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Abstract: The concept of sustainable development provides for the search for environmentally
friendly alternatives to traditional materials and technologies that would reduce the amount of CO2

emissions into the atmosphere, do not pollute the environment, and reduce energy costs and the cost
of production processes. These technologies include the production of geopolymer concretes. The
purpose of the study was a detailed in-depth analytical review of studies of the processes of structure
formation and properties of geopolymer concretes in retrospect and the current state of the issue.
Geopolymer concrete is a suitable, environmentally friendly and sustainable alternative to concrete
based on ordinary Portland cement (OPC) with higher strength and deformation properties due to
its more stable and denser aluminosilicate spatial microstructure. The properties and durability of
geopolymer concretes depend on the composition of the mixture and the proportions of its compo-
nents. A review of the mechanisms of structure formation, the main directions for the selection of
compositions and processes of polymerization of geopolymer concretes has been made. The technolo-
gies of combined selection of the composition of geopolymer concrete, production of nanomodified
geopolymer concrete, 3D printing of building structures from geopolymer concrete, and monitoring
the state of structures using self-sensitive geopolymer concrete are considered. Geopolymer concrete
with the optimal ratio of activator and binder has the best properties. Geopolymer concretes with
partial replacement of OPC with aluminosilicate binder have a denser and more compact microstruc-
ture due to the formation of a large amount of calcium silicate hydrate, which provides improved
strength, durability, less shrinkage, porosity and water absorption. An assessment of the potential
reduction in greenhouse gas emissions from the production of geopolymer concrete compared to
the production of OPC has been made. The potential of using geopolymer concretes in construction
practice is assessed in detail.
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1. Introduction
1.1. Relevance

The current problem of modern construction and production of building materials,
products and structures is the low degree of environmental friendliness of construction
processes, products, materials and structures. Thus, the world community represented by
engineers, scientists, technologists, and materials scientists is aimed at obtaining environ-
mentally friendly, highly functional materials for various industries, including construction.
In this regard, it is difficult to overestimate the role of geopolymer concretes. Geopoly-
mer concretes are a relatively new, but already well-proven way to considerably improve
the ecofriendly affability and economy of structure. The thing is that these geopolymer
concretes are based on the clinker-free technology of binders. In their composition, they
combine industrial and other types of waste, as well as other environmentally friendly
methods of production and obtaining new buildings and structures. All this gives a com-
plex ecological and economic effect. Thus, the significance of the study is a result of the
international environmental agenda and the desire of construction and production around
the world to reduce resource costs: labor and material costs. The problem raised in the
study consists of two aspects:

(1) Despite the rather large number of studies devoted to geopolymers, this is still a
relatively new topic with a large number of promising areas for researchers. Therefore,
there is a significant increase in the number of studies on geopolymer concrete, and
an increase in the volume of new experimental and theoretical data about it, which
need to be systematized.

(2) The practical applied research problem lies in the fact that such insufficiently deep
knowledge and systematization of existing ideas do not allow in some way to unify
and standardize certain approaches, technologies and compositions, although this
could in principle be done to improve understanding in the world community of
efficiency and correct use of geopolymer concretes and geopolymer technologies.

1.2. Background

Concrete based on ordinary Portland cement (OPC) is one of the main structural
resources of contemporary construction [1]. High strength properties, wide availability and
relatively low cost make it a versatile material for an extensive range of tasks in building
manufacturing. However, the production of OPC is associated with a large amount of
energy, natural raw materials (limestone, fossil fuels), and the production of cement clinker
is associated with significant greenhouse gas emissions into the atmosphere. According
to [2–4], for every ton of cement clinker manufactured, there are 0.8 tons of CO2, the
emissions of which are the main cause of global warming, along with deforestation and
burning of fossil fuels [5]. This disadvantage of OPC is not sustainable and, despite its
outstanding properties, makes it urgent to find more environmentally friendly and cleaner
alternatives. This is especially important given the latest research for 2022, which sug-
gests that the amount of CO2 in the atmosphere has reached 421 parts per million (ppm),
while the norm for clean air is only 300 ppm. This is a record value that exceeded the
values of previous years (419 ppm for 2021 and 417 ppm for 2020) [6]. Several studies
have been devoted to solving a similar problem—the disposal of agricultural, industrial
waste, fuel, and energy complex in concrete, but at the same time in concrete based on
cement [7–18]. At the same time, it should be noted that geopolymer concretes are even
more promising, environmentally friendly, and economical due to the absence of clinker
binders in them and the use of more environmentally friendly cheap components in their
composition, which can significantly approach the implementation of the global environ-
mental agenda. One of the main environmentally friendly alternatives to OPC are geopoly-
mers due to their smaller carbon footprint [19]. Figure 1 shows the main advantages of
geopolymer concretes.
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Initially, the concept of structure creation of geopolymer resources was offered in 1979
by the French investigator J. Davidovits [20–25]. Despite the fact that initially, they did not
become the subject of wide interest of scientists and researchers, in the last 12 years there
has been an exponential rise in the amount of publications devoted to various aspects of
the study of geopolymer materials and various technologies for their production. Interest
in geopolymer materials is due to their technological and operational characteristics [26].
Long service life, low carbon emissions, high strength, and durability, as well as chemical
inertness with respect to many solvents and aggressive environments, together with resis-
tance to high temperatures, make geopolymer materials extremely promising for use not
only in the construction industry, but also in medicine, and in industrial production [27,28].
The term “geopolymers” itself is named so due to the fact that the raw materials for the
manufacture of these materials are minerals of geological origin. The first geopolymer
material was the product of the interaction of components containing aluminates and
silicates in an alkaline environment [20]. Later, the concept of environmentally friendly
geopolymer concrete was developed by Erez N. Allouche [29], a researcher from the USA
who presented the basic formula for geopolymer compositions using components of exclu-
sively natural origin in its development. The growing popularity of the use of geopolymer
materials will have a beneficial effect on the environment by reducing CO2 emissions into
the atmosphere, which is consistent with the concept of sustainable development [30].
Complete replacement of OPC with a geopolymer analog based on aluminosilicates will
reduce CO2 emissions into the atmosphere by 80%. However, due to the lack of standard
regulations and a number of disadvantages such as high construction costs, high shrinkage
and a fast-curing process, geopolymer materials are currently rarely used compared to
OPC. In the early stages of the development of the technology of geopolymer materials,
rather expensive materials with high-performance characteristics were created for aviation,
automotive and other productions. Future geopolymerization procedures started to be used
for the synthesis of relatively economical construction resources established on thermal
power plant ash, slag, waste from mining and handling of rocks, and other manufacturing
waste, which partially solves the problem of the high cost of such compositions [31].

Despite the absence of standard regulatory documents on geopolymer materials,
at the moment a fairly large amount of research has been accumulated that considers
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their properties and production technologies. Comprehensive systematic reviews of the
technology of the compositions and technical applications of geopolymer concrete are
known, including environmental and economic aspects [32–36]. The increased interest
of researchers in the subject of geopolymer concretes over the past 12 years has led to
the fact that today not only important studies are available, but also reviews on research
related to geopolymer concretes. Summarizing the above, it is necessary to emphasize the
importance of a critical comparative analysis of previously published works with this study.
The review [37] is devoted only to the mechanical properties of geopolymer concretes
in the fresh and hardened state, as well as their durability. The review [38] covers the
microstructural properties of geopolymer paste, as well as its strength characteristics. The
reviews [39,40] were devoted to the physical and mechanical characteristics of geopolymer
concretes based on ground granulated blast-furnace slag (GGBS) and fly ash (FA). The
studies [41,42] were devoted to the effect of various mineral additives on the physical
and mechanical properties and microstructure of geopolymer concretes. In addition,
reviews of data on the selection of compositions and proportions of mixture components for
geopolymer concretes are known. Various precursors and activators used in geopolymer
concretes have been carefully considered in [43–47]. It is important to note that one of
the main goals of the above studies was to find mortars for the implementation of the
concept of sustainable development in the field of finding environmentally cleaner and less
energy-intensive alternatives to OPC.

It should be noted that in the open press at the moment there are quite a few reviews
containing an analysis of data on the selection of compositions and proportions of mixture
components for geopolymer concretes based on various types of binder [28,32–36,43–53].
This review presents a comprehensive study of the components of a geopolymer concrete
mix, as well as a critical review of the various mix selection techniques used for geopolymer
concretes, considering certain input and output variables. In addition, attention is paid to
studies published in recent years on the physical-mechanical and microstructural properties
of geopolymer concretes, as well as their durability. The main factors influencing the
properties of geopolymer concrete at all stages of hardening are proposed. The study of
nanomodified geopolymer concretes, 3D printing using geopolymer concrete, geopolymer
concrete reinforced with steel bars, and assessment of the impact of geopolymer concrete
technology on global warming potential are considered.

1.3. Rationale

Thus, the study is intended to solve some problems of systematization of existing ideas
and develop an empirical and literary base for future research and point strengthening
of the world theory of geopolymer concretes. The purpose of the study is a detailed in-
depth analytical review of studies of the processes of structure formation and properties of
geopolymer concretes in retrospect and the current state of the issue. To achieve this goal,
the present study solves the following tasks:

(1) The main prescription, technological, constructive, engineering and scientific ap-
proaches to solving the problems of the best and most ecological and economic effi-
ciency of geopolymer concrete for various types of climatic zones, regions, buildings,
structures, and various levels of their responsibility are determined.

(2) The main factors and main criteria influencing the final quality and efficiency of
geopolymer concretes are identified.

(3) The main fundamental relationships among the composition, construction and prop-
erties of geopolymer concretes are determined.

(4) Interrelation at micro- and macrolevels was revealed in the formation of the construc-
tion and properties of geopolymer concretes.

(5) The factors of raw materials and the correct dosage of the component composition
were evaluated.

