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Abstract: Three-dimensional (3D) image analyses are frequently applied to perform classification
tasks. Herein, 3D-based machine learning systems are generally used/generated by examining
two designs: a 3D-based deep learning model or a 3D-based task-specific framework. However,
except for a new approach named 3t2FTS, a promising feature transform operating from 3D to
two-dimensional (2D) space has not been efficiently investigated for classification applications in 3D
magnetic resonance imaging (3D MRI). In other words, a state-of-the-art feature transform strategy is
not available that achieves high accuracy and provides the adaptation of 2D-based deep learning
models for 3D MRI-based classification. With this aim, this paper presents a new version of the
3t2FTS approach (3t2FTS-v2) to apply a transfer learning model for tumor categorization of 3D MRI
data. For performance evaluation, the BraTS 2017/2018 dataset is handled that involves high-grade
glioma (HGG) and low-grade glioma (LGG) samples in four different sequences/phases. 3t2FTS-v2
is proposed to effectively transform the features from 3D to 2D space by using two textural features:
first-order statistics (FOS) and gray level run length matrix (GLRLM). In 3t2FTS-v2, normalization
analyses are assessed to be different from 3t2FTS to accurately transform the space information apart
from the usage of GLRLM features. The ResNet50 architecture is preferred to fulfill the HGG/LGG
classification due to its remarkable performance in tumor grading. As a result, for the classification
of 3D data, the proposed model achieves a 99.64% accuracy by guiding the literature about the
importance of 3t2FTS-v2 that can be utilized not only for tumor grading but also for whole brain
tissue-based disease classification.

Keywords: brain; convolutional neural network; dimensional; feature transform; glioma grading;
image classification; transfer learning; tumor

1. Introduction

Three-dimensional (3D) imaging is inevitably used in medical areas including brain
tumor analyses. Magnetic resonance imaging (MRI) is the most frequently used imaging
modality mainly owing to its ability to differentiate among different soft tissues. Moreover,
this feature makes the usage of MRI inevitable for brain tumor-based segmentation or clas-
sification systems. Regarding this, in the literature, non-invasive-based studies generally
focus on the segmentation process of MRI data for various kinds of brain tumors [1–3].

The classification of brain tumors poses a significant challenge for designing a computer-
aided diagnosis (CAD) system that is fully automated. For this purpose, it is expected
that a classification model can be adapted for using 3D tumor-based data since it should
be applicable to the 3D output of the segmentation part in the fully automated CAD.
However, in the literature, many studies examine two-dimensional (2D) data, which re-
quire the choice of a slice or 2D image. In other words, an expert should examine the
tumorous/non-tumorous regions in 3D data [4–10]. At this point, this process yields the
system to be a semi-automated CAD, which needs an external intervention to start the
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evaluation process [4–10]. In the literature, MRI-based classification is usually performed
using 2D information for multiclass tumor types [4–10], normal/abnormal labels [11,12],
tumor/non-tumor categories [13], and a combination of these applications [13].

The most frequent brain tumors (glioma) are generally divided into two important
categories that are high-grade glioma (HGG) and low-grade glioma (LGG) [14,15]. Herein,
LGG-type tumors are the second important category, although they are not a priority, but
they should be identified. However, HGG-type tumors constitute the first priority to be
detected at an early stage considering the survival of the patients. Despite the importance of
this issue, very few studies have handled just the high-grade vs. low-grade discrimination
of gliomas using 2D or 3D information in the literature [16].

