analyses that constitute semi-automated tumor
classification. However, a fully automated computer-aided diagnosis (CAD) can only be realized us-
ing an adaptive classification framework based on three-dimensional (3D) segmented tumors. In this
paper, we handle the classification section of a fully automated CAD related to the aforementioned
requirement. For this purpose, a 3D to 2D feature transform strategy (3t2FTS) is presented operating
first-order statistics (FOS) in order to form the input data by considering every phase (T1, T2, T1c,
and FLAIR) of information on 3D magnetic resonance imaging (3D MRI). Herein, the main aim is
the transformation of 3D data analyses into 2D data analyses so as to applicate the information to be
fed to the efficient deep learning methods. In other words, 2D identification (2D-ID) of 3D voxels is
produced. In our experiments, eight transfer learning models (DenseNet201, InceptionResNetV2,
InceptionV3, ResNet50, ResNet101, SqueezeNet, VGG19, and Xception) were evaluated to reveal the
appropriate one for the output of 3t2FTS and to design the proposed framework categorizing the
210 HGG–75 LGG instances in the BraTS 2017/2018 challenge dataset. The hyperparameters of the
models were examined in a comprehensive manner to reveal the highest performance of the models
to be reached. In our trails, two-fold cross-validation was considered as the test method to assess
system performance. Consequently, the highest performance was observed with the framework
including the 3t2FTS and ResNet50 models by achieving 80% classification accuracy for the 3D-based
classification of brain tumors.

Keywords: convolutional neural network; deep learning; feature transform; first-order statistics;
glioma; image classification; transfer learning

1. Introduction

Glioma is the most frequent and one of the fastest growing brain tumors according to
the grading system of the World Health Organization (WHO). Regarding this assessment,
glioma is divided into four groups that are degree-I (pilocytic astrocytoma), degree-II
(low-grade glioma), degree-III (malign glioma), and degree-IV (glioblastoma multiforme).
Herein, the distinction of these tumors as high-grade glioma (HGG) and low-grade glioma
(LGG) provides a significant opportunity to arrange treatment procedures and to make
an estimation of the survival time of patients [1,2]. The survival time of patients with
HGG-type tumors is almost two years, and this type of glioma requires rapid intervention.
In contrast with HGG-type tumors, the growth rate of LGG-type tumors stays at low levels,
and the survival time of patients with LGG can be kept as long as possible [3].

Magnetic resonance imaging (MRI) is often preferred to detect brain tumors in terms
of revealing different abnormalities in tissue examinations [4]. In other words, MRI comes
to the forefront on account of identifying even small tissue changes in comparison with
the other imaging modalities [5]. However, the exploration of MRI slices involving both
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necessary information (tumor region) and irrelevant information (non-tumor region) can
make the detection process hard. Regarding this, a computer-aided diagnosis (CAD) system
can help medical experts, especially radiologists, to adjust the therapeutic initiatives [4].

In the literature studies, brain-based analyses (segmentation, classification, etc.) are
handled and examined many times by using 2D- or 3D-based evaluations [6–12]. However,
the accurate classification of brain tumors is evaluated less than the segmentation issue. At
this stage, the classification process is nearly always realized using two-dimensional (2D)
analyses instead of three-dimensional (3D) examinations of tumors.

Latif et al. [1] offered a system operating all phase information (T1, T2, T1c, and
FLAIR), discrete wavelet transform (DWT), first- and second-order statistics, and multilayer
perceptron (MLP) so as to perform the classification of tumor vs. non-tumor samples in
2D MRI images (BraTS 2015). In analyses, 39 HGG/26 LGG instances were utilized for
training, and 110 HGG/LGG samples were considered for testing. In other words, a
training-test split was considered to evaluate the system. Consequently, the proposed
system achieved 96.73% accuracy and 99.3% AUC scores for the 2D-based classification of
tumor availability. However, all training samples of BraTS 2015 were not considered in the
study, and the semi-automated system was not appropriate to work with a segmentation
method. Kumar et al. [2] presented a model including stationary wavelet transform (SWT),
textural features including first-order statistics (FOS), recursive feature elimination (RFE),
and random forest (RF) in order to classify the HGG vs. LGG samples in 2D MRI images
(BraTS 2017/2018). In the experiments, all phase information was utilized, and five-fold
cross validation was chosen to evaluate the performance. As a result, the proposed model
attained 97.54% accuracy and 97.48% AUC scores for the 2D-based classification of brain
tumors. However, the whole brain and region of interest (ROI) including the tumor area
were utilized together for feature extraction, meaning that the proposed model constituted
a semi-automated classification structure requiring both the choice of slice and ROI. In other
words, the proposed model was functional with a 2D-based segmentation algorithm and
with an expert to choose the slice. Saba et al. [3] designed a framework involving histogram
orientation gradient (HOG), local binary patterns (LBP), deep features, and a classifier so
as to discriminate 2D images that are labeled as HGG vs. LGG and as normal vs. tumor. In
trials, a 50%-50% training-test split was preferred as the test method, and ensemble classifier
(EC) was the best algorithm on average classification performance for three datasets. The
proposed framework obtained accuracies of 91.30%, 91.47%, and 98.39% on the BraTS 2015,
BraTS 2016, and BraTS 2017 datasets, respectively. Moreover, the framework was proposed
as a semi-automated algorithm concerning slice selection. Gupta et al. [4] proposed a
three-level classification system utilizing a T2 + FLAIR phase combination, morphological
operations, inherent characteristics, and majority voting-based EC for HGG vs. LGG
categorization. Moreover, the proposed system included a T2 + FLAIR phase combination,
grey level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM), LBP, and
majority voting-based EC for normal vs. tumor discrimination. In the experiments, two
datasets containing BraTS 2012 were used, and ten-fold cross-validation was considered
for evaluation. Consequently, an average accuracy of 96.75% was observed in the HGG vs.
LGG classification of 2D MRI images by the system presenting a semi-automated structure.
Sharif et al. [5] suggested a pipeline comprising a T2 + FLAIR phase combination, HOG,
LBP, geometric features, and support vector machines (SVM) for the categorization of
healthy vs. unhealthy samples in 2D MRI images. To evaluate the pipeline, three datasets
involving BraTS 2013 and BraTS 2015 were handled, and a 50%-50% training-test split was
chosen as the test method. The suggested pipeline acquired 98% and 100% accuracy scores
for the BraTS 2013 and 2015 datasets, respectively. Consequently, a semi-automated pipeline
achieving promising scores was presented to the literature for 2D-based classification of
healthy vs. unhealthy images. Bodapati et al. [13] presented a two-channel classification
model based on deep neural network (DNN) algorithms: InceptionResNetV2 and Xception.
To fulfill the performance assessment, five-fold cross-validation was preferred, and two
datasets including BraTS 2018 were considered. According to the results, it was revealed
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that the proposed two-channel DNN outperformed other deep learning approaches by
attaining 93.69% accuracy on the BraTS 2018 dataset. In [13], the input data of the model
was defined as 2D MRI images, meaning that the operating condition of the model was
proposed on a semi-automated basis. Koyuncu et al. [14] proposed a detailed framework
handling a T1 + T2 + FLAIR phase combination, FOS features, Wilcoxon feature ranking,
and an optimized classifier named GM-CPSO-NN for discrimination of HGG/LGG samples
in 3D MRI images. In experiments, two-fold cross-validation was considered to assess the
performance, and the BraTS 2017/2018 dataset was considered to perform the classification.
As a result, the proposed framework obtained 90.18% accuracy and 85.62% AUC scores for
the 3D-based classification of brain tumors.