Dependences between such compositions and dosages and output parameters in
the form of properties of geopolymer concretes and the final reliability of buildings and
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structures are revealed. An assessment is given both from a quantitative and a qualitative
point of view for all relationships between geopolymer concretes, their compositions,
properties and final energy, resource and material efficiency.

This article provides a global overview of the state of the art in current research on
geopolymer materials. Section 2 is devoted to a detailed analysis of the components of
geopolymer materials and their ratios, as well as the process of geopolymerization itself.
Section 3 discusses the main physical and mechanical properties of fresh and hardened
geopolymer concretes, as well as the main factors affecting them to one degree or another,
as well as the durability of geopolymer concretes. Section 4 discusses the effect of adding
OPC to geopolymer concrete. Section 5 provides an overview of recent innovations in
geopolymer concrete such as 3D printing, global warming assessment, nano-modified and
self-sensing geopolymer concrete. The main conclusions are given in Section 6.

1.4. Methods

The study was carried out using methods including a review, world-class research
on the topic of geopolymer concretes in databases of international journals in open and
closed access, the study of patented technologies, and the study of the raw material base, in
relation to each region of the world. Criteria such as journal, year of publication, keywords,
and relevance of the material to the subject of this review article were used to determine
whether the material relates to this review article. The most frequently considered param-
eters of geopolymer concretes in scientific articles are compressive strength (CS), tensile
strength (TS), flexural TS, modulus of elasticity, hardening time, workability, shrinkage and
structural changes that occur during material hardening. The initial data were informa-
tion about the compositions, recipes, technology, and properties of various geopolymer
concretes created and used in various regions of the world. The fundamental interactions
occurring at the micro- and macrolevels in geopolymer concretes of various types were
studied. As an accounting and analysis of risks in the course of the research, a subject
area was identified from those sources that have similar features to each other, thereby
allowing some verification of the results of some authors based on the results of other
authors. Visualization methods, flowcharts, photographic materials, and tabular methods
are used, thus the clarity of the study demonstrates the scientific novelty and analytical
aspect of the review study. The timeline of the literature used by the authors is shown
in Figure 2.
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2. Geopolymer Concrete as an Environmentally Friendly Composite Material
2.1. Structure Formation Mechanism of Geopolymer Binders

Geopolymer concrete is a building material that is an inorganic polymer made by
thermally activating natural materials with a high content of silica and alumina with
alkaline mortars that polymerize these materials into molecular chains that create the
structure of a hardened binder. As a rule, the raw materials are by-products of agriculture
and heavy industry, which must be disposed of, for example, kaolinite, bentonite, FA, rice
husk ash, and wheat straw ash.

Despite the similarity of geopolymer materials with traditional materials of alkaline
activation, there are main differences between them, consisting of different chemical com-
positions, due to the structure formation of the material during the activation process.
Geopolymer materials form a stable spatial polymer structure during polymerization,
while conventional alkali-activated materials form unstable monomers during activation.
As a result, geopolymer materials have lower strength than alkali-activated materials, but
compared to the latter, they have much greater durability [54]. The validity of the term
“Geopolymer materials” is based on the fact that the technology of geopolymer binders
provides for the synthesis of the polymer structure of such materials from monomeric
silicate and aluminate groups that can be formed during the destruction of the primary
structure of rocks or industrial wastes of aluminosilicate composition in alkaline solutions.
Thus, according to the authors of [54], an alkali-activated binder is a geopolymer only if it
is a material consisting of amorphous to semi-crystalline zeolite.

Geopolymer concrete can be made from both one-component and two-component
compositions. Traditionally, geopolymer concretes were presented precisely in the form of
two-component compositions, in which solid aluminosilicate raw materials for preparation
for work must be mixed with a liquid alkaline activator composition [55]. One-component
compositions simplify transportation and work with geopolymer concrete and are a dry
mixture of aluminosilicate raw materials and alkaline activators in solid form, the prepara-
tion of which requires mixing with water [48].

Despite the huge amount of research on the mechanism of structure formation of
clinker-free binders of alkaline activation, at the moment it remains not fully understood.
The complexity of studying the mechanism of hardening of geopolymer binders is primarily
determined by the fact that production wastes are used in their manufacture, chemical
composition, and physical properties, which are not constant [56–59].

The structure formation of geopolymers based on FA can be divided into three stages.
In the first stage, the FA aluminosilicate is dissolved and hydrolyzed to form aluminate and
silicate monomers. In the second stage, aluminum and silicon ions, which are converted
into oligomers, form a gel with rather large networks as a result of condensation. In the
third stage, the gel continues to restructure and an amorphous structure develops in the
form of an aluminosilicate network due to the polycondensation reaction [40].

Of the entire set of geopolymer binder systems, one of the most studied mechanisms
of structure formation are systems based on GGBS. The Si–O–Si and Al–O–Si compounds in
the medium of a highly concentrated mortar undergo destruction and pass into a colloidal
state; then, with an increase in the number of colloidal particles, they are compacted and
strengthened [60,61]. Thus, the hydration products of the GGBS-based geopolymer binder
are calcium hydrosilicates and sodium hydroaluminosilicates. Additionally, in the presence
of clay minerals in the binder system, hydroaluminosilicates are formed [62]. In turn,
experiments performed using X-ray diffraction and differential thermal analysis, scanning
electron microscopy in combination with X-ray microanalysis confirm this statement that
calcium hydrosilicate gel is the hydration product of geopolymer binder systems based
on GGBS [63].

Figure 3 shows photographs of the microstructure of geopolymer concrete based on
FA and GGBS.
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Figure 3. Photographs of the microstructure of geopolymer concrete based on fly ash (a,b) and
ground granulated blast-furnace slag (c,d) with magnifications of 500× (a,c) and 5000× (b,d).

Let us analyze our SEM analysis during the study of geopolymer concretes based
on FA (Figure 3a,b) and GGBS (Figure 3c,d). Ash-based geopolymer concrete has a more
coherent structure, and denser packing of particles, which is facilitated by better interaction
between the components inside the geopolymer concrete, and during the physical and
chemical processes of hardening structure is more developed. There is a smaller number
of micropores and voids, which ultimately contributes to a more perfect dense packing of
particles, and good contact of various components at the level and phase boundaries, which
ultimately contributes to the formation of high physical and mechanical characteristics and
high performance of geopolymer concrete on FA.

Geopolymer concrete on GGBS also has a characteristic structure, in principle confirm-
ing its high suitability as a component for geopolymer concrete; however, the structure
is somewhat different. There is a large degree of coarseness of the created structure, a
granular structural characteristic of the material, and a more pronounced boundary of
various components and phases inside the concrete. The packing of particles also has some
voids and micropores, which indicates some advantages of geopolymer concrete on FA
over geopolymer concrete on GGBS.

At the same time, experimental studies and pilot testing have proven the applicability
of both types of geopolymer concrete in practice with some assumptions and reservations.
In general, this SEM analysis is in good agreement with the experimental studies performed
and the literature data of other authors.
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2.2. Main Raw Materials of Geopolymer Composite Binder Systems

Geopolymer binder systems are a mixture of an aluminosilicate component and an
alkaline activator. It should also be noted that this binder system can include one or
several types of aluminosilicate components and alkaline activators [19]. The main types
of aluminosilicate raw materials applicable in the technology of geopolymer concretes are
shown in Figure 4.
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Figure 4. The main forms of aluminosilicate raw materials used in the technology of geopolymer
concretes (a) fly ash, (b) metakaolin, (c) rice husk ash, (d) ground granulated blast furnace slag.

The most used in practice are geopolymer concretes based on FA, metakaolin, and
GGBS [28]. As a rule, they all have different physical and strength characteristics, which di-
rectly depend on the content of aluminum and silicon oxides in the binder component used
in their manufacture. Table 1 provides an overview of the different types of aluminosilicate
components used in geopolymer concrete technology, with their chemical composition.

Table 1. An overview of the altered sorts of aluminosilicate components with a comparison of their
chemical composition.

Ref.
Number

Name of
Aluminosilicate

Component
SiO2 Al2O3 Fe2O3 CaO TiO2 K2O MgO Na2O Loss on

Ignition

[64]

Fly ash

55.90 28.10 6.97 3.84 2.21 1.55 - - 1.20

[65] 51.11 25.56 12.48 4.30 1.32 0.70 - - 0.57

[66] 73.50 22.50 1.10 0.40 1.40 0.30 0.40 0.20

[67] 44.83 29.23 4.66 4.47 - 0.68 1.62 1.32 -

[68] 62.19 27.15 3.23 1.97 1.06 0.89 0.40 0.30 1.75

[69] 55.00 26.00 10.17 2.09 - 1.65 0.80 0.40 3.89
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Table 1. Cont.