In the literature studies about HGG/LGG discrimination, deep learning-based models
or task-specific frameworks were generally utilized/designed to assign the tumors to HGG
and LGG classes. Koyuncu et al. [16] proposed an efficient framework classifying 210 HGG
and 75 LGG samples defined using 3D MRI data. For this purpose, first-order statistics (FOS)
were evaluated to extract the features from the 3D tumor voxel. Herein, three-phase (T1, T2,
FLAIR) information was found to be the best combination in trials with the BraTS 2017/2018
dataset. Feature selection was fulfilled using Wilcoxon ranking. An optimized classifier
named GM-CPSO-NN was considered to perform the categorization. As a result, the
task-specific framework achieved a 90.18% accuracy on HGG/LGG distinction. Mzoughi
et al. [17] suggested a 3D deep convolutional neural network (3D Deep CNN) including data
augmentation to discriminate the HGG/LGG tumors using the BraTS 2017/2018 dataset.
The T1c sequence was used as the input of the system. Consequently, the deep learning-
based model obtained a 96.49% accuracy for the categorization of brain tumors. Tripathi and
Bag [18] combined four residual networks (ResNet18, ResNet50, ResNet101, and ResNet152)
by using a novel Dempster–Shafer theory (DST). In [18], the cancer imaging archive (TCIA)
library was evaluated involving both HGG and LGG samples. In addition, T2 phase
information was considered to form the input data for ResNets fusion. In experiments, a
95.87% accuracy was observed with the deep learning-based model for the classification
of 2D images that comprised only tumor tissue. Montaha et al. [19] generated a deep
learning-based model in which 3D CNN and long short-term memory (LSTM) with a
TimeDistributed (TD) function were operated. In experiments, the BraTS 2020 dataset was
utilized as the test dataset incorporating 234 HGG and 74 LGG samples in all phases (T1,
T2, T1ce, FLAIR). The 3D-based classification model (TD-CNN-LSTM) recorded a 98.90%
accuracy for HGG/LGG classification using 3D MRI data. Jeong et al. [20] presented a
model that determined a multimodal fusion network using adversarial learning. The BraTS
2017/2018 dataset was evaluated with all phase information to test the system performance.
In [20], the model was defined as a 2.5D-based classification system since it only focused on
a few slices of the tumor. According to the results, the proposed model acquired a 90.91%
accuracy for HGG/LGG classification. Bhatele and Bhadauria [21] generated a task-specific
model by using five feature extraction approaches that are the discrete wavelet transform
(DWT), gradient gray level co-occurrence matrix (GGLCM), local binary patterns (LBP),
gray level run length matrix (GLRLM), and morphological features. Principal component
analysis (PCA) was utilized to decrease the feature number. All phase information was fed
to the input of an ensemble classifier. Regarding the results, the 2D-based classification
model achieved 100% and 99.52% accuracy scores for the BraTS 2013 and BraTS 2015
datasets, respectively. Demir et al. [22] designed a new deep learning-based model (3ACL)
that combines the 3D Attention module, CNN, and LSTM in the 3D-based categorization of
HGG and LGG labels. In [22], all phase information was evaluated using 3D MRI data, and
the classifier unit was formed on the basis of support vector machine (SVM) algorithms
followed by a weighted majority vote. Concerning the experiments, 3D-based deep learning
architecture yielded 98.90% and 99.29% classification accuracies, respectively, for BraTS
2015 and BraTS 2018 datasets. Hajmohamad and Koyuncu [23] recommended a new
feature transform strategy (3t2FTS) to convert the information of 3D space into 2D space.
In other words, 3D tumor voxels were transformed into the 2D-identity (2D-ID) images
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for every tumor defined using 3D MRI. For this purpose, all phase information and FOS
features were evaluated to form the 2D-ID images. In this way, eight traditional transfer
learning models (DenseNet201, Inception-ResNetV2, InceptionV3, ResNet50, ResNet101,
SqueezeNet, VGG19, and Xception) were applicable to 2D data and were compared to
reveal the most coherent one with the 3t2FTS approach. In tests with the BraTS 2017/2018
dataset, ResNet50 architecture provided an 80% classification accuracy for HGG/LGG
discrimination.

As seen in the literature studies, deep learning-based models are effectively utilized
to detect the type of brain tumors [23,24]. On the other hand, HGG/LGG discrimination
is barely handled in the literature by means of 2D-, 2.5D-, and 3D-based classification
tasks [16–23]. To the best of our knowledge, the classification part of a fully automated
CAD can only be obtained if the information of 3D tumors is directly examined with efficient
models. At this point, it is revealed that a few studies determine the 3D-based HGG/LGG
classification with deep learning architectures [17,19,22,23]. However, according to our
examinations, there is no feature transform strategy (except 3t2FTS) to applicate the transfer
learning models for the classification of tumors in a 3D-defined space.

Concerning the examinations, there exist the following inferences:

• ResNet50 or ResNet-based architectures are frequently applied to perform brain tumor
classification using MRI data [6,18,23].

• 3D-based HGG/LGG categorization arises as a remarkable issue to design the classifi-
cation part of a fully automated CAD.

• Except for 3t2FTS, a novel feature transform strategy is not available in the literature to
applicate 2D-based transfer learning models and to find the 2D-ID image of a 3D voxel.

Concerning the inferences, the motivation of this paper and its literature contributions
are revealed as:

• The design of a state-of-the-art feature transform strategy (3t2FTS-v2) to transform the
3D space information to the 2D space.

• The applicable transform strategy to be considered not only for 3D-defined tumors
but also for the whole brain defined in 3D MRI (disease classification).

• A case study using FOS, GLRLM, and normalization analyses to discover 2D-ID
images of 3D voxels.

• A comprehensive research obtaining promising results on 3D-based HGG/LGG cate-
gorization.

• An extensive study about ResNet50 and its hyperparameter adjustments on brain
tumor classification in 3D MRI.

The paper is organized as follows. Section 2 briefly explains the FOS and GLRLM fea-
tures, comprehensively determines the formation of the 3t2FTS-v2 approach, summarizes
the ResNet50 architecture, and clarifies the dataset information with its handicaps. Section 3
describes the experimental analyses and interpretations in detail. Section 4 presents the
discussions and literature comparison. Section 5 concludes the paper.