Concerning the literature results, it can be seen that 3D-based classification reveals
a more complicated issue in comparison with 2D-based classification due to the success
scores and the information amount to be processed. In addition, 3D-based information
requires comprehensive analyses to accurately perform the classification task. Beyond this,
a fully-automated CAD system classifying the degree of brain tumors independently with
the help of an expert can only be realized using the 3D tumor obtained from a segmentation
method. Herein, the motivation of this paper arises which is the design of a model handling
the 3D-based classification of HGG/LGG data in 3D MRI images. This paper is formed
considering the requirements stated in the literature and contributes to the literature on the
following subjects:

• A novel 3D to 2D feature transform strategy (3t2FTS) that can be utilized to classify
tumors in 3D MRI images;

• A detailed application analyzing the information of a 3D voxel by transforming the
space from 3D to 2D;

• A comprehensive study considering the comparison of eight qualified transfer learning
architectures on tumor grading;

• An efficient framework to be determined for guiding 3D MRI-based classification tasks.

The organization of this paper is as follows. Section 2 briefly explains the utilized FOS
features in-depth, describes the proposed 3D to 2D feature transform strategy, gives the
dataset information with its handicaps, and briefly declares the transfer learning algorithms.
Section 3 presents the experimental analyses and interpretations of the comparison of
transfer learning methods for two-fold cross-validation-based evaluations. Section 4 reveals
the discussions about the results extracted. The concluding remarks are given in Section 5.

2. Materials and Methods
2.1. First-Order Statistics

First-order statistics (FOS) are generated using the histogram-based intensity analyses
of an image. Concerning the histogram evaluations, six phenomena (mean, standard
deviation, skewness, kurtosis, energy, and entropy) constitute the most preferred FOS
features in the literature [14–17].

Let the f (x,y) function symbolize the 2D image. At this point, the ‘x’ and ‘y’ variables
are defined as the coordinates of the image in horizontal and vertical planes, respectively,
and these are respectively specified as (x = 0, 1, . . . , X − 1) and (y = 0, 1, . . . , Y − 1). Herein,
let G be the total intensity number of the image. Then, a discrete intensity value ‘i’ or the
output of the function f (x,y) can own values in the range of [0, G − 1] which shows the
values of intensity levels. Hereupon, the histogram arises as a statistical assessment of the
repetition number of intensity levels among the image [14–17].

The size of an image is described in width and height, and the number of slices is
taken into consideration to define the 3D space. Let W, L, and N signify the width, length,
and number of slices, respectively. After this, the total voxel number of volume of interest
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(VOI) is obtained by multiplying the width ‘W’, length ‘L’, and slice number ‘N’. In relation
to this, h(i) and Kronecker delta function can be identified as in (1) and (2) [14–17].

h(i) =
L−1

∑
x=0

W−1

∑
y=0

δ( f (x, y), i) (1)

δ(j, i) =
{

1, j = i
0, j 6= i

(2)

To obtain the probability density function (PDF) of intensity ‘i’, the value of ‘h(i)’ is
divided by the total voxel number of the VOI as in (3) [14–17].

p(i) =
h(i)

1× N ×W × L
, i = 0, 1, 2, 3 . . . . . . . . . ., G− 1 (3)

By utilizing the PDF values, the FOS features of the VOI can be quantitatively calcu-
lated as the mean, standard deviation, skewness, kurtosis, energy, and entropy which are
respectively indicated in (4–9) [14–17].

µ =
G−1

∑
i=0

ip(i) (4)

σ =

√√√√G−1

∑
i=0

(i− µ)2 p(i) (5)

µ3 = σ−3
G−1

∑
i=0

(i− µ)3 p(i) (6)

µ4 = σ−4
G−1

∑
i=0

(i− µ)4 p(i)− 3 (7)

Energy =
G−1

∑
i=0

[p(i)]2 (8)

Entropy = −
G−1

∑
i=0

p(i) log2[p(i)] (9)

2.2. 3D to 2D Feature Transform Strategy

In 2D-slice-based analysis, voxel information of tumors is ignored which constitutes
the most significant part of a fully automated CAD system. The proposed 3D to 2D feature
transform strategy (3t2FTS) aims to define the 3D information in 2D space by using FOS
features. The utilized FOS features are arranged as the mean, standard deviation, skewness,
kurtosis, energy, and entropy. At this point, we want to produce 2D identification (2D-ID)
images of 3D tumors by examining all slices and all MRI modalities. In other words, as a
result of the transformation, a 2D-ID image responding to the characteristic of the tumor
is proposed to be generated. Herein, all phase combinations (T1, T2, T1c, and FLAIR)
were examined concerning the literature advice since every phase can involve different
information belonging to different kinds of tumors [1,2,14]. Regarding this, Figure 1
presents the design of 3t2FTS and can be interpreted as follows:

1. The tumor is obtained in 3D via a segmentation method or a 3D mask of the utilized
dataset. In this paper, the mask of data is chosen, and the classification process is
focused on.

2. FOS features are evaluated at each slice in the 3D image. In this study, the slice number
is 155, and a matrix at the size of 6 × 155 is acquired for one phase of MRI.
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3. The second process is performed for all phases or MRI modalities.
4. All phase information is combined, and for one tumor, a 2D-ID image is obtained of

which the size is ‘(FOS feature number× the utilized modality number)× slice number’.
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Figure 1. Design steps of the 3D to 2D feature transform strategy.

A 3D tumor can be identified as a 2D-ID image as a result of the 3t2FTS approach, and
the size of the 2D-ID image is revealed as 24× 155 for our study according to the parameter
values defined in item 4. Moreover, the 3t2FTS approach can easily be adapted for different
kinds of tumors handled in 3D MRI too, since it directly evaluates the tumors in 3D and
extracts the necessary information to the 2D space.

2.3. Dataset Information and Handicaps

The BraTS 2017/2018 dataset involves 210 HGG and 75 LGG instances in 3D MRI
images for training. In every 3D sample, the slice number is 155, and every slice is defined
in 3D regarding the RGB space. The dataset comprises four imaging modalities that are
T1, T2, T1c, and FLAIR phases. Concerning the modalities and slice number, 620 slices are
considered for tumor analysis of one patient. The image size and thickness of a slice are
240 × 240 and 1mm, respectively [18–20].

