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Deep learning is more extensively used in image analysis-based classification of wounds 

with an aim to facilitate the monitoring of wound prognosis in preventive treatments. In this 

paper, the classification success of AlexNet architecture in pressure and diabetic foot wound 

images is discussed. Optimizing training parameters in order to increase the success of 

Convolutional Neural Network (CNN) architectures is a frequently discussed problem. This 

paper comparatively examines the effects of optimization of the training parameters of CNN 

architecture on classification success. The paper examines how the optimizer algorithm, 

mini-batch size (MBS), maximum epoch number (ME), learning rate (LR), and 

LearnRateSchedule (LRS) parameters, which are among the training parameters used in 

combination in architectural training, perform at different values. The best results were 

obtained with an accuracy of 95.48% at the 10e-4 value of the LR parameter. When the 

changes in the evaluation metrics during the parameter optimization experiments were 

examined, it was seen that the LR parameter produced optimum values at 10e-4. As a result, 

when the Accuracy metric and standard deviations were examined, it was determined only 

with the LR parameter. No general conclusion could be reached regarding the other 

parameters. 
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1. INTRODUCTION

Pressure and diabetic foot wounds, which are highly costly 

for the patients and health systems of countries, have recently 

been studied by many scholars and need to be researched 

further. There is a need for studies that can contribute to 

reducing the sufferings of the patients, raising the comfort 

standards of the patients, solution of problems of prolonged 

care in hospitals and high costs [1-6].  

Classifying wounds with high accuracy is highly important 

for identifying patients at risk and following wounds during 

the healing process. To find solutions for these problems, 

many studies are carried out on wound image classification 

with deep learning methods, which can help in the correct 

classification of wound tissues [7-12]. These studies, which 

seek to contribute to the analysis and follow-up of images 

obtained from patients in hospitals, contribute to this field by 

developing new approaches as well as addressing existing 

approaches and making improvements. In addition, research 

also contributes by examining parameters of deep learning 

methods that give the best results in a specific database, by 

finding a correlation between parameters, or by investigating 

the parameters that yield optimum values.  

There is no consensus on setting each parameter in the CNN 

models. Therefore, for each data set, it is important to 

investigate the sensitivity of the parameters in the CNN model 

to make predictions with high accuracy. To develop any deep 

learning model, the optimal values of a set of hyperparameters 

must be decided, such as activation functions, batch size, and 

learning rate, among others, in order to fine-tune each of these 

layers [13-16]. 

AlexNet architecture, which is one of the first 

Convolutional Neural Network (CNN) architectures used in 

the classification of medical images from deep learning 

architectures, is still used in studies. This architecture has been 

researched more extensively especially after winning the 

ImageNet large-scale visual recognition challenge (ILSVRC) 

competition in 2012 and has been used in image classification 

since then [17]. 

The success of AlexNet architecture may vary depending on 

the parameters used in the training phase [18]. Zhao et al. [18] 

worked on AlexNet and LeNet architectures to optimize kernel 

size, learning rate, batch size, and weight parameters with an 

aim to improve the performance of CNN architecture for Lung 

nodule Classification. 

In the literature, there are also studies on parameter 

optimization using optimization methods in combination with 

different CNN architectures. Using Bees Algorithm (BA) and 

Bayesian Optimization (BO) methods, Alamri et al. [19] have 

developed a hybrid method tested on cifar10DataDir, 

handwritten digits and concrete crack images benchmark data 

sets to optimize the parameters and weights of CNN 

architecture. Xu et al. [20] diagnosed lung cancer with a 

modified version of the Bowerbird Optimization Algorithm 

for the optimal design of the Alexnet architecture and the 

optimal selection of features. 
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Using AlexNet CNN architecture, this paper examines how 

training parameters used in the classification of original 

pressure and diabetic foot wound images affect success and 

which parameter(s) are effective in finding the optimum 

results. The study attempts to find the optimizer algorithm, 

mini-batch size (MBS), max epoch number (ME), learning 

rate (LRS), and LearnRateSchedule (LRS) parameters that 

yield the highest success in the classification of wound images. 

The organization of the paper is as follows. The data set, 

pre-processing steps, information about AlexNet architecture, 

and parameters used in this study are explained in Section 2. 

Information about the data set used is also presented in this 

section. Details of the experiments are presented in Section 3. 

This section also includes interpretations of the experimental 

results of AlexNet architecture. The paper has been finalized 

with the conclusion section. 

 

 

2. DATASET, ALEXNET ARCHITECTURE, AND 

IMPORTANCE OF PARAMETERS 

 

Classification of wound images is of great importance for 

efficient wound treatment so that appropriate treatment 

methods can be recommended quickly. In this section, details 

are given about the data set, AlexNet architecture, and the 

effects of training parameters that are effective in wound 

classification.  