Ref.
Number

Name of
Aluminosilicate

Component
SiO2 Al2O3 Fe2O3 CaO TiO2 K2O MgO Na2O Loss on

Ignition

[70] 49.10 34.80 4.50 4.90 - 1.30 0.40 0.40 2.30

[71] 51.80 26.40 13.20 1.61 0.68 1.17 0.31 0.50

[72]
52.40 18.09 0.42 0.33 4.33 0.19 0.02 0.03 20.59

27.35 50.85 1.88 5.41 2.57 0.35 0.02 0.05 7.74

[73]

Metakaolin

51.35 44.24 0.98 0.13 0.90 0.08 - - 0.72

[74] 59.70 34.10 0.90 0.10 1.00

[71] 52.10 41.00 4.30 0.09 0.62 1.36 0.01 0.50

[75] 48.88 43.39 3.77 0.98 2.45 0.14 0.35

[76] 52.80 43.70 0.60 0.50 1.20 0.20

[77] 54.00 47.00 0.40 0.10 0.10 0.30

[78] 55.01 40.94 0.55 0.14 0.55 0.60 0.34 0.09 1.54

[79] 53.18 42.72 0.97 0.28 0.41 1.58 0.09 0.34

[80]

Rice husk ash

96.03 0.01 0.13 0.53 1.67 1.45

[81] 86.49 0.01 0.91 0.50 2.70 0.13 0.05 8.83

[82] 91.60 0.09 0.64 1.38 5.14 5.43

[83] 90.11 1.19 0.85 0.89 3.84 0.90 4.05

[84] 88.90 2.50 2.19 0.22 4.01

[85] 83.62 3.01 1.63 2.63 4.59 0.96

[86] 90.13 0.42 0.52 1.23 1.51 0.89 0.51 2.08

[87] 91.70 0.22 0.12 1.01 2.37 0.36 0.13 3.93

[88] 93.30 0.58 1.82 0.88 0.28 0.19 2.25

[89] 86.20 0.46 0.43 1.10 4.60 0.77 4.60

[90] 83.10 2.15 1.10 4.70 2.96 1.50 0.10 1.13

[91]

Ground granulated
blast-furnace slag

33.78 13.97 1.44 42.85 0.40

[66] 30.30 12.90 0.40 47.80 47.80 0.30 4.50 0.40

[70] 32.60 16.40 0.40 38.70 0.30 7.10 0.30 0.50

[92] 32.70 8.30 43.80 3.70 - - 0.40 - -

[63] 33.40 16.90 33.30 0.61 0.16 7.00 2.00

[93] 34.70 14.40 0.80 42.00 6.90 1.10

[94] 36.00 13.80 0.30 42.60 0.80 0.27 5.80 0.21 0.56

[95] 36.00 11.80 0.30 42.60 0.30 0.20

[96] 42.47 35.17 13.93 0.58 0.46 4.12 0.15 0.18

[97] 34.38 12.98 1.29 37.33 0.82 5.59 0.29 4.31

In the studies presented in Table 1, the authors used such aluminosilicate components
as FA, metakaolin and GGBS. From the presented analysis, it was established that the
content of silicon and aluminum oxides in FA varies, respectively, between 25 and 73% and
21 and 34%, in metakaolin 48 and 59% and 34 and 37%, in rice husk ash 83 and 90%, in
hammered GGBS 30 and 42% and 8 and 35%.

To activate the hardening processes of binders by alkaline activation, sodium hydrox-
ide, potassium hydroxide, sodium, potassium, potassium-sodium liquid glass, and soda
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ash are used. The geopolymerization reaction depends on the concentration of alkaline
mortars and their reactivity. Thus, when developing various geopolymer systems, it is
important to correctly determine these characteristics of mortars. A list of various alkaline
activators and their characteristics based on the results of several studies is presented in
Table 2.

Table 2. List of alkaline activators with their various characteristics.

Ref. Number Used Activator Molarity of Hydroxide The Proportion of Activator
and Binder by Weight

[98] Na2SiO3 + NaOH 10 M -
[99] Na2SiO3 + NaOH 10 M 0.6

[100] Na2SiO3 + NaOH 12 M 0.45
[63] NaOH 8 M -

[101] Na2SiO3 + NaOH 6–12 M -
[102] Na2SiO3 + NaOH 8 M -
[103] Na2SiO3 + NaOH 14 M -
[104] Na2SiO3 + NaOH 10–14 M -
[105] Na2SiO3 + NaOH 12 M -
[106] Na2SiO3 + NaOH 12 M 0.5
[107] NaOH + KOH 4–16 M 0.5
[108] Na2SiO3 + NaOH 12 M 0.429–1.0
[109] Na2SiO3 + NaOH 8–10 M

According to the results of studies [110–115], it can be concluded that the type and
composition of the activator are the determining factors affecting the values of strength
characteristics. As can be seen from Table 2, the most commonly used activators in geopoly-
mer composites are Na2SiO3 and NaOH, the hydroxide molarity varies from 6 to 14 M.
Geopolymer composites containing only hydroxide in their composition are characterized
by low strength values, a large number of pores and shrinkage cracks, and the inclusion of
a source of silicate leads to an acceleration of the hardening process [116,117].

2.3. Selection of Compositions of Geopolymer Concretes

As with concrete in OPC as a binder, geopolymer concretes also require careful and
rational selection of its components and their ratios. Despite the fact that the characteristics
of concretes based on OPC mainly depend on the proportion of the components of the
mixture, for geopolymer concretes, the selection of the composition is complicated by
the fact that its properties are significantly influenced by a larger number of factors. For
example, curing time and temperature, the proportion of water and solid components,
alkali content, type and composition of aluminosilicate raw materials, and the proportion
of components involved in polymerization (aluminates and silicates, silicates and hydrox-
ides) [118–123]. The selection of compositions, as in the case of conventional concrete with
Portland cement as a binder, can be carried out based on several methods. The mathe-
matical method of trial and error is popular, based on the parameters of the strength and
fluidity of the composition. In this method, the required values for CS and slump are first
established, then the binder content and alkali-to-binder proportion values are selected; a
preliminary calculation of the required amount of coarse aggregate is performed and the
amount of alkali activator is calculated. This method was developed by several researchers
who, based on the trial-and-error method, built an algorithm that took into account a
larger number of factors, for example, the proportion of activator to binder, silicates to
hydroxides, etc. The main goal of this method is to design the most durable geopolymer
composition, considering the influence of various mixture parameters [124]. The method
based on the final strength of the composition implies that only the main decisive factors
affecting the strength are considered, for example, the proportion of water to binder, or
activator to binder. The selection of the composition of the mixture is carried out based on
the results of tests for strength and workability, presented in the form of graphs, which
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additionally indicate parameters such as the proportion of water to the binder, activator
to binder, silicates and hydroxides, activator concentration, aggregate size, temperature,
curing time, composition silicates, etc. This method has also been developed in the form
of new approaches to the selection of composition based on strength. In particular, as a
basis for selecting the composition, instead of the graphs indicated above, it is proposed
to use a graph based on four parameters: the proportion of water to binder, activator to
binder, silicates to hydroxides and activator concentration. Additionally, the selection of
the composition based on strength, proposed in the ACI standard, considers the influence
of the proportion of activator and binder, the concentration of the activator and the particle
size modulus of the aggregate [125]. The composition selection method based on the pro-
portion of the activator to the binder suggests selecting parameters such as the hydroxide
concentration and the proportion of silicates to hydroxides from the literature [126–129].
The content of the activator is proposed to be set equal to 200 kg/m3. Further, it is proposed
to determine the strength or proportion of activator to binder based on experimental data.
The method of composition selection based on the proportion of binder to sand involves
the initial determination of the optimal proportion of binder to sand [130,131]. Next, the
concentration of hydroxides and the optimal proportion of silicates to hydroxides are
calculated. After that, the concentration of the activator and the ratios of the activator to
the binder and water to the binder are established, considering the dependence of these
parameters on each other.

2.4. Polymerization Process of Geopolymer Concretes

The process of polymerization of geopolymer compositions implies the formation of a
spatial polymeric aluminosilicate network during the rapid chemical reaction of silica and
aluminum oxides under the action of an alkali-containing activator mortar. Particles of sil-
ica and aluminum oxide are dissolved in the alkaline medium of the activator mortar with
subsequent transformation into a spatial chain of the aluminum silicate polymer structure.
The type of geopolymer depends on the composition of aluminosilicates [132]. The proper-
ties of geopolymer concrete are formed based on the binding of calcium silicate hydrate
and the polymerization process. In geopolymer concretes with the complete replacement
of OPC with aluminosilicates, the polymerization process occurs during the activation of
aluminosilicates, during which aluminosilicates are oxidized in an alkaline medium of an
activator mortar with the further dissolution of the resulting aluminosilicate oxides in a
mortar with a high pH, resulting in the formation of a gel consisting of oligomers based on
Si-O-Si and Si-O-Al polymer bonds, ultimately forming the structure of the geopolymer
composition; when hardened, it forms a polymer structure that retains aggregates and
the unreacted particles of the composition. In geopolymer concretes with the complete
replacement of OPC by aluminosilicates, instead of the formation of calcium silicate hydrate
gel, polymers are synthesized from silica and alumina particles [133]. Figure 5 shows the
main steps in the polymerization process of geopolymer concretes.

The most studied and fully presented in the literature is the structure formation of a
slag-alkaline binder based on GGBS. As mentioned earlier, in a high-concentration alkaline
solution, the Si-O-Si and Al-O-Si compounds dissolve and pass into a colloidal state.
After an increase in the number of colloidal particles, they are compacted and hardened.
In [134], it is said that the activation mechanism is a series of successive destruction-
densification reactions, which result in the destruction of the structure of raw materials
and their transformation into low-stability structural units that interact with coagulation
structures and subsequently become compacted. In the first stage, the destruction of the Si-
O-Si and Al-O-Si compounds in a highly concentrated alkaline solution and their transition
to a colloidal state occurs. Further, in the second stage, there is an increase in the number
of colloidal particles; in the third stage, their compaction in the existing volume causes
the process of autogenous shrinkage [134]. The hydration products of the slag-alkaline
binder are formed as a result of the interaction of calcium hydrosilicates and sodium
hydroaluminosilicates. Additionally, in the presence of clay minerals in the binder as a
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result of their interaction with an alkaline activator, hydro-aluminosilicates (zeolites) are
synthesized. In [135] it was suggested that zeolite phases (tobermorite, hydroxosodalite)
and crystalline compounds Na2O-Al2O3-SiO2-H2O and Na2O-CaO-Al2O3-SiO2-H2O are
formed only at a high proportion of water to binder. In the course of studies carried out
by X-ray diffraction analysis, it was found that at a high rate of slag hydration, CSH gel
(nCaO SiO2 mH2O) is formed, and at later stages of hydration, hydrotalcite is formed [134].
According to the authors of [136], the products of the reaction of hydration of the slag binder
are calcium hydrosilicates and xonolite. In the course of experimental studies performed
by the methods of X-ray diffraction and differential thermal analysis of scanning electron
microscopy in combination with X-ray microanalysis, it was confirmed that the product
of hydration of a geopolymer binder based on GGBS is calcium hydrosilicate gel at a low
C/S proportion [137]. Using the same method, the authors of [136] found that there are no
crystalline reaction products in the products of alkali-activated slag hydration while using
electron microscopy methods a month after the start of hydration, hydrotalcite, calcite
(CaCO3) and calcium hydrosilicate.
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The first material on the basis of which a geopolymer composition was obtained was
heat-treated kaolin, which hardened under the influence of alkali. J. Davidovits [138]
proposed a scheme of the polycondensation process that occurs during the hardening of
the geopolymer, shown in Figure 6.
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Proceeding from these concepts, as well as from the concepts presented in
works [139–144], geopolymers are polymeric materials, since they have a structure with sili-
con and aluminum atoms repeating in chains. Depending on the alternation of these atoms,
geopolymer materials can be subdivided into silates, polysilato-siloxes, and polysilato-
siloxo-(disiloxo). The block diagram of these geopolymer compounds is shown in Figure 7.
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In [139] author considers that the geopolymerization reaction proceeds in three stages:

- In the first stage, silicon and aluminum oxides are dissolved in an alkaline medium of
a concentrated solution of NaOH or KOH;

- in the second stage, natural polymer structures are split into monomers;
- in the third stage, setting and compaction occurs as a result of the conversion of

monomers into polymeric materials.