2. Materials and Methods
2.1. First-Order Statistics

First-order statistics (FOS) are effectively utilized in the literature for texture-based 2D
and 3D analyses. Herein, FOS features are produced considering the intensity- or (mostly)
histogram-based evaluations of an image. On intensity-based examinations, the features
are directly obtained using the FOS along the image. On histogram-based examinations,
the histogram of 2D or 3D data is generated, and FOS features are extracted along the
histogram [23,25].

Let y, x, f (x,y), G, and i symbolize the vertical plane, horizontal plane, the function
specifying a 2D image using the coordinate of (x,y), the total intensity number in image,
and the output of f (x,y) or discrete intensity having a numerical value within the intensity
levels of [0, G − 1], respectively. Then, the histogram analyses are performed considering
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the repetition number of intensity levels along the whole image. If the histogram-based
analysis is intended to be used for a 3D voxel, then the size of an image should be defined
in 3D space. If N, M, and L represent the length, width, and slice number of the image,
respectively, then the total number of voxels can be obtained using the volume of interest
(VOI) information with M × N × L multiplication. Regarding this, the histogram of the ith
intensity value described as h(i) can be found as in (1), whilst the Kronecker Delta function
symbolized as δ(i,j) can be calculated using Equation (2). In addition, the probability density
function (PDF) of i is evaluated using Equation (3) by dividing h(i) by the M × N × L
multiplication (the total voxel number belonging to VOI) [23,25].

h(i) =
N−1

∑
x=0

M−1

∑
y=0

δ( f (x, y), i) (1)

δ(j, i) =
{

1, j = i
0, j 6= i

(2)

p(i) =
h(i)

1× L×M× N
, i = 0, 1, 2, 3 . . . , G− 1 (3)

By considering the PDF information apart from the aforementioned phenomena, FOS
features of a VOI are calculated as the mean, standard deviation, skewness, kurtosis, energy,
and entropy that are identified in Equations (4)–(9), respectively [23,25].

µ =
G−1

∑
i=0

ip(i) (4)

σ =

√√√√G−1

∑
i=0

(i− µ)2 p(i) (5)

µ3 = σ−3
G−1

∑
i=0

(i− µ)3 p(i) (6)

µ4 = σ−4
G−1

∑
i=0

(i− µ)4 p(i)− 3 (7)

Energy =
G−1

∑
i=0

[p(i)]2 (8)

Entropy = −
G−1

∑
i=0

p(i) log2[p(i)] (9)

2.2. Gray Level Run Length Matrix

The gray level run length matrix (GLRLM) calculates the number of homogeneous
runs along each gray level i. Let G, R, and N symbolize the gray level number, the longest
run, and the pixel number, respectively. In this way, GLRLM can be seen as a 2D matrix at
the size of G × R. Herein, the elements of each p(i,j|θ) arise as the occurrence value of runs
with the θth direction, ith gray level, and jth run length, respectively. Seven general GLRLM
features are defined as the long runs emphasis (LRE), short runs emphasis (SRE), run length
non-uniformity (RLN), gray level non-uniformity (GLN), low gray level runs emphasis
(LGRE), high gray level runs emphasis (HGRE), and run percentage (RP). These features
are respectively obtained using Equations (10)–(16) [25,26]. In our paper, six of the seven
aforementioned features (except HGRE) are utilized, since these provide an information
change among 2D-ID images for every 3D-defined tumor.
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LRE = ∑G
i=1 ∑R

j=1 j2 p(i, j
∣∣∣θ)/∑G

i=1 ∑R
j=1 p(i, j|θ) (10)

SRE = ∑G
i=1 ∑R

j=1
p(i, j|θ)

j2
/∑G

i=1 ∑R
j=1 p(i, j|θ) (11)

RLN = ∑R
j=1

(
∑G

i=1 p(i, j|θ)
)2

/∑G
i=1 ∑R

j=1 p(i, j|θ) (12)

GLN = ∑G
i=1

(
∑R

j=1 p(i, j|θ)
)2

/∑G
i=1 ∑R

j=1 p(i, j|θ) (13)

LGRE = ∑G
i=1 ∑R

j=1
p(i, j|θ)

i2
/∑G

i=1 ∑R
j=1 p(i, j|θ) (14)

HGRE = ∑G
i=1 ∑R

j=1 i2 p(i, j
∣∣∣θ)/∑G

i=1 ∑R
j=1 p(i, j|θ) (15)

RP =
1
N ∑G

i=1 ∑R
j=1 p(i, j|θ) (16)

2.3. Design of 3t2FTS-v2

The 3D to 2D feature transform strategy (3t2FTS) has been suggested by Hajmohamad
and Koyuncu [23] to convert the features in 3D space into the 2D plane. In the 3t2FTS or
3t2FTS-v1 approach, FOS features are evaluated to produce the 2D-ID images acting as
an identity that belongs to 3D voxels [23]. However, only FOS features are considered
in the transformation. In addition, any other feature extraction methods and normaliza-
tion approaches are not examined that can generate robust 2D-ID images by providing
discriminative information.