In the training dataset, there exists a mask to reveal the tumor regions which are
categorized as GD-enhancing (label 4), peritumoral (label 2), non-enhancing and edema
(label 1), and background (label 0). In our paper, the tumor region is extracted using a
mask (the first step of Figure 1) by assigning labels 1-2-4 as ‘1’ and label 0 as ‘0’. Herein,
we have considered all tumor regions together since a segmentation method extracting
sub-regions or the whole tumor should be combined with our proposed model [18–20].
Figure 2 visually presents the handicaps of the dataset [14].
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In Figure 2, the first presentation (item 1) is concerned with the shape and size analyses
of tumors. If a detailed examination is made in horizontal perspective for item 1, it can be
observed that an LGG or HGG tumor can have very different shape and size characteristics
even in the same category. In contrast, HGG- and LGG-type tumors can have similar shape
and size features if the examination is made from a vertical perspective. In other words,
distinct information about shape and size is not available for the tumor classification of
HGG and LGG labels.

In Figure 2, the second presentation (item 2) is related to the intensity evaluation of
HGG- and LGG-type tumors. Herein, it can be seen that the intensity level of a tumor
can vary so much in the same category or can be similar for different categories. In other
words, a distinguishing characteristic is not visually available to discriminate the HGG- vs.
LGG-type tumors.

Concerning the handicaps, the comprehensive analyses of attribute extraction and
robust classifier selection arise as the most significant issues in effectively assigning the
class labels. Furthermore, the challenge of the 3D-based classification of brain tumors
(item 1 and item 2) comes to the forefront in comparison with the 2D-based classification
task (item 2), since the necessary information identifying 3D tumors should be found. In
addition, robust classifiers should be chosen to perform accurate classification of different
types of tumors.
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2.4. Transfer Learning Methods

In this section, eight convolutional neural networks (CNNs) are presented, and the
visual representations of models involve dropout (layer elimination ratio), fully connected, or
both blocks, meaning that these blocks symbolize the operation of NNs.

2.4.1. DenseNet201 Architecture

DenseNet201 is an efficient version of dense connected convolutional networks (DenseNet)
generated on the basis of the feed-forward operating concept [21]. DenseNet eases the vanishing
gradient problem, and it enables the reuse of input data at the next layers by improving
feature propagation. Herein, DenseNet is generated on the basis of dense blocks in which
the feature map generated in previous layers seems significant to be fed as the input to the
next layers on upgrading the system recognition of input data. In brief, it is declared that
DenseNet-based models consider the reuse of features, utilization of short connections, and
deeper model attainment for achieving better performance [21,22]. Figure 3 presents the
architecture of the DenseNet201 model [21,22].
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DenseNet201 utilizes convolution layers, dense blocks including multi-connected
convolution layers, average and max pooling approaches, a fully connected layer, and the
softmax function to evaluate the input image. In DenseNet201, transition layers involving
convolution and average pooling are utilized to define the feature map having necessary
decreased features fed to another dense block.

2.4.2. InceptionResNetV2 Architecture

InceptionResNetV2 rises as a hybrid model consisting of residual connections and
inception phenomenon [23]. Inception networks using inception modules are handled to
overcome the problems oriented from traditional CNNs, i.e., overfitting, low performance,
etc. To ease the network structure and accelerate the decision process, the residual connec-
tion is effectively considered for the design of very deep networks. With the combination
of two concepts, InceptionResNet-based models are produced [23,24].

InceptionResNetV2 operates a stem module, three InceptionResNet-based modules
(InceptionResnet-A, InceptionResnet-B, and InceptionResnet-C), reduction modules
(Reduction-A and Reduction-B), average pooling, dropout, and the softmax function.
Figures 4 and 5 present the architecture of InceptionResNetV2 and the modules of the
model, respectively [23,24].
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InceptionResNetV2 utilizes filter concatenation (filter concat or concat) to stack different
data with various sizes. In other words, no information is missed among the layers in which
concat is used to combine the various information provided. The stem module performs
down-sampling in the input data to accelerate the workflow and reduces the memory usage
and computational cost of the whole architecture. Three InceptionResNet-based modules
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consider multiple-sized kernels to decrease the computational complexity. Moreover, by
using the residual concept, the input information is transformed and fed to the module
output to merge more information. Moreover, residual flow improves the module output
and acts as a bypass operator for situations in which necessary information cannot be
propagated after training. Reduction modules aim to perform the dimensional reduction of
data by preventing information loss [23,24].

2.4.3. InceptionV3 Architecture

InceptionV3 can be seen as an underdeveloped version of InceptionResNetV2 which
is generated on the rationale of InceptionV3. The repeated residual blocks are compressed
in InceptionResNetV2 according to InceptionV3 [25–27].

InceptionV3 employs three inception modules (Inception-A, Inception-B, and Inception-
C), two reduction modules (Reduction-A and Reduction-B), average and max pooling ap-
proaches, dropout and fully connected NNs, and the softmax function. If a detailed exami-
nation is performed, it can be seen that InceptionV3 differs from InceptionResNetV2 when
thinking about either the internal structure of the utilized blocks or the usage number of
modules inside. Figure 6 presents the schematic view of the InceptionV3 model [25–27].

Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW    11 
 

 

 

Figure 6. Schematic view of the InceptionV3 model. 

2.4.4. ResNet50 and ResNet101 Architectures 

The number of layers can upgrade the accuracy of the model. However, the deeper 

the networks, the more the accuracy of the model can degrade during the training process. 

Concerning this, ResNet‐based models including ResNet50 and ResNet101, are proposed 

to eliminate the vanishing gradient problem in deeper networks. Figure 7 shows the de‐

sign of ResNet50 and ResNet101 on the same schematic [28–30]. 
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InceptionV3 reveals an improved version of InceptionV1 and InceptionV2 architec-
tures so as to eliminate the computational costs and in order to upgrade performance by
changing the convolutional kernel sizes in modules, applying asymmetric convolutions,
and using axillary classifiers. The reduction of kernel sizes and the implementation of
asymmetric convolutions instead of multiplying the data with a large kernel, stay as a
qualified adjustment to decrease the computational costs. Moreover, the bottleneck layer
including 1 × 1 kernels is also evaluated just before the main convolutions in order to
reduce the parameter number. With the help of these concepts, InceptionV3 is produced
deeper than the InceptionV1 and InceptionV2 models by not optimizing the time complex-
ity. Herein, the axillary classifier which is the output of filter concatenation at the end of
Inception-B is concerned with providing better convergence towards the end of the whole
network. In other words, this concept encourages the usage of necessary gradients towards
the network, whilst it tries to eliminate the vanishing gradient problem. Concerning this,
axillary classifiers are notably preferred in recent inception-based CNNs [25–27].