In the hardening geopolymer compositions, spatial aluminosilicate structures with the
empirical formula M {-(Si-O)z-Al-O}n·w·H2O are gradually formed, where M is the atoms
or cations of K, Na or Ca; n is the degree of polycondensation; z is 1, 2, 3 or more. The
structure of the material is formed by [SiO4]4− and [AlO4]5− tetrahedra, interconnected
by oxygen bridges. Si-O-Al compounds are closed in chains and rings. Positive ions (Na+,
K+, Ca2+) compensate for the negatively charged four-coordinate Al. In the course of the
studies conducted using the methods of thermal analysis, nuclear magnetic resonance, and
mercury porosimetry, it was found that the pores of geopolymer compositions contain water
and sodium or potassium cations that have not entered into a chemical reaction with the
binder. When dried, they migrate to the surface of the material and undergo atmospheric
carbonization, which is the cause of efflorescence on the surface of products made of
geopolymer materials [139]. According to [145] the dissolution of vitreous aluminosilicate
at the first stage of geopolymer structure formation proceeds as follows: first, H+ ions are
exchanged for Ca+ and Na+, then hydrolysis of aluminosilicate compounds, destruction of
the depolymerized glassy structure, and splitting of Si and Al compounds into unstable
monomeric structures [145]. According to a simplified model proposed by the authors
of the study [146], the geopolymerization process begins with the dissolution of finely
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ground thermally treated aluminosilicate raw materials in an alkaline medium. At the
same time, the degree of dissolution of the aluminosilicate raw material is affected by
its dispersion and the reactivity of aluminum in the raw material. The dissolution of
aluminosilicate raw materials by alkaline hydrolysis occurs with a sufficient amount of
water and is accompanied by the destruction of aluminum and silicon compounds, which
go into solution and accumulate in the form of individual particles on the surface (in
monomeric form). As solid particles accumulate in the solution, its polymerization occurs,
the so-called geopolymerization [146]. Researchers [147] proposed a more complex model
of the chemical processes of hardening geopolymers. According to it, it is believed that after
several stages of transformation, an amorphous aluminosilicate gel and a zeolite phase
are formed from the silicate and aluminate monomers. That is, during hydration, with
an increase in the solubility of aluminum K/Al in an alkaline solution, a decrease in the
Si/Al proportion occurs. The stages of the geopolymerization process, according to the
model [147], are shown in Figure 8.
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The synthesis of geopolymer materials based on aluminosilicate raw materials with
a high content of Al2O3 nanoparticles activated with alkaline hydroxide occurs through
surface phase separation without passing through the induction period inherent in binders
with such an activator [148]. At the initial stage of the reaction, the geopolymer gel predom-
inates over the silica gel. As the mixture solidifies, a zeolite phase is formed, which contains
crystalline faujasite, and the structure of the Na-F geopolymer becomes of the edingtonite
type. Subsequently, such an explanation of the mechanism of geopolymerization through
alkaline dissolution was widely disseminated in scientific publications. In the synthesis of
geopolymers, the process of converting solid particles into a gel does not occur in a highly
alkaline environment, but under poorly solvated conditions. At the first stages of the cre-
ation of geopolymer materials, they included only materials obtained based on metakaolin
in the study of alkaline binders; it was concluded that similar hardening mechanisms are
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also characteristic of similar materials based on FA, GGBS, heat-treated feldspar rocks, as
well as other rocks and technogenic products of aluminosilicate composition.

Work [140] based on the analysis of studies of the process of hardening of geopolymer
materials describes the mechanism of their structure formation using chemical reactions
through interaction with NaOH or KOH and divides it into the following stages (Figure 9).
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At the first stage in Figure 9a during the initial interaction with an alkaline activator,
tetravalent Al is formed in the side group of silates -Si-O-Al-(OH)3−Na+.

At the second stage in Figure 9b, the dissolution of alkali begins with the addition
of hydroxyl groups OH− to silicon atoms, as a result of which the valence of electrons
increases to a five-covalent state.

At the third stage in Figure 9c, the oxygen contained in the -Si-O-Si siloxane is split off
by electron transfer from Si to O with the formation of intermediate silane groups -Si-JH
and basic siloxo groups Si-O-.

At the fourth stage in Figure 9d, the formation of Si-OH silane groups continues, and
orthosilates are formed, which are the primary nuclei of geopolymers.

At the fifth stage in Figure 9e, the main Si-O- compounds interact with sodium cations
Na+, resulting in the formation of simple (terminal) Si-O-Na bonds.
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At the sixth stage when NaOH is used as an activator as in Figure 9f, condensation
occurs between orthosilate molecules, reactive Si-O-Na groups and OH-Al- hydroxoalu-
minate groups to obtain NaOH and form cyclotrisilate structures, thus NaOH alkali is
released and again enters into polycondensation reaction with the formation of sodium
polysilate nepheline structures. If liquid glass (soluble Na-polysilate) is used as an ac-
tivator at this stage in Figure 9g during the condensation of disilicate and orthosilicate
molecules of the reactive groups Si-O-Na, Si-OH and hydroxoaluminate groups OH-Al-,
an orthosilate-disiloxic cyclic structure is formed, where alkali NaOH is released and
reacts again.

At the seventh stage in Figure 9h, the polycondensation of the albite structure
of the sodium polysilicate-disiloxo continues with the formation of typical feldspar
chain structures [60,61].

The mechanism of chemical reactions that take place during structure formation is
the basis for the study of geopolymer materials, in particular, their properties, structure
formation features, types of alkaline binders and mixture formulations. In conjunction with
the fact that the scope of geopolymer concretes, their structure and properties depend on
the Si/Al ratio [60,61], understanding the essence and processes of geopolymerization, as
well as knowledge of the mechanism of chemical reactions occurring in this case is the most
important aspect in designing geopolymer materials, products and structures from them,
as well as creating new composites.

3. Physical and Mechanical Properties of Geopolymer Concretes

When considering geopolymer concrete as an alternative to concrete with a binder
in the form of OPC, it is necessary to consider the properties not only of fully cured
concrete but also of the ready-to-lay mixture. Fresh mix properties include workability,
setting time, shrinkage and structural changes during the setting process. It is important
to note that the process of polymerization of geopolymer compositions is exothermic, so
the temperature released by geopolymer concrete during hydration is also an important
parameter. The properties of fully cured concrete include CS, axial TS, flexural TS, and
modulus of elasticity [50,142].

The workability of geopolymer concretes depends on the concentration of the activator
in relation to the main components of the geopolymer composition. It can also be increased
by increasing the amount of water in relation to the binder or by adding superplasticizers
and hardening retarders. The workability of geopolymer concretes also deteriorated with
increasing NaOH concentration [143,144]. Figure 10 shows the influence of the main factors
on the workability of geopolymer concretes according to [144].
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The hardening time of geopolymer concretes depends on the concentration of NaOH,
the proportion of silicates to hydroxides, the composition of the binder, and the con-
tent of superplasticizers in the mixture. Increasing the concentration of NaOH reduces
the hardening time by accelerating the process of polymerization of geopolymer com-
positions. However, the short hardening time of the composition significantly worsens
its workability [145,146].

Shrinkage during the hardening of geopolymer concrete significantly affects the pro-
cess of formation of shrinkage cracks in it. Geopolymer concretes have greater shrinkage
than OPC based concretes due to the greater number of mesopores than OPC. Geopolymer
concretes shrink more than OPC-based concretes due to the fact that the alkali-activated
binder itself has much greater shrinkage than OPC, and also due to the greater number of
mesopores than OPC. Reducing the number of micropores and shrinkage of geopolymer
concrete is possible by selecting the optimal amount of activator, the proportion of silicates
to hydroxides and activator to binder, as well as by controlling the hardening conditions.
It is also important to note that there is a wide range of different raw materials and types
of activators for geopolymer concretes, which under different hardening conditions have
quite different structural changes during hardening [147]. The polymerization reaction of
geopolymer concretes is a rather complex process, which is significantly influenced by tem-
perature conditions, raw materials and their interaction. The strength of the final hardened
material, based on the structure created by the interaction of aluminosilicates with activa-
tors depends on how this reaction takes place and the interaction of the components of
geopolymer concrete. The main influence on the process of formation of polymeric spatial
chains is exerted by the proportion of the main components of the mixture, namely: the
proportion of the activator to the binder, silica materials to alumina, silicates to hydroxides,
and sodium oxide to silicon dioxide. It is known that the addition of sodium oxide to
geopolymer concrete has a positive effect on the polymerization process, the microstructure
of the material and its durability. A significant influence of the temperature conditions
of hardening of geopolymer concrete on the course of the polymerization reaction was
also noted [148]. Curing at room temperature provides greater strength of the hardened
material in the later stages of curing with low strength in the initial stages of curing, while
curing at elevated temperature provides strength in the early stages of hardening higher
than at room temperature; however, the strength in the later stages of curing will be lower.
An increased hardening temperature accelerates the course of polymerization reactions;
however, at the late stages of hardening, increased evaporation of moisture due to high
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temperature does not allow silica and alumina to fully dissolve and react, as a result of
which shrinkage, porosity, and the number of microcracks increase [146].