In this paper, we propose the second version of 3t2FTS (3t2FTS-v2) in which FOS and
GLRLM are handled in addition to the non-normalization-based and normalization-based
analyses. Thereby, discriminative 2D-ID images that are more meaningful are generated
using 3t2FTS-v2 to transform the 3D MRI information into 2D space. Herein, it can be seen
that the motivation and design of the method can be applied to both a 3D-defined tumor
and 3D brain tissue. Moreover, both versions can be implemented for the evaluation of
not only tumors but also brain diseases such as Alzheimer, etc. defined in 3D images. In
this way, general machine learning methods (deep learning, transfer learning, etc.) that
are designed on the basis of 2D evaluation can be activated using both versions. Figure 1
shows the design of the 3t2FTS-v2 approach.

As seen in Figure 1,

• In item (1), the tumor area is obtained by multiplying the tumor mask of BraTS
2017/2018 with the 3D MRI voxel as in 3t2FTS. However, 3t2FTS-v2 operates an
additional part providing data cleaning in null slices that all pixels own some non-zero
(close to zero) values. Herein, this situation can change the meaningful information
in the 2D-ID image. Concerning this, the non-zero null slices are converted to the
matrixes including zero values by considering the standard deviation along the image.

• In item (2a), six FOS features (mean, standard deviation, skewness, kurtosis, energy,
and entropy) are generated for each slice. Regarding this, meaningful information is
produced at the size of 6 × 155.

• In item (2b), six GLRLM features (SRE, LRE, GLN, RLN, RP, and LGRE) are evaluated
for every slice. Concerning this, distinctive information is generated at the size of
6 × 155.

• In items (2a) and (2b), it should be reminded that location information is processed in
addition to the intensity-based, size-based, and shape-based features.

• In item (3), the outcomes of items (2a) and (2b) are combined to form the information
at the size of 12 × 155.
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• In item (4), the previous items (1, 2a, 2b, and 3) are respectively applied for every MRI
sequence. Consequently, four information matrixes belonging to all MRI phases are
independently obtained at the size of 12 × 155 for one tumor, individually.

• In item (5), z-score normalization is fulfilled for every row in the data, independently.
This process yields the normalization of every feature in itself and the feature transform
is performed more robustly. Herein, item (5) is performed separately for all the
12 × 155 information in all phases.

• In item (6), the normalized information matrixes at the size of 12 × 155 are combined
to discover the 2D-ID image of a 3D tumor.
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Figure 1. Design of the 3t2FTS-v2.

As seen at the end of Figure 1, three examinations are performed to design the 3t2FTS-
v2. These examinations comprise the options of non-normalization, minmax normalization,
and z-score normalization, all of which diversely generate different 2D-ID images. In exper-
iments, z-score normalization comes to the forefront in terms of obtaining the best scores
and being the most coherent one to transform the feature space. Moreover, design items of
the algorithm are considered by evaluating the experiments and results of our study.
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2.4. ResNet50 Architecture

For the design of an improved CNN, the performance of the architecture can be
upgraded if the number of layers is increased in comparison with the original version.
However, the deeper networks can cause a degradation of accuracy among training itera-
tions (vanishing gradient problem). Herein, residual network (ResNet)-based architectures
are proposed to prevent this handicap from occurring from the nature of the design [23,27].

Figure 2 presents the general design of ResNet50 architecture. As seen in Figure 2,
ResNet50 is proposed on the basis of five convolution modules involving convolution layers
of different sizes. In addition, it utilizes the maximum and average pooling approaches,
the fully connected neural network (NN) layer, and a softmax function [23,27].
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ResNets or ResNet-inspired models e.g., InceptionResNetV2 and ResNet18, benefit
from residual/skip connections to improve the system performance and to prevent infor-
mation loss among deeper designs. Herein, residual connections are considered to connect
the output of a layer as the input of the following layers, for which an additional parameter
or arrangement is not required. From a different perspective, the residual connectivity can
be seen as a bypass operator among layers that ensures more efficient feature maps by
preventing the increment in training error. In summary, ResNet-based architectures intend
to remove the vanishing gradient problem, transfer the necessary information between
transition points of layers, and produce more robust feature maps [23,27].

2.5. Dataset Information and Handicaps

The training part of the BraTS 2017/2018 library involves 210 HGG and 75 LGG
samples defined in 3D MRI. In 3D data, there exist 3D images in the size of 240 × 240 × 155
per phase that is diversely presented for every phase (T1, T2, T1ce, FLAIR). In addition,
3D data include 155 slices of which every image is specified in 3D concerning the RGB
space [14–16,23].