2.4.4. ResNet50 and ResNet101 Architectures

The number of layers can upgrade the accuracy of the model. However, the deeper
the networks, the more the accuracy of the model can degrade during the training process.
Concerning this, ResNet-based models including ResNet50 and ResNet101, are proposed
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to eliminate the vanishing gradient problem in deeper networks. Figure 7 shows the design
of ResNet50 and ResNet101 on the same schematic [28–30].
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Figure 7. Architectures of the ResNet50 and ResNet101 models.

Both models (ResNet50 and ResNet101) operate five main convolutional blocks in-
cluding convolutions with the same kernel size (Conv_1, . . . , Conv_5), average and max
pooling approaches, fully connected NN, and the softmax function. Herein, the outstanding
difference is the repetition of the Conv_4 block for both models.
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Residual networks (ResNets) or other architectures involving ResNets, e.g., Incep-
tionResNetV2, operate skip connections (residual connections) to keep the performance
at high levels and to prevent information loss in deeper layers. In ResNet-based models,
skip connections are evaluated to skip some layers and to feed the output of a layer to the
next layers. Moreover„ no extra parameters are added to the model with the usage of skip
connections. Herein, the residual blocks fulfill the bypass operation via skip connections
between layers, and this process can prevent the model from having more training errors.
In this way, it is wanted for the vanishing gradient problem to be maintained at minimal
levels by preventing information loss among layers [28–30].

2.4.5. SqueezeNet Architecture

SqueezeNet is an improved version of AlexNet to decrease the parameters and compu-
tational complexity of the model by preserving the same-level accuracies. Figure 8 presents
the architecture of the SqueezeNet model [31,32].
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Figure 8. Architecture of the SqueezeNet model.

SqueezeNet operates convolution layers, fire blocks including squeeze and expand
blocks, average and max pooling approaches, fully connected NN, and the softmax function.
In SqueezeNet, the fire blocks arise as the phenomena reduce the parameters in comparison
with the AlexNet. In the fire module, the squeeze and expand blocks comprise 1 × 1 and
1 × 1 and 3 × 3 convolution filters to decrease the parameters determined. Herein, fire
modules are utilized to make the whole architecture stacked efficiently. In addition to fire
modules, the reduction of input channels to 3 × 3 is determined to decrease the compu-
tational complexity of the model. Moreover, downsampling after pooling is proposed to
maximize the model’s accuracy [31,32].

2.4.6. VGG19 Architecture

VGG19 presents a deep CNN architecture using small convolution kernels so as to
eliminate the computational complexity by maintaining high accuracy. In other words,
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VGG19 arises as an examination of network depth and its effects on the output of the model.
Figure 9 presents the architecture of the VGG19 model [33,34].
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VGG19 uses convolution layer blocks, max pooling, fully connected NNs, and te
softmax function. In VGG19, multiple 3 × 3 convolution kernels are known as the most
significant part of the model for the production of necessary feature maps. The classification
part consisting of a three-part fully connected NN is offered to efficiently categorize the
labels. Concerning the complexity and depth of VGG19, five max-pooling layers are
processed to decrease the parameters used and to minimize the computational complexity
of the model [33,34].

2.4.7. Xception Architecture

The architecture of extreme inception (Xception) is proposed by handling the Inception
model beside convolution blocks, separable convolution (sconv) blocks, skip connections,
and the coherence analyses of the whole architecture. Figure 10 presents the architecture of
the Xception model [35,36].
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The Xception model utilizes convolution blocks, separable convolution blocks, filter
concatenation, average and max pooling approaches, fully connected NN, and the softmax
function [35,36].

Xception is formed utilizing the modified depth-wise separable convolutions instead
of the inception modules, and it aims to decouple the spatial and cross-channel correlations
as in Inception-based networks. Depth-wise separable convolution is a special transform
that maps the spatial correlation separately for each channel and captures the cross-channel
correlation via a 1 × 1 depth-wise convolution. In Xception architecture, depth-wise convo-
lution can be regarded as the second part of the modified depth-wise separable convolution
just before a pointwise convolution is considered that is the first part. In Figure 10, sconv
blocks stand for the operation of modified depth-wise separable convolution. Moreover, to
decrease the training error, skip connections are utilized in Xception as in the ResNet-based
models [35,36].

3. Experimental Analyses and Interpretations

In this paper, eight transfer learning architectures, DenseNet201, InceptionResNetV2,
InceptionV3, ResNet50, ResNet101, SqueezeNet, VGG19, and Xception, are examined in
detail with their hyperparameters and are compared with each other to detect the most ap-
propriate one with the data utilized. The data obtained as the result of the 3t2FTS approach
were directly fed to the input of deep learning models. In this way, a novel framework
handling HGG/LGG classification is presented. The experiments were performed using
a two-fold cross-validation test method so as to evaluate the models in a comprehensive
manner. All analyses were performed in the Deep Network Designer toolbox of MATLAB
software on a personal computer with a 2.60 GHz CPU, 8 GB RAM, and Intel(R) Core(TM)
i5-7200U graphic card.

Table 1 shows the hyperparameter evaluations of the utilized models. In Table 1, only
significant parameters are considered to prevent the information loss of models that are
already pre-trained with effective datasets. Regarding this, four parameters are alternated
to achieve the highest performance of transfer learning architectures on the classification of
HGG/LGG tumors.

Table 1. Hyperparameter settings for transfer learning models.

Parameter Value/Range

Epoch 100
Mini-batch size 16, 32
Learning rate 0.01, 0.001, 0.0001

Learning Rate Drop Factor (LRDF) 0.2, 0.4, 0.6, 0.8
Optimizer Adam, Rmsprop, Sgdm

Tables 2–9 show the model results concerning the adjustments of hyperparameters
for DenseNet201, InceptionResNetV2, InceptionV3, ResNet50, ResNet101, SqueezeNet,
VGG19, and Xception respectively.