The process of polymerization of geopolymer concretes is exothermic and is associated
with a significant release of heat in the process of hydration of the mixture components.
The polymerization process, which occurs during the interaction of aluminosilicates with
alkaline activators, occurs more intensively than the hydration process of OPC, as a result
of which the heat released by geopolymer compositions during hardening is higher. The
heat released by geopolymer concretes during the hardening process largely depends on
the type of activator used and the type of feedstock. It has been established that hydroxide
activators significantly increase the temperature released during the hardening process of
the geopolymer composition [149]. The type of aluminosilicates also affects the temperature
formation during the polymerization reaction of geopolymer compositions. Thus, it has
been determined that geopolymer concrete based on metakaolin binder actively releases
heat in direct proportion to strength gain, while geopolymer concrete based on FA begins
to release heat only after 25 h from the start of the reaction, which is due to the difference
in the polymerization processes of these compositions [150].

The strength characteristics of hardened and hardened geopolymer concrete are deter-
mined by its components and their granulometric composition [151]. The CS of geopolymer
concrete depends on the type of sand and the proportion of binder to sand. So, when using
lime sand, the strength of geopolymer compositions is reduced compared to conventional
quartz sand [152]. The proportion of binder to sand, as a rule, has a positive effect on
strength when it reaches its optimum value. It was found that the maximum strength of
geopolymer concrete can be obtained with a proportion of binder to sand equal to 0.5.
Exceeding this value results in a loss of CS. It was also found that with an increase in
the proportion of silicon dioxide to aluminum oxide, the latter actively participates in the
polymerization reaction at the early stages of hardening, which leads to its deficiency at
the later stages of the polymerization reaction [153]. It has also been found that with an
increase in the molarity of the constituents of geopolymer concrete, during the improved
polycondensation process, the CS of the hardened material also increases. It was found
that with an increase in the molarity of sodium hydroxide and the proportion of sodium
metasilicate to sodium hydroxide, an increase in the CS of alkali-activated geopolymer
concrete based on GGBS was observed, while an increase in the proportion of alkali acti-
vator to GGBS shows an inverse effect on CS [154]. The main factors affecting the CS of
geopolymer concretes at the age of 28 days, and the degree of their influence are shown in
Figure 11 according to [2]. The ratios of Al/Slag and NaOH/Sodium silicate were provided
in terms of mass.

According to [2], it can be noted that with an increase in the molarity of NaOH and the
value of the Na2SiO3/NaOH ratio, the CS of geopolymer concrete based on slag increased,
while an increase in the proportion of activator to binder led to a decrease in CS.

The weak point of concrete based on OPC is the low TS relative to the CS. Studies of
geopolymer concrete have shown that its TS during thermal hardening is similar to the TS
of concrete on OPC and that the dependence of the TS of geopolymer concrete on its CS
is similar to that of concrete with OPC as a binder [154]. The TS of geopolymer concretes,
as with ordinary concrete with Portland cement as a binder, is determined by axial tensile
tests, cube splitting tests, and flexural tensile tests. It was found that the TS of geopolymer
concretes during normal hardening increases after the inclusion of 56% nanosilicate in
the mixture [155]. It has also been found that the combination of sand and binder has
a certain effect on the TS, which, with an increase, reduces the TS of geopolymer concrete.
The flexural TS of geopolymer concrete is lower than that of concrete based on OPC due to
the lack of calcium oxide in its composition, the addition of which improves the axial and
flexural TS of geopolymer concrete [156].
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The modulus of elasticity of geopolymer concretes with the same strength is lower
than that of concretes based on OPC. Presumably, this is associated with the processes
occurring during the polymerization of geopolymer concretes and with their aluminosili-
cate base [157]. The elasticity modulus of geopolymer concretes is significantly affected
by the type of coarse aggregate, the type of binder, temperature and hardening time [158].
Additionally, the modulus of elasticity largely depends on the content of sodium hydroxide
in geopolymer concrete, an increase in the amount of which also increases the value of the
modulus of elasticity [159].

The main factors that ensure the durability of geopolymer concrete, as well as other
building materials, is its ability to withstand atmospheric influences, the chemical effects of
aggressive environments, abrasion and other types of wearing effects. The durability of
geopolymer concretes is determined by their properties such as sorption capacity, saturated
water absorption, approximate volume of open pores, permeability for chloride and sulfate
ions, as well as other acids [160]. Compared to concretes based on OPC, geopolymer
concretes have significantly longer durability due to the complex polymer structure, which
provides not only significant strength characteristics but also a better ability to withstand
acidic and mechanical stresses [161]. The type of binder also plays a significant role. For
example, slag-based geopolymer concretes have better durability compared to FA-based
geopolymer concretes since their geopolymer structure is more stable [162]. However,
geopolymer concrete based on FA showed better durability than conventional concrete
based on Portland cement [66,163].

Table 3 presents the values of the physical and mechanical properties of geopolymer
concrete in accordance with the types of precursors and alkaline activators.
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Table 3. Properties of geopolymer concrete with various precursors according to [4,164–174].

Ref.
Number Precursor Alcaline

Activator
Workability

(mm)

Curing
Tempera-

ture

Initial
Setting

Time (min)

Final
Setting
Time
(min)

Compressive
Strength

(MPa)

Tensile
Strength

(MPa)

Flexural
Strength

(MPa)

[164] Fly Ash NaOH +
Na2SiO3

710 60–90 ◦C - - 47.54–53.99 - -

[165] Fly Ash NaOH +
Na2SiO3

110–135 75 ◦C - - 10–65 - -

[166] Fly Ash NaOH +
Na2SiO3

240 - 405 570 47.21 - -

[167] Fly Ash NaOH +
Na2SiO3

-
Ambient
tempera-

ture
66–112 160–245 40 - -

[168] Fly Ash NaOH +
Na2SiO3

- 80 ◦C - - 48 - -

[169] Fly Ash NaOH +
Na2SiO3

-
Ambient
tempera-

ture
- - 11.8–29.2 - -

[4] Fly Ash
NaOH +
KOH +

Na2SiO3

- - - - 24.96–30.11 3.72–4.95 5.22–6.03

[170] Fly Ash + Slag NaOH +
Na2SiO3

-
Ambient
tempera-

ture
- - 30.5–80.5 8.35 17.95

[171] Fly Ash + Slag +
Palm oil fuel ash

NaOH +
Na2SiO3

145–160 65 ◦C - - 66 - 7.7

[172]
Fly Ash + Slag +

High calcium
wood ash

NaOH +
Na2SiO3

- - 20–280 90–360 36.56 - -

[173]

Fly Ash + Slag +
Portland cement +

Calcium
hydroxide

NaOH +
Na2SiO3

-
Ambient
tempera-

ture
110–607 110–607 26–58 - -

[174] Fly Ash + Slag +
Nano silica

NaOH +
Na2SiO3

-
Ambient
tempera-

ture
- - 40.28–56.7 - -

The properties of geopolymer concretes are determined by a number of characteristics
of their raw materials [175,176]. These include the molarity of the activator mortar, the
proportion of activator to binder, silicates to hydroxides, silica to alumina, and curing
temperature [176]. Each of these parameters affects the geopolymer composition at all
stages of its hardening [78,84,86,155,177,178].

Despite the variety of binders for geopolymer concretes, many of their characteristics
are determined by the activator, in the alkaline environment in which the aluminosilicate
polymerization reaction will take place. The main characteristics of the activator are its
type and molarity, that is, the concentration of the activating mortar. When interacting
with different types of binders, activating mortars can affect the properties of geopolymer
concrete in different ways. Thus, an increase in the concentration of the activating sodium
hydroxide mortar when mixed with alkali-activated slag increased the CS of the final
composition, since an increase in the activity of the alkaline medium led to the formation of
a large amount of products involved in the hydration reaction [145]. Increasing the molarity
of the activator also increased the CS and worsened the workability of the geopolymer
concrete based on FA. Just as in the previous case, the increase in the activity of the alkaline
medium of the activator led to the fact that the aluminosilicates in the binder began to
dissolve faster, which had a beneficial effect on the process of formation of the spatial
polymer structure of geopolymer concrete. However, it was also noted that an increase
in the concentration of the activator to more than 35–45% of the total mass of the binder
reduces the strength of geopolymer concrete, and this trend continues all the time that the
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polymerization reaction takes place. This is attributed to the fact that at too high alkali
content, precipitation of the aluminosilicate gel occurs [68]. As far as alkaline activators
containing soluble silicates are concerned, as compared with mortars based on hydroxides,
the reaction with their participation proved to be faster and more active [179]. At the same
time, the strength of such geopolymer concretes is higher than that of compositions with
an activator based on hydroxides and increases with an increase in the concentration of
the activator [180]. Summarizing the above, we can conclude that with an increase in the
molarity of the activating mortar, the CS of geopolymer concrete increases.