In the BraTS 2017/2018 training data, a tumor-based mask is defined as including four
labels (background, non-enhancing and edema, peritumoral, and GD-enhancing) [14,15].
However, if the background and the other three labels are respectively assigned as ‘0’ and
‘1’, the 3D-defined tumor is found without sub-dividing the tumor into sub-regions. In
other words, we evaluate the tumor as a unique section in our study, and considering
the information in tissues, the tumor sub-regions are seen as tantamount to each other to
preserve the necessary information [16,23]. Furthermore, this tumor extraction includes the
logic of a segmentation section of a fully automated CAD, and 3t2FTS-v2 can be directly
applicable to the extracted 3D data. In our paper, the classification part of a CAD is
considered utilizing the 3t2FTS-v2 approach (Figure 1) to reveal the 2D-ID images and the
ResNet50 model (Figure 2) to classify the 2D-ID information [23,27].

Figure 3 describes the disadvantages of the dataset used in terms of the 3D and
cross-sectional perspectives [16,23]. As seen in the 3D-based representation,

• A tumor type (LGG or HGG) can have very different size and shape features if the
examination is performed inside one type. On the contrary, if HGG and LGG-type
tumors are examined together, the shape-based and size-based features can be similar.

According to the cross-sectional-based determination,

• A tumor type can have very different intensity features inside the tumor, which can be
similar to the intensity features of the opposite tumor type.

In summary, there is no distinctive information that can be considered to categorize the
tumor types. Regarding the disadvantages of data originating from the nature of glioma,
a robust classification model should be proposed by examining the size, shape, intensity,
and location features among all slices of 3D tumor data. Concerning this, the importance of
3t2FTS-v2 can be better deduced from the disadvantage analyses of gliomas.
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3. Experimental Analyses and Interpretations

In this study, ResNet50 is fixed as the classifier unit to be utilized with 3t2FTS-v2
considering the results and advice given previously in [23]. In other words, ResNet50
arises as the preponderant method in [23] among seven transfer learning architectures
(DenseNet201, InceptionResNetV2, InceptionV3, ResNet101, SqueezeNet, VGG19, and
Xception) for using with 3t2FTS-v1 for 3D tumor analyses. Herein, this performance
encourages the usage of ResNet50 to operate with 3t2FTS-v2.

Three strategies are examined to design the normalization part of 3t2FTS-v2, as de-
clared in Figure 1, which are the options of without normalization, minmax normalization,
and z-score normalization. Herein, the appropriate normalization option is analyzed to be
coherent with the proposed feature transform strategy, and the key point is whether the
normalization approach should be utilized, as it is not available in 3t2FTS-v1. In addition,
3t2FTS-v2 also considers GLRLM features [25]. Moreover, other extraction approaches
(GLCM, etc.) have been examined for the formation of the 3t2FTS-v2 by yielding that other
preferences are not appropriate to use with the 3D tumor information.

The 2D-ID images produced with 3t2FTS-v2 are presented as the input of ResNet50
architecture to discriminate the HGG/LGG labels. The hyperparameters of ResNet50 are
comprehensively examined as shown in Table 1, according to previous studies [23,27,28],
for observing the highest performance that can be achieved. Among hyperparameters,
the epoch is fixed as 100 to prevent memory errors. All experiments are performed using
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the default values of other hyperparameters in the Deep Network Designer toolbox of the
MATLAB software. In experiments, two-fold cross-validation is preferred to test the model
performance [23]. Classification accuracy is chosen as the unique evaluation metric in terms
of its significance to objectively evaluate the hyperparameter arrangements and to reveal
the appropriate normalization preference.

Table 1. Hyperparameter arrangements of ResNet50.

Hyperparameter Value/Preference

Epoch 100
Mini-batch size 16, 32
Learning rate 0.001, 0.0001

Learning Rate Drop Factor (LRDF) 0.2, 0.4, 0.6, 0.8
Optimizer Adam, Rmsprop, Sgdm

Table 2, Table 3, and Table 4, respectively, present the ResNet50 results for three
options (without normalization, with minmax normalization, and with z-score normalization)
in 3t2FTS-v2.

Table 2. ResNet50 results without normalization in 3t2FTS-v2.