According to the results in Table 2, the average accuracy of sgdm in 24 trials (75.61%) is
better in comparison with the scores of the adam (74.94%) and rmsprop (72.67%) optimizers.
The LRDF of ‘0.2’ seems reliable and outperforms other preferences by achieving a 75.53%
average accuracy among 18 trials. Furthermore, the learning rate of ‘0.0001’ arises as being
more appropriate to use by obtaining a 75.24% average accuracy among 24 trials. The
mini-batch size of ‘32’ overcomes the choice of ‘16’ by achieving a 1.45% better average
accuracy and by obtaining a 75.20% average accuracy among 36 trials. By means of the
average accuracy-based trials, DenseNet201 presents a 74.47% success score in 72 trials. In
terms of the highest accuracy observed (79.30%), DenseNet201 operates the sgdm optimizer,
an LRDF of ‘0.8’, a learning rate of ‘0.001’, and a mini-batch size of ‘32’.
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Table 2. Results of the DenseNet201 model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 76.49

0.001

0.2
Adam 74.74

0.0001

0.2
Adam 75.40

Sgdm 74.74 Sgdm 75.44 Sgdm 76.84
Rmsprop 49.12 Rmsprop 77.90 Rmsprop 74.04

0.4
Adam 71.93

0.4
Adam 71.93

0.4
Adam 76.49

Sgdm 65.26 Sgdm 78.95 Sgdm 74.74
Rmsprop 69.47 Rmsprop 74.04 Rmsprop 75.44

0.6
Adam 76.49

0.6
Adam 76.14

0.6
Adam 71.58

Sgdm 74.04 Sgdm 78.25 Sgdm 76.14
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 75.10

0.8
Adam 76.49

0.8
Adam 75.44

0.8
Adam 74.39

Sgdm 74.74 Sgdm 76.84 Sgdm 76.49
Rmsprop 49.12 Rmsprop 66.32 Rmsprop 74.39

32 0.01

0.2
Adam 78.25

0.001

0.2
Adam 74.39

0.0001

0.2
Adam 75.09

Sgdm 69.12 Sgdm 77.54 Sgdm 75.79
Rmsprop 71.93 Rmsprop 75.09 Rmsprop 76.84

0.4
Adam 78.25

0.4
Adam 76.49

0.4
Adam 75.01

Sgdm 77.54 Sgdm 74.74 Sgdm 75.09
Rmsprop 71.93 Rmsprop 77.90 Rmsprop 76.84

0.6
Adam 71.23

0.6
Adam 70.18

0.6
Adam 73.68

Sgdm 77.52 Sgdm 75.44 Sgdm 75.79
Rmsprop 73.68 Rmsprop 65.61 Rmsprop 73.33

0.8
Adam 75.44

0.8
Adam 77.54

0.8
Adam 75.44

Sgdm 76.84 Sgdm 79.30 Sgdm 75.79
Rmsprop 74.39 Rmsprop 74.04 Rmsprop 76.14

Table 3. Results of the InceptionResNetV2 model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 74.04

0.001

0.2
Adam 70.88

0.0001

0.2
Adam 73.68

Sgdm 77.90 Sgdm 72.98 Sgdm 77.90
Rmsprop 64.21 Rmsprop 73.33 Rmsprop 73.68

0.4
Adam 73.68

0.4
Adam 73.33

0.4
Adam 74.39

Sgdm 75.09 Sgdm 76.84 Sgdm 77.90
Rmsprop 73.68 Rmsprop 70.53 Rmsprop 73.68

0.6
Adam 72.28

0.6
Adam 74.74

0.6
Adam 74.39

Sgdm 74.39 Sgdm 72.98 Sgdm 77.90
Rmsprop 73.68 Rmsprop 68.42 Rmsprop 74.39

0.8
Adam 50.18

0.8
Adam 72.63

0.8
Adam 74.39

Sgdm 76.49 Sgdm 72.63 Sgdm 77.90
Rmsprop 73.33 Rmsprop 74.39 Rmsprop 74.39

32 0.01

0.2
Adam 70.88

0.001

0.2
Adam 74.04

0.0001

0.2
Adam 71.58

Sgdm 72.98 Sgdm 75.79 Sgdm 75.44
Rmsprop 73.33 Rmsprop 75.09 Rmsprop 70.18

0.4
Adam 73.33

0.4
Adam 71.58

0.4
Adam 72.98

Sgdm 76.84 Sgdm 72.98 Sgdm 76.14
Rmsprop 70.53 Rmsprop 70.18 Rmsprop 71.93

0.6
Adam 74.74

0.6
Adam 73.68

0.6
Adam 74.74

Sgdm 72.98 Sgdm 75.44 Sgdm 75.44
Rmsprop 68.42 Rmsprop 71.93 Rmsprop 72.63

0.8
Adam 72.63

0.8
Adam 74.74

0.8
Adam 73.68

Sgdm 72.63 Sgdm 75.79 Sgdm 75.44
Rmsprop 74.39 Rmsprop 73.33 Rmsprop 70.53
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Table 4. Results of the InceptionV3 model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 74.74

0.001

0.2
Adam 75.09

0.0001

0.2
Adam 74.39

Sgdm 75.80 Sgdm 76.84 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 73.68

0.4
Adam 74.74

0.4
Adam 72.28

0.4
Adam 74.74

Sgdm 72.98 Sgdm 75.44 Sgdm 75.79
Rmsprop 49.83 Rmsprop 73.68 Rmsprop 75.09

0.6
Adam 73.68

0.6
Adam 74.74

0.6
Adam 74.39

Sgdm 77.19 Sgdm 77.19 Sgdm 76.84
Rmsprop 56.14 Rmsprop 72.63 Rmsprop 73.68

0.8
Adam 72.98

0.8
Adam 70.53

0.8
Adam 74.74

Sgdm 75.79 Sgdm 75.79 Sgdm 72.63
Rmsprop 74.04 Rmsprop 72.98 Rmsprop 72.63

32 0.01

0.2
Adam 72.98

0.001

0.2
Adam 72.98

0.0001

0.2
Adam 70.18

Sgdm 70.18 Sgdm 75.44 Sgdm 78.25
Rmsprop 73.68 Rmsprop 75.09 Rmsprop 73.68

0.4
Adam 73.68

0.4
Adam 73.68

0.4
Adam 68.07

Sgdm 73.68 Sgdm 72.28 Sgdm 78.25
Rmsprop 73.68 Rmsprop 76.49 Rmsprop 74.04

0.6
Adam 62.46

0.6
Adam 71.23

0.6
Adam 68.07

Sgdm 73.33 Sgdm 78.60 Sgdm 76.49
Rmsprop 72.98 Rmsprop 65.26 Rmsprop 72.98

0.8
Adam 75.09

0.8
Adam 75.09

0.8
Adam 72.98

Sgdm 71.93 Sgdm 74.39 Sgdm 75.09
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 72.28

Table 5. Results of the ResNet50 model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 75.09

0.001

0.2
Adam 71.22

0.0001

0.2
Adam 75.79

Sgdm 74.74 Sgdm 74.74 Sgdm 76.84
Rmsprop 73.68 Rmsprop 73.33 Rmsprop 74.04

0.4
Adam 74.04

0.4
Adam 76.14

0.4
Adam 75.09

Sgdm 75.79 Sgdm 69.82 Sgdm 76.84
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 76.14