As mentioned earlier in Section 3, the curing temperature has a significant impact on
the strength of geopolymer concretes. The high curing temperature provides an accelerated
polymerization reaction and the formation of an aluminosilicate geopolymer structure of
the final material, which leads to increased strength in the early stages of curing. However,
at the same time, the loss of water in the mixture increases, due to the possible deficiency
of which the final strength of the material in the later stages of hardening may be lower
compared to geopolymer concrete hardening at normal temperature. It is important to note
that increased water losses lead not only to a slowdown in the dissolution of silica and
alumina along with their subsequent polymerization but also to an increased formation
of pores and microcracks, which also negatively affects the final strength of the material.
The curing of geopolymer concretes at room temperature results in the resulting hardened
material having greater strength due to a more stable and homogeneous polymer structure,
as well as a smaller total pore volume [148]. It should be noted that geopolymer concretes
based on GGBS and based on FA have a different composition and an increased curing
temperature has a much more positive effect on geopolymer concretes based on FA than
based on GGBS. Thus, the strength of geopolymer concretes based on FA at an elevated
curing temperature is much higher than at room temperature curing [103].

The proportion of its main components—an activating alkaline mortar and alumi-
nosilicate binder—has a significant impact on the strength of geopolymer concretes. The
alkaline environment of the activator is necessary for the dissolution of silica and alumina
contained in the binder, which subsequently form a spatial polymer structure that deter-
mines the strength properties of the final material. As a rule, an increase in the amount
of activator in relation to the binder leads to a proportional decrease in the strength of
the final material [2]. Moreover, this trend is typical for geopolymer concretes both based
on GGBS and FA. This is due to the insufficient amount of aluminum and silicon parti-
cles in the aqueous phase and, as a result, disruption of the process of hydroxylation of
the binder particles. A decrease in the amount of the activator in relation to the binder
leads to the fact that the mixture loses its workability due to insufficient wetting of the
binder particles [181].

Researchers [182] revealed the features of the influence of amorphous and crystalline
silica and alumina in the composition of the starting materials for the production of geopoly-
mer concretes on the strength characteristics of the final material. In [52] six compositions
were considered with different starting materials to determine the dependence of the CS of
geopolymer concrete on the amount of amorphous and crystalline silica and alumina in
the raw materials. Compositions based on FA, GGBS and two types of metakaolin were
used. The prototypes hardened at high temperatures for 72 h. The age of the prototypes at
the time of testing was 7, 14, 28 and 60 days. The results of the experiments and electron
microscopy showed a noticeable dependence of the CS of all geopolymer compositions on
the presence of amorphous silica and alumina in the starting materials. Crystalline silica,
which is part of the raw material, did not enter into the geopolymerization reaction and was
also in large quantities in the composition of geopolymer concrete after the formation of its
structure. The researchers concluded that the properties of geopolymers can be significantly
changed by relatively small changes in Si and Al concentrations during synthesis, where
increasing the Si/Al proportion to a certain extent leads to an increase in the CS of the
material [52]. In [183], the influence of the calcination temperature of kaolinite clays on the
properties of geopolymer binders was considered. Clay fractions of three kaolin minerals
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were studied. Clay fractions were subjected to chemical and thermal analysis, as well as
X-ray diffraction analysis, and, further, calcined at a temperature of 450 to 800 ◦C. The
obtained amorphous material was dissolved in a highly concentrated alkaline solution to
obtain a geopolymer composition, whose properties, such as shrinkage, hardening time
and CS, were subsequently studied during experiments. The obtained hardened samples
of the geopolymer cement paste were also subjected to X-ray diffraction analysis, analysis
using electron microscopy and Fourier transform infrared spectroscopy. The hardening
time of geopolymer cement pastes produced from clay fractions calcined at 450 ◦C was very
long and amounted to 21 days under laboratory conditions at room temperature. For clay
fractions calcined at 500 and 700 ◦C, the hardening time of geopolymer pastes decreased
with increasing temperature and varied in the range from 130 to 40 min. At temperatures
above 700 ◦C, the hardening time began to increase. Shrinkage of the hardened geopolymer
paste between 21 and 28 days of age was at its lowest for pastes calcined at 700 ◦C. When
this value is exceeded, the shrinkage value started to increase. The CS of the hardened
zeopolymer cement pastes ranged between 11.9 and 36.4 MPa. It increased in samples
whose raw material was calcined at a temperature between 500 and 700 ◦C, but when
the latter value was exceeded, it began to decrease. The authors concluded that the opti-
mal temperature for calcining raw materials of geopolymers to improve their mechanical
properties is 700 ◦C [183].

4. Geopolymer Concretes with Partial Replacement of Conventional Portland Cement
with Aluminosilicate Binders

Despite the outstanding qualities of geopolymer concrete with the complete replace-
ment of OPC with aluminosilicate binders, geopolymer concrete with a partial replacement
of Portland cement with aluminosilicates is very popular. The peculiarity of such concrete
is that in the process of hydration, an aluminosilicate binder first enters into the reaction,
which, when interacting with water, forms a film of positively charged calcium ions, which
prevents the further course of the reaction. However, calcium hydroxide, formed during
the hydration of the constituents of OPC, raises the pH level, which destroys the calcium
ion film [144]. At the same time, calcium hydroxide, interacting with aluminosilicates
during the pozzolanic reaction, which is a simple acid reaction between calcium hydroxide
Ca(OH)2 or CH and silic acid H4SiO4, forms calcium silicate hydrate. Thus, in the process
of hydration of geopolymer concrete with partial replacement of OPC with aluminosilicate
binder, hydration of aluminosilicates, hydration of Portland cement and the pozzolanic
reaction of calcium hydroxide with aluminosilicates occur [2]. The simultaneous presence
of the products of cement hydration and the formation of a polymer structure densifies
the final microstructure of geopolymer concrete in the mixture, which has a positive effect
on its physical and mechanical properties [144]. At the same time, the hardening time
of geopolymer concrete with partial replacement of OPC with aluminosilicate binder is
significantly less than that of geopolymer concrete with only aluminosilicate binder, with
a slight decrease in workability [21,82]. Summarizing the above, it can be noted that the
presence of OPC in geopolymer concrete, along with an aluminosilicate binder, improves
the physical and mechanical properties of the final material due to the improvement of
its microstructure due to the formation in the process of hydration of a large amount
of calcium-rich aluminosilicate gel (calcium aluminosilicate hydrate), which is actively
involved in polymerization reactions.

The addition of OPC somewhat improves the microstructure of geopolymer concrete.
This is due to the coexistence of hydration products and polycondensation products. Such
changes in the microstructure of composites lead to a decrease in water absorption, porosity,
sorption and chloride permeability of geopolymer concrete. In general, the addition of
OPC makes the microstructure more compact and denser, in which the interfacial bonding
of the fibers with the matrix is better [144].

Figure 12 shows the dependence of the CS of geopolymer concrete on the content of
OPC according to [167].
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Figure 12. Dependence of the CS of geopolymer concrete based on low-calcium fly ash on the content
of OPC (in terms of binder mass) after 28 days of curing [167].

According to [167], it was found that the addition of OPC in an amount of 5% increased
the CS of geopolymer concrete and mortar by improving their microstructure due to the
formation of a large amount of calcium-rich aluminosilicate gel.

5. Modern Trends and Innovations in the Field of Research of Geopolymer Concretes

The environmental friendliness of geopolymer concrete compared to concrete on
OPC, as well as its outstanding physical and mechanical characteristics, determine the
growing popularity of this material in construction. The replacement of concrete based
on OPC with geopolymer concrete based on aluminosilicate binders is consistent with the
concept of sustainable development. Technologies for the use of geopolymer concretes are
being actively explored to reduce energy costs and greenhouse gas emissions. However,
geopolymer concrete is a promising material for the construction industry also in terms of
its strength properties, outstanding resistance to abrasion, aggressive environments and
high temperatures [1]. In recent years, the attention of researchers has been attracted by
technologies such as 3D printing using geopolymer concrete, geopolymer concrete based
on nanomaterials, self-compacting geopolymer concretes, and determining the impact of
the use of geopolymer concretes on global warming. Consider below the most interesting
directions from our point of view.

5.1. Assessment of the Impact of Geopolymer Concretes on Global Warming

The assessment of the impact of a particular technology on global warming is usually
conducted using the GWP (Global Warming Potential) coefficient. It provides an assessment
of the degree of impact of various greenhouse gases on global warming over a certain period
of time in comparison with the standard, which is taken as carbon dioxide, whose GWP is
equal to 1. When assessing the global warming potential of a greenhouse gas, the number
of years after the release, during which the gas exists in the atmosphere is calculated.
The technology for the production of geopolymer concretes can reduce greenhouse gas
emissions by up to 64% compared to the technology for the production of concrete using
OPC. However, differences in the impact on greenhouse gas emissions between different
types of geopolymer concretes are not so significant [6].

It has now been established that the production of geopolymer concrete has a signifi-
cantly lower global warming potential than the production of OPC [24]. It has been found
that geopolymer concretes, regardless of the type of aluminosilicate binder, have a signifi-
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cantly lower impact on global warming than concrete based on OPC [88]. Despite this, the
global warming potential of geopolymer concretes can be further reduced. Thus, it has
been established that the environmentally friendly use of sodium hydroxide isolated from
sea salt can reduce the global warming potential by up to 64% in comparison with concrete
based on OPC [184]. Additionally, an important argument in favor of the use of geopolymer
concretes is their better strength properties and durability compared to concrete based on
OPC [185]. However, despite the low impact on global warming, geopolymer concretes
have other environmental impacts, depending on the type of binder that is used in a
particular mixture. This is due to the fact that industrial and agricultural wastes are often
used as binders for geopolymer concrete, some of which can have a negative impact on
the environment. Most often, this is the pollution of fresh and seawater, eutrophication of
water bodies, and changes in natural abiotic factors [186]. Even despite the outstanding
resistance of geopolymer concrete to seawater and aggressive environments, the above
factors are a strong barrier to the use of geopolymer concrete as building materials for
marine and hydraulic structures. A comparison of the influence of various binders on
the environment showed that this factor largely depends on the chemical composition of
the binder and the amount of silicates. In general, binders that require large amounts of
sodium silicate to polymerize have a higher negative impact on the environment and global
warming potential [187]. Geopolymer concretes based on FA and GGBS are much safer in
terms of global warming potential and CO2 emissions than geopolymer concretes based on
metakaolin, since metakaolin requires a large amount of silicates for the polymerization
reaction [52]. However, geopolymer concrete containing 30% metakaolin in the binder
composition has higher strength characteristics than concrete on OPC, and a much lower
global warming potential [188].