Mini-Batch Size Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy

16 0.001

0.2
Adam 77.19

0.0001

0.2
Adam 74.73

Sgdm 72.63 Sgdm 74.03
Rmsprop 73.70 Rmsprop 73.33

0.4
Adam 75.08

0.4
Adam 70.90

Sgdm 77.19 Sgdm 71.92
Rmsprop 74.73 Rmsprop 71.22

0.6
Adam 73.68

0.6
Adam 76.14

Sgdm 75.43 Sgdm 72.98
Rmsprop 74.03 Rmsprop 72.98

0.8
Adam 77.54

0.8
Adam 76.14

Sgdm 71.92 Sgdm 75.78
Rmsprop 76.14 Rmsprop 72.98

32 0.001

0.2
Adam 76.49

0.0001

0.2
Adam 74.73

Sgdm 75.08 Sgdm 73.68
Rmsprop 75.78 Rmsprop 77.19

0.4
Adam 77.89

0.4
Adam 76.14

Sgdm 73.68 Sgdm 74.03
Rmsprop 75.78 Rmsprop 74.73

0.6
Adam 70.87

0.6
Adam 76.14

Sgdm 75.78 Sgdm 74.73
Rmsprop 76.49 Rmsprop 76.84

0.8
Adam 72.63

0.8
Adam 74.38

Sgdm 74.03 Sgdm 74.38
Rmsprop 76.49 Rmsprop 78.59

As seen in Table 2, the highest accuracy (78.59%) is observed whilst the optimizer,
LRDF, learning rate, and mini-batch size are, respectively, chosen as rmsprop, ‘0.8’, ‘0.0001’,
and ‘32’. If an in-depth evaluation is performed regarding the average accuracies, it was
seen that adam and rmsprop optimizers outperform sgdm preference by obtaining approxi-
mately 75% accuracy among 16 trials. Among 24 trials, the most appropriate preferences of
the learning rate and mini-batch size are ‘0.001’ and ‘32’, respectively, achieving 75.01% and
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75.27% accuracy scores, respectively. For LRDF preferences, the choice of ‘0.8’ seems more
appropriate to use concerning the achieved average accuracy of 75.08% among 12 trials.
In terms of the average accuracy-based examinations, ResNet50 reaches a 74.77% average
accuracy among 48 trials on data formed without normalization preference for 3t2FTS-v2.

Regarding Table 3, the best accuracy (82.45%) is recorded when optimizer, LRDF,
learning rate, and mini-batch size are, respectively, preferred as rmsprop, ‘0.6’, ‘0.0001’, and
‘32’. In the event of average accuracy-based evaluation, it was revealed that adam stays
as the best optimizer by providing a 76.59% accuracy among 16 trials. Among 24 trials,
the reliable choices of the learning rate and mini-batch size seem to be ‘0.0001’ and ‘32’
by attaining 76.28% and 75.13% accuracies, respectively. The LRDF choice of ‘0.2’ was
better than the other preferences by scoring a 75.43% accuracy in 12 trials. By means of the
average accuracy-based assessments, ResNet50 obtains a 75.09% average accuracy among
48 trials on data revealed with minmax normalization preference for 3t2FTS-v2.

Table 3. ResNet50 results with minmax normalization in 3t2FTS-v2.

Mini-Batch Size Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy

16 0.001

0.2
Adam 75.78

0.0001

0.2
Adam 77.54

Sgdm 75.08 Sgdm 74.03
Rmsprop 69.47 Rmsprop 75.43

0.4
Adam 79.64

0.4
Adam 78.24

Sgdm 76.49 Sgdm 72.98
Rmsprop 64.56 Rmsprop 75.78

0.6
Adam 76.14

0.6
Adam 76.14

Sgdm 77.89 Sgdm 73.33
Rmsprop 73.68 Rmsprop 76.49

0.8
Adam 73.68

0.8
Adam 75.78

Sgdm 77.54 Sgdm 75.43
Rmsprop 73.68 Rmsprop 76.14

32 0.001

0.2
Adam 77.89

0.0001

0.2
Adam 79.29

Sgdm 73.33 Sgdm 73.33
Rmsprop 74.73 Rmsprop 79.29

0.4
Adam 76.14

0.4
Adam 78.59

Sgdm 78.59 Sgdm 72.98
Rmsprop 71.92 Rmsprop 75.08

0.6
Adam 74.57

0.6
Adam 75.08

Sgdm 78.24 Sgdm 72.63
Rmsprop 62.10 Rmsprop 82.45

0.8
Adam 70.52

0.8
Adam 80.35

Sgdm 75.43 Sgdm 72.63
Rmsprop 66.31 Rmsprop 81.75

Concerning Table 4, the highest accuracy score (99.64%) comes at three different ar-
rangements for four hyperparameters. In these arrangements, the mini-batch size, learning
rate, LRDF, and optimizer are, respectively, declared as ‘16’, ‘0.001’, ‘0.8’, rmsprop or ‘32’,
‘0.001’, ‘0.8’, adam or ‘32’, ‘0.0001’, ‘0.2’, adam for the highest performance. For average
accuracy-based considerations, the adam optimizer is the best preference providing a 98.72%
accuracy among 16 trials. Among 24 trials, the most appropriate preferences of the learning
rate and mini-batch size are ‘0.001’ and ‘16’ by ensuring 97.62% and 97.70% accuracy scores,
respectively. The preference of ‘0.2’ is the best LRDF value that achieves a 97.86% average
accuracy. With regard to the average accuracy-based exploratory, ResNet50 acquires a
97.59% accuracy among 48 trials on data shaped with the z-score normalization choice for
3t2FTS-v2.
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Table 4. ResNet50 results with z-score normalization in 3t2FTS-v2.