0.6
Adam 73.68

0.6
Adam 74.35

0.6
Adam 75.79

Sgdm 74.39 Sgdm 74.73 Sgdm 76.84
Rmsprop 68.07 Rmsprop 71.58 Rmsprop 74.04

0.8
Adam 75.44

0.8
Adam 71.93

0.8
Adam 75.09

Sgdm 71.93 Sgdm 76.14 Sgdm 72.63
Rmsprop 45.96 Rmsprop 75.79 Rmsprop 74.39

32 0.01

0.2
Adam 74.04

0.001

0.2
Adam 71.58

0.0001

0.2
Adam 72.98

Sgdm 75.44 Sgdm 71.23 Sgdm 78.60
Rmsprop 73.33 Rmsprop 67.37 Rmsprop 74.74

0.4
Adam 75.79

0.4
Adam 73.68

0.4
Adam 75.79

Sgdm 71.93 Sgdm 74.39 Sgdm 80.00
Rmsprop 71.58 Rmsprop 74.39 Rmsprop 75.44

0.6
Adam 66.67

0.6
Adam 73.68

0.6
Adam 77.19

Sgdm 72.63 Sgdm 76.49 Sgdm 73.68
Rmsprop 70.53 Rmsprop 74.39 Rmsprop 72.28

0.8
Adam 74.04

0.8
Adam 71.58

0.8
Adam 75.79

Sgdm 73.68 Sgdm 73.68 Sgdm 80.00
Rmsprop 58.95 Rmsprop 73.68 Rmsprop 75.44
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Table 6. Results of the ResNet101 model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 74.03

0.001

0.2
Adam 69.82

0.0001

0.2
Adam 77.54

Sgdm 76.14 Sgdm 76.14 Sgdm 76.49
Rmsprop 73.68 Rmsprop 50.17 Rmsprop 75.38

0.4
Adam 73.68

0.4
Adam 77.19

0.4
Adam 75.08

Sgdm 77.54 Sgdm 72.98 Sgdm 75.78
Rmsprop 73.68 Rmsprop 68.72 Rmsprop 72.98

0.6
Adam 72.98

0.6
Adam 76.14

0.6
Adam 70.17

Sgdm 75.78 Sgdm 73.33 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 70.87

0.8
Adam 75.08

0.8
Adam 72.28

0.8
Adam 75.08

Sgdm 77.54 Sgdm 76.49 Sgdm 77.19
Rmsprop 69.12 Rmsprop 73.68 Rmsprop 72.98

32 0.01

0.2
Adam 75.43

0.001

0.2
Adam 74.43

0.0001

0.2
Adam 74.03

Sgdm 74.43 Sgdm 76.49 Sgdm 75.38
Rmsprop 67.01 Rmsprop 73.68 Rmsprop 77.19

0.4
Adam 75.43

0.4
Adam 68.72

0.4
Adam 70.17

Sgdm 74.43 Sgdm 74.68 Sgdm 77.89
Rmsprop 73.68 Rmsprop 74.68 Rmsprop 72.33

0.6
Adam 76.49

0.6
Adam 72.33

0.6
Adam 70.17

Sgdm 74.38 Sgdm 76.14 Sgdm 76.84
Rmsprop 65.96 Rmsprop 73.68 Rmsprop 77.89

0.8
Adam 72.98

0.8
Adam 74.43

0.8
Adam 69.47

Sgdm 74.73 Sgdm 71.22 Sgdm 74.38
Rmsprop 73.68 Rmsprop 57.19 Rmsprop 76.49

Table 7. Results of the SqueezeNet model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 73.68

0.001

0.2
Adam 73.68

0.0001

0.2
Adam 71.23

Sgdm 73.41 Sgdm 75.44 Sgdm 73.91
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 57.54

0.4
Adam 73.68

0.4
Adam 73.68

0.4
Adam 68.42

Sgdm 74.41 Sgdm 73.91 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 72.98

0.6
Adam 73.68

0.6
Adam 73.68

0.6
Adam 72.98

Sgdm 74.41 Sgdm 73.41 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 74.74

0.8
Adam 73.68

0.8
Adam 73.68

0.8
Adam 71.93

Sgdm 73.68 Sgdm 75.08 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 74.74

32 0.01

0.2
Adam 49.83

0.001

0.2
Adam 73.68

0.0001

0.2
Adam 72.98

Sgdm 73.41 Sgdm 73.95 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 61.40

0.4
Adam 73.68

0.4
Adam 73.68

0.4
Adam 75.44

Sgdm 73.68 Sgdm 73.91 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 74.04

0.6
Adam 73.68

0.6
Adam 73.68

0.6
Adam 73.68

Sgdm 73.41 Sgdm 73.41 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 75.09

0.8
Adam 50.18

0.8
Adam 73.68

0.8
Adam 65.61

Sgdm 73.95 Sgdm 75.44 Sgdm 73.68
Rmsprop 73.68 Rmsprop 73.68 Rmsprop 59.30
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Table 8. Results of the VGG19 model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 72.98

0.001

0.2
Adam 71.23

0.0001

0.2
Adam 73.68

Sgdm 75.44 Sgdm 75.09 Sgdm 73.33
Rmsprop 70.88 Rmsprop 77.54 Rmsprop 72.63

0.4
Adam 73.68

0.4
Adam 75.09

0.4
Adam 71.23

Sgdm 74.39 Sgdm 71.93 Sgdm 75.09
Rmsprop 73.68 Rmsprop 75.09 Rmsprop 71.93

0.6
Adam 74.74

0.6
Adam 72.28

0.6
Adam 70.88

Sgdm 76.49 Sgdm 77.90 Sgdm 77.54
Rmsprop 72.28 Rmsprop 74.04 Rmsprop 73.68

0.8
Adam 75.09

0.8
Adam 76.84

0.8
Adam 74.39

Sgdm 76.49 Sgdm 73.33 Sgdm 76.49
Rmsprop 54.74 Rmsprop 77.54 Rmsprop 75.44

32 0.01

0.2
Adam 75.09

0.001

0.2
Adam 73.68

0.0001

0.2
Adam 71.23

Sgdm 74.04 Sgdm 75.79 Sgdm 78.25
Rmsprop 70.53 Rmsprop 74.04 Rmsprop 74.39

0.4
Adam 75.79

0.4
Adam 70.88

0.4
Adam 75.44

Sgdm 75.79 Sgdm 70.53 Sgdm 76.14
Rmsprop 73.68 Rmsprop 75.44 Rmsprop 72.98

0.6
Adam 73.68

0.6
Adam 71.58

0.6
Adam 76.14

Sgdm 72.98 Sgdm 72.28 Sgdm 72.98
Rmsprop 73.68 Rmsprop 64.21 Rmsprop 75.44

0.8
Adam 74.74

0.8
Adam 73.68

0.8
Adam 74.04

Sgdm 75.09 Sgdm 73.69 Sgdm 75.44
Rmsprop 74.04 Rmsprop 72.63 Rmsprop 72.28

Table 9. Results of the Xception model.