It is important to note that the global warming potential is a very relative factor when
it comes to the use of a material such as geopolymer concrete. This relativity is due to the
fact that different calculation methods consider different types of activities associated with
the use of geopolymer concrete. It was found that when taking into account all activities
and energy processes associated with the production and use of geopolymer concrete, from
the selection of raw materials to the placement of the finished mixture in the formwork,
taking into account the transport of raw materials, the amount of CO2 emissions was only
9% less than concrete on OPC [189].

5.2. Three-Dimensional Printing Using Geopolymer Concrete

In recent years, 3D printing technology has gained sharp popularity due to the high
speed of the production process, and the accuracy of execution, automation and manufac-
turability; 3D printing in one form or another is used in almost all areas of activity, going
beyond global production and firmly entrenched in ordinary everyday tasks. However,
the aerospace, automotive, aircraft and construction industries have become pioneers in
the use of this technology. In construction, 3D printing technology provides not only the
freedom to implement design mortars, but also the automation of construction processes,
the reduction in waste, the consumption of raw materials and energy, and the absence of
the need for highly paid labor [53]. The above is consistent with the concept of sustainable
development, which is in harmony with the advantages in this regard of geopolymer
concrete over concrete based on OPC. The combination of 3D printing technology, which is
promising from the point of view of the concept of sustainable development, and geopoly-
mer concrete, as an environmentally friendly material, can help reduce environmentally
unfavorable factors for the environment and better control over them [190]. From this point
of view, the development of this innovative technology is promising and consistent with
sustainable development.

3D printing technology using geopolymer concrete implies certain mixture character-
istics suitable for automated paving, as well as the use of superplasticizers. A number of
studies have been devoted to determining the optimal proportions of mixtures based on
various types of binders for use in 3D printing technology. Compositions with a binder
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based on GGBS, FA and microsilica were studied. The influence of the content of the activa-
tor in relation to the binder and the proportion of water to the binder were investigated.
The best strength characteristics were obtained at a water-to-binder proportion of 0.33 and
an activator amount of 8% of the binder volume [191]. The addition of GGBS to geopolymer
concrete based on FA showed an improvement in its microstructure and strength but had
almost no effect on the deformability of the material [192]. The addition of microsilica to a
similar composition improved the yield strength and viscosity of the final material, which
was due to the shape of the binder microparticles and the change in their surface area. Each
change in the composition of geopolymer concrete, regarding the type of activator and its
amount, the type of binder, and the presence of superplasticizers, leads to a change in the
course of the polymerization reaction of geopolymer concretes [193]. However, 3D printing
technology imposes additional limitations, since each type of 3D printing machine has its
own advantages, limitations and features of operation, and its choice is a unique task for
each individual case.

5.3. Nano-Modified Geopolymer Concrete

The spatial polymeric aluminosilicate structure of geopolymer concretes provides
their outstanding physical and mechanical characteristics compared to concrete based on
OPC, which together with the environmental friendliness of geopolymer concretes, makes
them one of the main alternatives to traditional concrete [180]. The type of binder has a
significant effect on the microstructure of geopolymer concrete. Thus, compositions with a
binder based on FA and GGBS have a more stable and denser microstructure, which ensures
their better mechanical properties. However, geopolymer concretes with binders based
on agricultural waste and clay minerals have a porous microstructure and no outstanding
physical and mechanical properties, together with brittleness, high shrinkage, and a high
content of microcracks. To improve the properties of such compositions, mineral additives
and external agents are included. One such additive is graphene. This material is obtained
from graphite by mechanical action. Graphene is a layer of carbon atoms one atom thick
interconnected to form a hexagonal two-dimensional crystal lattice [194]. The unique
thermal, electrical, mechanical, optical, catalytic and biological properties of graphene
make it a special and highly demanded material for high-tech production. Graphene
oxide is commonly used as an additive in building cement mortars. Its inclusion in the
mixture significantly densifies the microstructure of the final composition, reduces the
number of microcracks, reduces brittleness, and thereby significantly increases the strength
properties [195]. It was found that the inclusion of graphene oxide in geopolymer concrete
with a slag-based binder led to an increase in TS in bending by 20% at a graphene content
of 0.01% by weight of the binder [196]. The inclusion of graphene in geopolymer concrete
based on FA increased the CS by 2.16 times and the bending TS by 1.44 times. However, the
addition of graphene in a volume above the optimal value and an increase in the amount of
sodium hydroxide led to a decrease in TS in bending [197]. When adding graphene oxide
to geopolymer concrete, not only an improvement in strength properties was observed, but
also in deformability, wear resistance and durability. In addition to improving the physical
and mechanical properties of geopolymer concretes nanomodification with graphene oxide
leads to a decrease in the fluidity and workability of the mixture. This effect can be leveled
by adding superplasticizers or microsilica [198].

In recent years, the interest of researchers has been attracted by the effect of nanomod-
ification of geopolymer concretes based on various types of aluminosilicate binders with
graphene oxide using 3D printing technology [199].

5.4. Monitoring the State of Structures Using Self-Sensitive Geopolymer Concrete

The development of smart materials is one of the main directions for the development
of new technologies in the construction industry which allow continuous diagnostics
and analysis of the state of building structures without their destruction. With regard
to geopolymer concretes, at the moment in scientific publications, topics related to the
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piezo-resistant behavior of geopolymer concretes under various deformations and the
development of technologies that allow using this factor for the continuous monitoring of
the state of building structures are gaining popularity. The authors of [200] carried out a
work devoted to the study of the piezoresistance behavior of a geopolymer material based
on FA with the addition of carbon black during compression. Prototypes were made in
the form of cubes with the addition of carbon black in the amount of 0.5%, 1% and 2%, in
which four copper electrodes were embedded. To obtain a comprehensive characteristic
in the process of increasing the compressive load during the axial compression test, the
electrical resistivity, longitudinal deformation and acoustic emission were recorded. The
samples were tested in two modes: repeated loading with small compressive forces and
continuous loading until failure. The results of the experimental studies carried out showed
the presence of piezoresistance for all tested mixtures, but the best self-sensitive properties
were obtained with 0.5% carbon black impurities. A comprehensive analysis of the research
results showed that the FA-based geopolymer is subjected to residual deformations, and
the addition of carbon black changes its character from quasi-brittle to sufficiently ductile.
The combination of electrical and acoustic methods makes it possible to control materials
far beyond the operating range of the load cell.

The work [201] is devoted to the technology of robotic application of a self-sensitive
geopolymer based on metakaolin for monitoring the state of concrete of building structures.
The strength of the hardened geopolymer composition, according to the authors, was
20 MPa, and the adhesion to concrete was 0.5 MPa. The geopolymer composition was
applied to the concrete base in areas of 250 mm2 in laboratory conditions. Four electrodes
were installed in each section, measuring the deformation and temperature of the concrete
base with an accuracy of 1 µm and 0.2 ◦C, respectively. The research results showed the
possibility of using a robotic method of applying self-sensitive geopolymers for further
analysis and monitoring of the concrete state of building structures.

5.5. Self-Healing Geopolymer Concrete

In recent years, one of the most interesting areas in the field of building materials
is the creation of self-healing materials for building structures. Of particular interest to
researchers is the development of technologies for self-healing concrete. For example,
researchers [202] considered the issue of creating self-healing bioconcrete using bacteria of
the species Bacillus megaterium. Bacteria were added to the mixing water of bioconcrete in
the amount of 105 cells per ml of mixing water. After the bioconcrete hardens, the bacteria
enter a dormant state, which is interrupted by the formation of a crack, through which
microorganisms have access to air and water. As a result of the vital activity of bacteria,
the crack is filled with spar crystals. Due to the formation of spores that have a thick wall,
Bacillus megaterium bacteria can survive without any damage in the body of concrete
for up to 200 years, in anticipation of favorable conditions for life, which significantly
exceeds the planned life of most concrete and reinforced concrete structures. According
to the results of the research, the authors concluded that the technology of bioconcrete
is promising for the creation of self-healing materials. The CS of bioconcrete increased
by 19.7% compared to conventional concrete without bacteria. It was also noted that the
minimum crack recovery time is 30 days. The authors of the study [203] used two types of
bacteria (Megaterium and Subtilis) to create self-healing bioconcrete, which were added
in various concentrations (107 and 108 colony-forming units), in various amounts (1, 5,
10 and 15% of the mass of cement) and with different amounts of nutrients (0.1%; 0.6%
and 1.2% calcium lactate by weight of cement) into the concrete mixture to determine the
effect of these variable factors on the self-healing process of concrete. The resulting material
was tested for water permeability, CS and chloride ion permeability. The results of the
study showed a significant increase in the CS of concrete, improved water permeability
and resistance to the penetration of chloride and sulfate ions. The best performance was
achieved with the use of Megaterium bacteria in the amount of 15% by weight of the cement
with the addition of calcium lactate in the amount of 1.2% by weight of the cement. The
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depth of water penetration, in this case, decreased to 56–59% compared to control samples
that do not contain bacteria.