Mini-Batch Size Learning
Rate LRDF Optimizer Accuracy Learning

Rate LRDF Optimizer Accuracy

16 0.001

0.2
Adam 98.95

0.0001

0.2
Adam 98.24

Sgdm 98.95 Sgdm 97.19
Rmsprop 94.40 Rmsprop 98.59

0.4
Adam 96.80

0.4
Adam 98.94

Sgdm 98.59 Sgdm 96.14
Rmsprop 95.40 Rmsprop 98.94

0.6
Adam 98.59

0.6
Adam 99.29

Sgdm 98.59 Sgdm 96.49
Rmsprop 91.57 Rmsprop 99.29

0.8
Adam 99.29

0.8
Adam 97.54

Sgdm 98.95 Sgdm 95.08
Rmsprop 99.64 Rmsprop 99.29

32 0.001

0.2
Adam 98.59

0.0001

0.2
Adam 99.64

Sgdm 98.59 Sgdm 92.98
Rmsprop 99.29 Rmsprop 98.94

0.4
Adam 99.29

0.4
Adam 99.29

Sgdm 98.24 Sgdm 91.92
Rmsprop 98.59 Rmsprop 98.59

0.6
Adam 97.54

0.6
Adam 98.94

Sgdm 98.59 Sgdm 94.03
Rmsprop 94.73 Rmsprop 98.94

0.8
Adam 99.64

0.8
Adam 98.94

Sgdm 98.59 Sgdm 95.08
Rmsprop 91.57 Rmsprop 98.94

4. Discussions

In this study, the evaluation is performed on the basis of a two-fold cross-validation
approach, and no data augmentation is considered, which is also not appropriate to use
with the output of the 3t2FTS-v2 algorithm (2D-ID images). In other words, the proposed
model is assessed with sufficient data, and the data imbalance is intended to be kept at its
lowest level by using two-fold cross-validation. According to the performance assessments
in Section 3, it was revealed that:

• Among average accuracy-based experiments, ResNet50 generally inclines to operate
with the adam optimizer and LRDF value of ‘0.2’ (especially for normalization-available
trials). Moreover, there is no discriminative adjustment for other hyperparameters in
average performance-based analyses.

• Regarding the z-score normalization-based and average accuracy-based evaluations,
the appropriate preferences of mini-batch size, learning rate, LRDF, and optimizer are,
respectively, ‘16’, ‘0.001’, ‘0.2’, and adam.

• Concerning the highest scores observed, ResNet50 usually utilizes the mini-batch size
of ‘32’, LRDF of ‘0.8’, and an adam or rmsprop optimizer.

• In relation to the z-score normalization-based and highest scores-based assessments,
there is no discriminative information about the three adjustments. However, a mini-
batch size of ‘32’, a learning rate of ‘0.001’, an LRDF of ‘0.8’, and adam optimizer are
used twice for the obtainment of the highest scores.

Figure 4 presents the performance comparison and summarization of 3t2FTS-v2 op-
tions via the highest and average accuracy scores.
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According to the performance evaluation in Figure 4, it was seen that:

• Z-score normalization reveals the most appropriate preference on the highest accuracy-
based considerations by yielding 17.19% and 21.05% more accuracy than the minmax
normalization and non-normalization choices, respectively.

• By means of average accuracy-based evaluations, the z-score normalization keeps its
superiority by providing 22.50% and 22.82% more accuracy than the minmax normal-
ization and non-normalization preferences, respectively.

Z-score normalization seems to be the most promising arrangement in 3t2FTS-v2, and
also the 2D-ID images produced with this preference can own negative values inside. In
other words, the matrix output of the z-score can include negative information values
specified in identity images. Concerning the huge performance difference between z-score
normalization and other choices, it can be inferred that the negative values in 2D-ID images
let the ResNet50 model understand the identity of tumor type in a comprehensive manner.
In brief, the proposed 3t2FTS-v2 emerges as a brilliant space transform strategy and as a
new breakpoint to classify 3D tumors in MRI.

With a different perspective to the analyses in 3D MRI, the proposed 3t2FTS-v2
algorithm is also suggested in the form of being utilized for the different types of tumors.
Furthermore, 3t2FTS-v2 seems promising to use with the 3D brain-based classification to
diagnose various diseases in brain voxels.

Table 5 shows the literature comparison of our model with the state-of-the-art systems
considering HGG/LGG categorization. As shown in Table 5, only a few studies have
evaluated the 3D-based categorization of HGG/LGG samples. Concerning Table 5, it
was revealed that the proposed model operating the 3t2FTS-v2 approach and ResNet50
architecture outperforms all other systems, which are 2D-based, 2.5D-based, or 3D-based
classification frameworks. In addition, the proposed method also achieves a 19.64% higher
accuracy than that shown in a previous study [23], in which 3t2FTS-v1 is considered to
generate 2D-ID inputs for ResNet50. At this point, the significance of FOS and GLRLM
features and z-score normalization is proven to generate effective 2D-ID images in 3D
voxel classification in 3D MRI data. Moreover, the proposed model achieves a remarkable
performance on the imbalanced BraTS 2017/2018 dataset by proving its robustness via high
classification performance. ResNet50 architecture proves its efficiency again to operate
with 2D-ID-based identity images to categorize the glioma grades as in [23].