Mini-
Batch
Size

Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy Learning
Rate LRDF Optimizer Accuracy

16 0.01

0.2
Adam 73.68

0.001

0.2
Adam 74.39

0.0001

0.2
Adam 72.28

Sgdm 76.49 Sgdm 71.93 Sgdm 71.23
Rmsprop 73.68 Rmsprop 74.39 Rmsprop 75.44

0.4
Adam 75.09

0.4
Adam 75.79

0.4
Adam 72.63

Sgdm 71.93 Sgdm 76.49 Sgdm 71.23
Rmsprop 73.68 Rmsprop 68.07 Rmsprop 72.63

0.6
Adam 73.68

0.6
Adam 75.09

0.6
Adam 71.23

Sgdm 74.04 Sgdm 75.44 Sgdm 70.18
Rmsprop 73.68 Rmsprop 72.98 Rmsprop 72.63

0.8
Adam 75.44

0.8
Adam 76.14

0.8
Adam 74.39

Sgdm 71.93 Sgdm 73.68 Sgdm 74.74
Rmsprop 73.68 Rmsprop 75.79 Rmsprop 76.49

32 0.01

0.2
Adam 74.74

0.001

0.2
Adam 75.79

0.0001

0.2
Adam 72.63

Sgdm 76.14 Sgdm 73.68 Sgdm 72.63
Rmsprop 70.53 Rmsprop 74.74 Rmsprop 71.93

0.4
Adam 74.04

0.4
Adam 72.98

0.4
Adam 73.68

Sgdm 72.63 Sgdm 72.98 Sgdm 75.44
Rmsprop 71.23 Rmsprop 75.09 Rmsprop 73.68

0.6
Adam 74.04

0.6
Adam 74.39

0.6
Adam 71.93

Sgdm 73.33 Sgdm 74.74 Sgdm 70.53
Rmsprop 62.11 Rmsprop 57.90 Rmsprop 70.18

0.8
Adam 75.79

0.8
Adam 72.28

0.8
Adam 72.63

Sgdm 75.44 Sgdm 70.88 Sgdm 75.09
Rmsprop 53.33 Rmsprop 74.74 Rmsprop 70.18

In experiments of Table 3, it can be seen that the average accuracy of sgdm in 24 trials
(75.37%) is higher in comparison with the scores of the adam (72.38%) and rmsprop (72.09%)
optimizers. The LRDF of ‘0.4’ seems reliable and outperforms other preferences by achieving
73.65% average accuracy among 18 trials. Furthermore, the learning rate of ‘0.0001’ arises as
being more appropriate to utilize by obtaining a 74.39% average accuracy among 24 trials.
The mini-batch size of ‘32’ overcomes the choice of ‘16’ by achieving a 0.04% better average
accuracy and by obtaining a 73.30% average accuracy among 36 trials. By means of
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the average-accuracy-based trials, InceptionResNetV2 presents a 73.28% success score in
72 trials. In terms of the highest accuracy observed (77.90%), InceptionResNetV2 generally
operates the sgdm optimizer, an LRDF of ‘0.8, 0.6, 0.4, or 0.2’, a learning rate of ‘0.0001’, and
a mini-batch size of ‘16’.

Concerning the trials in Table 4, it was revealed that the average accuracy of sgdm in
24 trials (75.16%) is better in comparison with the scores of the adam (72.65%) and rmsprop
(71.64%) optimizers. The LRDF of ‘0.2’ seems reliable and outperforms other preferences
by achieving 74.11% average accuracy among 18 trials. Furthermore, the learning rate of
‘0.001’ arises as being more appropriate to use by obtaining a 73.96% average accuracy
among 24 trials. The mini-batch size of ‘32’ overcomes the choice of ‘16’ by achieving a
0.08% better average accuracy and by obtaining a 73.19% average accuracy among 36 trials.
By means of the average accuracy-based trials, InceptionV3 presents a 73.15% success score
in 72 trials. In terms of the highest accuracy observed (78.60%), InceptionV3 operates the
sgdm optimizer, an LRDF of ‘0.6’, a learning rate of ‘0.001’, and a mini-batch size of ‘32’.

Regarding the trials in Table 5, the average accuracy of sgdm in 24 trials (74.88%) is
higher in comparison with the scores of the adam (74.02%) and rmsprop (71.52%) optimizers.
The LRDF of ‘0.4’ seems reliable and outperforms other preferences by achieving 74.68%
average accuracy among 18 trials. Furthermore, the learning rate of ‘0.0001’ arises as being
more appropriate to utilize by obtaining a 75.64% average accuracy among 24 trials. The
mini-batch size of ‘32’ overcomes the choice of ‘16’ by achieving 0.09% better average
accuracy and by obtaining a 73.52% average accuracy among 36 trials. By means of the
average accuracy-based trials, ResNet50 presents a 73.47% success score in 72 trials. In
terms of the highest accuracy observed (80%), ResNet50 operates the sgdm optimizer, an
LRDF of ‘0.8 or 0.4’, a learning rate of ‘0.0001’, and a mini-batch size of ‘32’.

According to the results in Table 6, the average accuracy of sgdm in 24 trials (75.39%) is
better in comparison with the scores of the adam (73.46%) and rmsprop (71.34%) optimizers.
The LRDF of ‘0.4’ seems reliable and outperforms other preferences by achieving 73.87%
average accuracy among 18 trials. Furthermore, the learning rate of ‘0.0001’ arises as being
more appropriate to use by obtaining a 74.39% average accuracy among 24 trials. The
mini-batch size of ‘16’ overcomes the choice of ‘32’ by achieving a 0.31% better average
accuracy and by obtaining a 73.52% average accuracy among 36 trials. By means of the
average accuracy-based trials, ResNet101 presents a 73.37% success score in 72 trials. In
terms of the highest accuracy observed (77.89%), ResNet101 operates a learning rate of
‘0.0001’, a mini-batch size of ‘32’, sgdm optimizer and a LRDF of ‘0.4’ or an rmsprop optimizer
and an LRDF of ‘0.6’.

In experiments of Table 7, it can be seen that the average accuracy of sgdm in 24 trials
(73.94%) is higher in comparison with the scores of the adam (70.99%) and rmsprop (72.03%)
optimizers. The LRDF of ‘0.6’ seems reliable and outperforms other preferences by achiev-
ing 73.78% average accuracy among 18 trials. Furthermore, the learning rate of ‘0.001’
arises as being more appropriate to utilize by obtaining a 73.90% average accuracy among
24 trials. The mini-batch size of ‘16’ overcomes the choice of ‘32’ by achieving a 1.59%
better average accuracy and by obtaining a 73.12% average accuracy among 36 trials. By
means of the average-accuracy-based trials, SqueezeNet presents a 72.32% success score in
72 trials. In terms of the highest accuracy observed (75.44%), SqueezeNet operates the sgdm
optimizer, an LRDF of ‘0.2’, a learning rate of ‘0.001’, a mini-batch size of ‘16’ or an sgdm
optimizer, an LRDF of ‘0.8’, a learning rate of ‘0.001’, a mini-batch size of ‘32’ or an adam
optimizer, an LRDF of 0.4’, a learning rate of ‘0.0001’, a mini-batch size of ‘32’.