By analogy with ordinary concrete, the above technology can also be applied to
geopolymer concrete, despite the concentrated alkaline environment in which the geopoly-
merization reaction takes place. According to [204], some of the bacterial species are
spore-forming and resistant to alkali, which allows them to survive for more than 200 years
even in dry conditions. At the same time, the technology of bacterial concrete, as applied
to geopolymer concrete, remains practically unchanged. When preparing a concrete mix,
just as in the case of ordinary concrete, a precursor or nutrient is added to it, which is
usually calcium lactate (Ca(C3H5O2)2) and various types of bacteria that can simply be
added to the mixture or located in special microcapsules that will open when cracks form.
When cracks occur, the bacteria come out of their dormant state and, with the help of
certain enzymes, produce a precipitate of CaCO3, which seals the cracks in the concrete
up to a certain opening width. Relatively recent studies [205,206] have been devoted to
the application of a biomethod to seal cracks by adding certain types of bacteria to the
concrete mixture.

As an alternative method for creating self-healing materials, a number of studies have
proposed the use of hollow fibers that are located in the body of the material of construction,
by analogy with arteries in a living organism. Hollow fibers may contain several material
components, which, when released during interaction with each other or with air, seal the
crack initiation site [207,208]. Additionally, by analogy with the previous method, instead
of hollow fibers, it is proposed to introduce microcapsules, which, if cracks occur, will be
damaged, releasing a reducing agent [209,210].

Although the above methods for creating self-healing materials are applicable to both
conventional concrete and geopolymer concretes, the latter are known for significantly
higher resistance to high temperatures, which opens up additional possibilities. Thus,
researchers [211] proposed adding glass particles and aluminum oxide plates to a geopoly-
mer mixture based on metakaolin. As a result, when the hardened geopolymer composite
was exposed to a temperature of 850 ◦C, the cracks were filled with glass particles. In
general, a summary of the results of research on self-healing technologies applicable to
geopolymer concretes can be summarized in Table 4.

Table 4. Results of research on self-healing technologies applicable to geopolymer concrete [202,203,206–211].

Ref. Number Healing Agent Addition by Weight of
Cement, % Self-Healing Performance

[202] Bacterial spores 2 Compressive strength restoration (19.7%);
cracks filling

[203] Bacterial spores 15 Depth of water penetration decrease (59%);
cracks filling

[207] Hollow fibers 2 Compressive strength restoration (33.1%);
cracks filling

[209] Microcapsules 4 Compressive strength restoration (60%);
cracks filling;

[211] High temperature
activated agents 50 Cracks filling

Geopolymer concrete, as mentioned earlier, is more environmentally friendly than
conventional concrete due to its low carbon footprint. Self-healing concrete technologies
can enhance these properties of geopolymer concrete, reducing environmental pollution
by increasing the service life of geopolymer concrete structures, reducing repair costs and
saving energy.
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6. Discussion

In order to fully evaluate this review in terms of scientific novelty and practical signif-
icance, it is necessary to conduct a comparative analysis between the study and reviews
previously performed by other authors. It is conditionally possible to divide the studies
conducted by other authors, grouping them according to a number of factors. For exam-
ple, part of the research was devoted to the scientometric analysis of the development
of research on geopolymers, and their economic and environmental prospects [1,32,52],
without paying much attention to the properties of the materials themselves. Many authors
have worked on a review of studies devoted only to the microstructure and properties
of geopolymer concretes [26,28,37–39,50,51]. Studies [31,44] were aimed at reviewing
technologies for the use of certain types of construction and household waste as com-
ponents of geopolymer concretes. The authors of studies [33,34] reviewed the methods
for selecting the composition of geopolymer concretes, focusing mainly on the method-
ological component. Studies [40,41,49] have been reviewed within geopolymer concretes
using only fly ash as an aluminosilicate binder, not covering other types of binders. It is
also possible to distinguish a group of studies devoted to a review of works limited to a
rather narrow topic, for example, studies devoted only to activators or 3D printing using
geopolymer concrete [22,43,47,48,53,205].

However, within the framework of such a wide and diverse topic as geopolymer
concretes, for the most objective assessment of the further prospects for their development,
comprehensive review studies are needed to consider promising areas in the study of these
materials, taking into account their properties, features and history of research topics. Thus,
in the presented work, the review of the development of research on geopolymer concretes
is supported by a review of research on the microstructure and properties of these materials,
their determining factors and various combinations of geopolymer mixture components.
Such a framework made it possible to fully present an overview of research on current
trends and innovations in the field of geopolymer concretes, which are presented not as a
separate narrow topic, but as part of a global picture of research on these materials.

Prospects for further research are seen in obtaining new knowledge and developing the-
oretical ideas about the most relevant and priority areas for the use of geopolymer concretes.

7. Conclusions

The literature review presented in this article covers a wide range of research in
the field of geopolymer concretes carried out in recent years. Based on the information
provided, the following main conclusions can be drawn:

(1) Geopolymer concrete is a suitable, environmentally friendly and sustainable alter-
native to concrete based on OPC with higher strength, physical-mechanical and
deformation properties due to its more stable and denser aluminosilicate spatial
microstructure. With the active use of agricultural and industrial waste, the produc-
tion of geopolymer concrete can also become more economical than the production
of OPC.

(2) The main factors influencing the properties of fresh and hardened geopolymer con-
crete mixture are identified and visually presented. The physical and mechanical
properties and durability of geopolymer concretes depend on the composition of the
mixture and the proportions of its components. The selection of compositions must
necessarily consider the main ratios of the components that determine the physical
and mechanical properties of the finished material. These include activator-to-binder
ratio, silicates to hydroxides, binder type, activator concentration, aggregate fine-
ness modulus, presence and amount of superplasticizers, water-to-binder ratio, and
binder-to-sand ratio.

(3) Despite a large number of types of aluminosilicate binders, most researchers have
considered geopolymer concretes based on FA and GGBS because of their higher
strength characteristics and outstanding physical and mechanical properties compared
to other types of binders. Microsilica, metakaolin, perfluorooctanoic acid, high calcium
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ash and rice straw ash have been considered by researchers as independent binders
much less often, but their influence as additives has often been analyzed. The most
popular activator mortars used by researchers are sodium hydroxide and sodium
metasilicate, as well as their combinations in various ratios. Moreover, sodium
metasilicate showed a faster course of the polymerization reaction compared to
sodium hydroxide. The course of the polymerization reaction, in addition to the
type of binder used, is greatly influenced by the characteristics of the activator, such as
its concentration, amount in relation to the binder and reactivity. The optimal value of
the proportion of activator to binder allows you to get the best mechanical properties
and durability.

(4) Geopolymer concretes with partial replacement of OPC with aluminosilicate binder
have a denser and more compact microstructure due to the formation of a large
amount of calcium silicate hydrate, which provides improved CS, durability, less
shrinkage, porosity and water absorption.

(5) The first studies devoted to the subject of geopolymer concretes were aimed at obtain-
ing new data on the influence of the ratios of the mixture components on the strength
and physical-mechanical properties of the final material. They were based on the influ-
ence of such factors as the proportion of NaOH/Na2SiO3, the proportion of activator
to binder, the proportion of NaOH to slag, the combined use of various activating
compositions, various variations in conditions and curing temperatures, the concen-
tration of activators, various types of coarse filler, the addition of nanomodifiers, the
percentage of reinforcement, adding various additives, fibers and coarse aggregates
from recycled waste to find the optimal mixture parameters and a combination of
various factors to obtain the best properties of the final material. Recent research
uses new ideas and technologies, such as 3D printing of fiber-reinforced geopolymer
concrete, and needs to be further developed in studies based on the analysis of the
properties of compositions obtained with various types of binders and activators.

(6) The technologies of the combined selection of the composition of geopolymer concrete,
production of nanomodified geopolymer concrete, 3D printing of building structures
from geopolymer concrete, and monitoring the state of structures using self-sensitive
geopolymer concrete are considered.

(7) An assessment was made of the potential reduction in greenhouse gas emissions from
the production of geopolymer concrete compared to the production of OPC.

(8) The inclusion of nanomodifiers, such as graphene oxide, in the composition of geopoly-
mer concretes reduces the hardening time of the composition and increases the sta-
bility of the microstructure of the material, improving its physical and mechanical
properties and positively affecting durability.

(9) The most promising areas for further research of geopolymer concretes are the search
for new types of aluminosilicate binders and activators; the analysis of the economic
and environmental efficiency of geopolymer concretes; the development of methods
for the optimal selection of compositions; the analysis of the effect of nanomodification
of the composition of geopolymer concrete on the characteristics of the finished
material; the search for new technologies that allow more efficient and productive
3D printing using geopolymer concretes; the search for new technologies to improve
the properties of geopolymer concretes by nanomodifying the composition with
graphene oxide and the search for alternative, more effective nanomodifiers; the
search for technologies that can reduce the toxicity of certain types of geopolymer
concretes for fresh reservoirs and humans; the search for new technologies and
replacement methods concrete on OPC with geopolymer concrete and the search
for new methods for monitoring the state of structures using self-sensing concrete.
Self-healing concrete technologies can enhance the properties of geopolymer concrete,
reduce environmental pollution by increasing the service life of geopolymer concrete
structures, and reduce repair costs and save energy.
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As a result, a review of studies on modern trends and innovations in the field of
geopolymer concretes was made, which was presented not as a separate narrow topic, but
as part of a global picture of research on these materials. Prospects for further research are
seen in obtaining new knowledge and developing theoretical ideas about the most relevant
and priority areas for the use of geopolymer concretes.
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Nomenclature

CO2 carbon dioxide
Si silicon
O oxygen
Al aluminum
SiO2 silica
Al2O3 aluminum oxide
Fe2O3 iron(III) oxide
CaO calcium oxide
TiO2 titanium dioxide
K2O potassium oxide
MgO magnesium oxide
Na2O sodium oxide
Na2SiO3 sodium metasilicate
NaOH sodium hydroxide
KOH potassium hydroxide
H2O hydrogen oxide (water)
CaCO3 calcium carbonate
Na sodium
K potassium
Ca calcium
H hydrogen
Ca(OH)2 calcium hydroxide
H4SiO4 orthosilicic acid
Ca(C3H5O2)2 calcium salt of propionic acid
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