 

2.1 DataSet 

 

In this paper, 2090 images categorized as granular, necrotic 

and slough and collected from different patients in Karaman 

Training and Research Hospital were used. 1045 of them were 

diabetic foot wounds and 1045 of them were pressure wounds, 

and the images were taken with mobile devices. 

In the pre-processing step, the images were resized to 

227×227 pixels according to the image input size of the 

AlexNet model. In addition, data were augmented with 

rotation, reflection, brightness, and gauss noise methods to 

avoid overfitting during the training phase. 

 

2.2 AlexNet architecture 

 

The AlexNet is a deep convolutional neural network 

(DCNN) [17]. The architecture has a depth of 8 layers. The 

first five layers consist of a convolutional layer and the last 

three layers consist of a fully connected layer. In between these 

set of layers are max pooling and activation layers. The 

architecture uses the ReLu activation function. There are two 

dropout layers. The output layer uses the Softmax activation 

function. The image input size is 227×227. AlexNet 

architecture is shown in Figure 1. 

 

 
 

Figure 1. AlexNet architecture [13] 

 

The training parameters used in the classification of wound 

images in Alexnet architecture are important for minimizing 

the loss function by changing the weights at each epoch during 

the training of the network. The aim is to increase the accuracy 

of the model by reducing the losses. Parameter optimization 

was done considering the importance of the parameters used 

in training. 

 

2.3 Effects of parameters for wound classification 

 

Among the parameters used in Alexnet architecture, the 

study examines how the optimizer algorithm, mini-batch Size, 

maximum Epoch Number, learning rate, and Learn Rate 

Schedules affect training success. 

The optimizer algorithm contributes to reducing losses by 

changing weights and learning rates in CNN architecture. In 

this way, it aims to obtain the most accurate results possible 

and to increase the model’s success [21, 22]. In this study, 

stochastic gradient descent with momentum (SGDM), Root 

Mean Squared Propagation (RMSProp), and Adaptive 

Moment Estimation (Adam) methods were used as optimizer 

algorithms.  

Mini batch size is the number of subsamples processed on 

the network in each iteration of the CNN architecture. In each 

iteration, subsamples with the amount of value specified in this 

parameter are processed until the end of the CNN. In this way, 

the error rate of the network is calculated and the weights of 

the network are updated. When the mini-batch size does not fit 

into the size of the CPU or GPU memory used in the training 

of the network, network training cannot be performed due to 

insufficient memory. Therefore, appropriate MBS values 

should be selected according to the number of layers of CNN 

architecture and hardware competence [23]. In the studies, the 

mini-batch size should be determined as a value that can fit 

into the GPU memory and should be less than the training 

dataset. It is usually taken as the power of two (such as 8, 16, 

32). 

The maximum number of epochs (ME) is the number of 

times the network runs across the entire network (forward-

backpropagation) of the entire data set used in training. It is 

the updating of the weights by fully processing all of the 

samples in the determined batch size in the network. Too many 

epochs cause the network to memorize. Generally, the number 

of epochs ranges between 10 and 150. In this study, the 
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maximum number of epochs was 10, 25, 50, 100, and 150.  

Learning Rate is the update rate model weights during 

backpropagation. A large learning rate parameter allows the 

algorithm to learn quickly in case the learning rate parameter 

is large. However, if the network tries to learn in large steps, it 

is generally improbable that the conditions for finding the most 

relevant result will be met. It causes the weight values at which 

the architecture will produce high accuracy to be missed. If the 

LR parameter is too small, it is possible to find the optimum 

result since the weights of the network will be updated in small 

steps. This can lead to such problems as a long architectural 

training period and not reaching the optimum result by lodging 

in a local solution. Therefore, finding the appropriate LR is 

important for the success of CNN architecture. Generally, the 

LR parameter is assigned the value starting at 10e-1 and its 

multiples (such as 10e-2, 10e-3, 10e-4). 

Finally, the Learning Rate Schedule parameter determines 

whether the LR parameter remains constant throughout the 

training of the network. It takes two values as none and 

piecewise. If it is set as none, it remains constant throughout 

the training. When it is piecewise, it is reduced at a certain rate 

(LearnRateDropFactor) in certain periods 

(LearningRateDropPeriod). In this way, the initial weight 

change rate of the architecture is reduced. Towards the end of 

the training, smaller changes (fine-tuning) are provided. 