Concerning the trials in Table 8, it can be seen that the average accuracy of sgdm in
24 trials (74.85%) is better in comparison with the scores of the adam (73.67%) and rmsprop
(72.62%) optimizers. The LRDF of ‘0.2’ seems reliable and outperforms other preferences
by achieving 73.88% average accuracy among 18 trials. Furthermore, the learning rate of
‘0.0001’ arises as being more appropriate to use by obtaining a 74.21% average accuracy
among 24 trials. The mini-batch size of ‘32’ overcomes the choice of ‘16’ by achieving a
0.08% better average accuracy and by obtaining a 73.75% average accuracy among 36 trials.
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By means of the average-accuracy-based trials, VGG19 presents a 73.71% success score in
72 trials. In terms of the highest accuracy observed (78.25%), VGG19 operates the sgdm
optimizer, an LRDF of ‘0.2’, a learning rate of ‘0.0001’, and a mini-batch size of ‘32’.

Regarding the trials in Table 9, the average accuracy of adam in 24 trials (73.95%) is
higher in comparison with the scores of the sgdm (73.45%) and rmsprop (71.20%) optimizers.
The LRDF of ‘0.2’ seems reliable and outperforms other preferences by achieving 73.68%
average accuracy among 18 trials. Furthermore, the learning rate of ‘0.001’ arises as being
more appropriate to utilize by obtaining a 73.35% average accuracy among 24 trials. The
mini-batch size of ‘16’ overcomes the choice of ‘32’ by achieving a 1.61% better average
accuracy and by obtaining a 73.67% average accuracy among 36 trials. By means of the
average-accuracy-based trials, Xception presents a 72.87% success score in 72 trials. In
terms of the highest accuracy observed (76.49%), Xception operates the sgdm optimizer, a
mini-batch size of ‘16’, an LRDF of ‘0.2’, and a learning rate of ‘0.01’ or the sgdm optimizer,
an LRDF of ‘0.4’, a learning rate of ‘0.001’, and a mini-batch size of ‘16’ or the rmsprop
optimizer, an LRDF of ‘0.8’, a learning rate of ‘0.0001’, and a mini-batch size of ‘16’.

4. Discussion

As seen in the evaluations of Section 3, it can be seen that all deep learning models
obtain very close results that reveal the necessity of an in-depth analysis of the observed
scores. Among experiments, a two-fold cross-validation is operated as the test method,
and other test methods (50%-50% or 70%-30% training-test split, etc.) are not considered.
Concerning the literature studies that utilize deep learning methods, data augmentation
is often preferred which cannot be handled in our research. In other words, our aim is
to enforce the frameworks operating 3t2FTS and a transfer learning model without data
augmentation but with sufficient training data. In addition, 2D-ID input images are not
appropriate to apply data augmentation.

To reveal an in-depth analysis of the frameworks involving 3t2FTS and deep learning
models, Figure 11 shows the comparison of transfer learning architectures by means of the
highest accuracy-, average accuracy-, and computation-time-based evaluations.

Regarding the results in Section 3 and in Figure 11, it was revealed that:

• The transfer learning models generally tend to produce higher performance by op-
erating lower learning rates and the sgdm optimizer. Regarding the LRDF rate and
mini-batch size, there is no distinct assignment to be defined and these parameters
can change from one model to another.

• The highest accuracy is achieved by the ResNet50 model, whilst DenseNet201 and
InceptionV3 obtain the second- and third-best accuracies, respectively.

• The highest average accuracy is recorded by DenseNet201 architecture, while in the
meantime, VGG19 and ResNet50 acquire the second- and third-best scores, respectively.
In other words, these models are seen as the most robust architectures among others.

• The least computation time is attained by ResNet101, while the SqueezeNet and
Xception models have the second- and third-best operation times, respectively. In
addition, ResNet50 comes to the forefront by resulting in 264min and by having the
fourth-best performance.

• Concerning the aforementioned discussions and deductions, it was revealed that
DenseNet201 comes as the second-best preference regarding the highest average
accuracy and the second-best highest accuracy scores. However, its computation time
is the second worst one which is about 584min for the training-test time.

• As one of the three robust models, by achieving the highest classification accuracy and
resulting in less time in particular than the DenseNet201, InceptionV3, and VGG19
models, ResNet50 comes forward due to the operation time- and accuracy-based
in-depth evaluations.
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The ResNet50 architecture arises as the most appropriate one to utilize with the
3t2FTS approach by recording the highest accuracy, a robust average performance, and less
operation time in comparison with the robust models (DenseNet201 and VGG19) so as to
perform the HGG vs. LGG categorization.

In the literature, there exists the study of Koyuncu et al. [14] directly classifying
the HGG- vs. LGG-type tumors in 3D. In [14], there exists an efficient, statistical, and
experimental framework, and a deep learning-based system is not available in the literature
which proves and motivates the importance of our study.

In summary, our framework including 3t2FTS and ResNet50 achieves good perfor-
mance, and this performance is open to being enhanced. In other words, 3t2FTS can be
inferred as a novel strategy and different deep learning architectures can be applicable
to the output of the 3t2FTS which will guide the literature on various research areas. In
addition, a novel deep learning model can be produced to operate with only 3t2FTS output
which will constitute another research area. Herein, concerning our results, ResNet50-based
various frameworks can yield better performance too.

5. Conclusions

In this paper, a promising framework evaluating the classification of HGG- vs LGG-
type tumors was performed using a novel feature extraction strategy named 3t2FTS and
the ResNet50 transfer learning architecture. 3t2FTS can also be utilized to discriminate
different kinds of tumors in 3D MRI images since it summarizes the 3D voxel by trans-
forming the space from 3D to 2D. In addition, 3t2FTS arises as a space transform strategy
using radiomics, unlike quantitative multi-parameter mapping which aims to transform
the appearance of the stabilized brain tissue [37–39]. Moreover, 3t2FTS reveals a new
phenomenon that is open to improvement by means of finding a coherent deep learning
architecture. For our study, ResNet50 comes to the forefront among seven qualified transfer
learning architectures on tumor grading as a result of accuracy- and computation-time-
based in-depth evaluations. In addition, sgdm and low learning rates also attract notice
as the most repeated optimizer and learning rate adjustments for deep learning models,
respectively. Consequently, efficient research to be determined for guiding 3D MRI-based
classification tasks is presented in the literature.

In future work, we want to generate a new deep learning framework that includes
ResNet50 logic in the main part. Furthermore, various tumors scanned in 3D MRI can
be handled to approve the efficiency of 3t2FTS and novel deep learning strategies. In
addition, it can be a good idea to utilize an MRI dataset including some artifacts and
distortions which can be examined to better applicate the framework or to directly design a
robust framework.
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