In summary, the usage of 3t2FTS-v2 and ResNet50 algorithms is presented in the litera-
ture, and the observed results will lead to various studies to analyze 3D voxel classification
in 3D MRI data.
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Table 5. Literature comparison.

Study Year Classification System Dataset Task Accuracy
(%)

Koyuncu et al.
[16] 2020

The framework including three phase
information (T1, T2, FLAIR), FOS,

Wilcoxon ranking, and
GM-CPSO-NN

210 HGG/75 LGG
(BraTS 2017/2018)

3D-based
classification

(HGG vs. LGG)
90.18

Mzoughi et al.
[17] 2020

A model operating 3D Deep CNN,
data augmentation, and T1ce phase

information

210 HGG/75 LGG
(BraTS 2017/2018)

3D-based
classification

(HGG vs. LGG)
96.49

Tripathi and
Bag [18] 2022

A model utilizing ResNets fusion
with a novel DST and T2 phase

information

2304 HGG/5088
LGG (TCIA)

2D-based
classification

(HGG vs. LGG)
95.87

Montaha et al.
[19] 2022 A model using TD-CNN-LSTM and

all phase information
234 HGG/74 LGG

(BraTS 2020)

3D-based
classification

(HGG vs. LGG)
98.90

Jeong et al. [20] 2022
A model determining multimodal
fusion network with adversarial

learning and all phase information

210 HGG/75 LGG
(BraTS 2017/2018)

2.5D-based
classification

(HGG vs. LGG)
90.91

Bhatele and
Bhadauria [21] 2023

A model comprising DWT, GGLCM,
LBP, GLRLM, morphological features,

PCA, ensemble classifier, and all
phase information

Not clearly defined
(BraTS 2013) 2D-based

classification
(HGG vs. LGG)

100

220 HGG/54 LGG
(BraTS 2015) 99.52

Demir et al.
[22] 2023

A model considering 3ACL and all
phase information

220 HGG/54 LGG
(BraTS 2015) 3D-based

classification
(HGG vs. LGG)

98.90

210 HGG/75 LGG
(BraTS 2017/2018) 99.29

Hajmohamad
and Koyuncu

[23]
2023 A model evaluating 3t2FTS and

ResNet50
210 HGG/75 LGG
(BraTS 2017/2018)

3D-based
classification

(HGG vs. LGG)
80

This study 2023 A model examining 3t2FTS-v2 and
ResNet50

210 HGG/75 LGG
(BraTS 2017/2018)

3D-based
classification

(HGG vs. LGG)
99.64

5. Conclusions

In this paper, a comprehensive survey is proposed about 3D tumor classification
using 3D MRI data. By designing a remarkable space transform strategy (3t2FTS-v2), a
new breakpoint is realized in 3D MRI-based voxel classification by enabling the usage of
traditional machine learning algorithms that are on the basis of two-dimensional operations.
In terms of evaluating the features in 3D and converting them to the 2D-based space, 3t2FTS-
v2 yields a remarkable performance and constitutes the main novelty of our paper.

Regarding the experiments, ResNet50 seems as an appropriate transfer learning model
to operate with the proposed 3t2FTS-v2 algorithm. In addition, a learning rate of ‘0.001’ and
adam optimizer arise as the most frequent hyperparameter preferences in the model. The
proposed model proves its superiority to the state-of-the-art studies by recording a 99.64%
classification accuracy on the categorization of brain tumors defined in 3D space. Herein,
task fulfillment with high performance is offered as another novelty of our paper. As
mentioned, the proposed model approves oneself as being a fully automated classification
section of a CAD system.

Concerning the nature of the 3t2FTS-v2 algorithm, the usage of the proposed method
can be extended, and the following items enlighten the literature for future works:
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• A comprehensive survey about 3t2FTS-v2 and its application for 3D brain-based dis-
ease categorization by using traditional machine learning algorithms or deep learning-
based architectures

• An in-depth study utilizing 3t2FTS-v2 to classify various kinds of brain tumors on a
large dataset by utilizing traditional machine learning algorithms or deep learning-
based architectures

• The design of a novel deep learning architecture to operate with the 2D-ID identity
images generated using 3t2FTS-v2

In addition to the aforementioned deductions, the usage of new datasets including
noisy 3D images constitutes another research application. Furthermore, the data of patients
with gamma-knife treatment can also be used to perform another qualified study, which
both evaluates the longitudinal MRI data and the treatment planning [29,30].
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