 

 

3. PARAMETER OPTIMIZATION IN ALEXNET 

ARCHITECTURE 

 

In this paper, the classification performances of AlexNet 

CNN architecture were examined on the diabetic and pressure 

wound images data set collected from patients with the help of 

an expert physician. The optimization of training parameters 

used in AlexNet architecture is discussed. The parameters 

examined are given in Table 1. 

A computer with the technical specifications of Xeon Silver 

4114 2.2GHz processor, 32 GB RAM, and NVIDIA Quadro 

P5000 (x2) GPU was used to get the experimental results in 

the training and testing processes. All the experiments were 

performed using the Matlab platform. The wound image data 

set used in the experiments is divided into training (80%) and 

test (20%) data. 

In order to measure the performance of the classification 

models, the actual image value on a pixel basis is compared 

with the result values predicted by the model. TP, TN, FP, and 

FN used in evaluation metric formulas stand for true positive 

(correctly validated sample), true negative (correctly rejected 

sample), false positive (falsely validated sample), and false 

negative (falsely rejected sample), respectively. Detailed 

information about the specified evaluation metrics can be 

found in the study by Fawcett [24]. The evaluation metrics 

used in this study are given in Table 2. All evaluation metrics 

are interpreted as a percentage value.  

As optimizers, sgdm, rmsprop, and adam optimization 

methods were used. As the mini-batch size, the values of 8, 16, 

32, 64, and 128 were used in the experiments. All parameter 

combinations (see Table 1) were run at 10, 25, 50, 100 and 150 

epochs, which are frequently used in the literature. In addition, 

10e-2, 10e-3, 10e-4, 10e-5 and 10e-6 Initial learning Rate parameter 

values were run in LearnRateSchedule in pairs of none and 

piecewise. In cases where the LearnRateSchedule parameter is 

piecewise, the influencing LearnRateDropFactor parameter is 

kept constant at 0.9 and the LearnRateDropPeriod parameter 

is kept constant at 5 [25]. 

A total of 750 (3x5x5x5x2) training were carried out by 

using the pairs of each parameter given above in the 

experiments. Measurement metrics in Table 1 were used to 

compare model classification achievements. The parameter set 

that is the best in all metrics was selected as the criterion for 

finding the most successful parameter matches. The best 

results obtained in all experiments conducted with AlexNet 

architecture were obtained with the parameter values in Table 

3. 

As a result of 750 experiments, the parameter values that 

yielded the best results were discussed. The parameter values 

used in all experiments were initially considered in terms of 

standard deviation and mean, taking into account the Accuracy 

metric. In this way, we examined how much the results 

differed from the mean. Standard deviation was used to show 

how homogeneous the results were for each parameter. 

 

 

Table 1. Parameter values used in the experiments 

 
Parameters Number of Variable Values Variables 

Optimizer (O) 3 sgdm rmsprop adam   

Mini Batch Size (MBS) 5 8 16 32 64  128 

Max Epoch (ME) 5 10 25 50 100 150 

Learning Rate (LR) 5 10e-2 10e-3 10e-4 10e-5 10e-6 

LearnRateSchedule (LRS) 2 none piecewise    

 

Table 2. Evaluation metrics 

 

Accuracy 𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 The rate of the accurate estimations to the total number of estimations 

Sensitivity (recall) 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True Positive Rate: The ratio of TP results to the total number of true positive 

samples 

Specificity 𝑇𝑁𝑅 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

True Negative Rate: Ratio of TN results to the total actual number of negative 

samples 

Precision 𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Positive Predictive Value: Proportion of positive samples correctly estimated 

from all samples estimated to be positive 

Dice Similarity (F1 

Score) 
𝐷𝑖𝑐𝑒 =  

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 The harmonic mean of precision and sensitivity 

813

https://en.wikipedia.org/wiki/Information_retrieval#Precision
https://en.wikipedia.org/wiki/Sensitivity_(test)


Table 3. Parameters through which optimum results are 

obtained and evaluation metric 

Parameter Values that find 

the best values 

Metric Values Obtained 

(O) = Sgdm

(MBS) = 16

(ME) = 150

(LR) = 10e-4

(LRS) = none

Accuracy: 95.48 

Sensitivity: 95.09 

Specificity: 97.35 

Precision: 95.00 

F-Score: 95.09

The mean accuracy and standard deviation obtained for the 

different LR values used in the experiments are presented in 

Table 4. 

According to the results in Table 4, when the mean values 

and standard deviations in the Accuracy metric are evaluated 

together in terms of LR parameter, the mean accuracy for the 

value 10e-2, which had the lowest standard deviation, was 

lower compared to the others. Apart from this, the LR value 

with the lowest standard deviation was found to be 10e-4. The 

mean Accuracy metric in this value is seen as the highest value 

with 80.64%. If the mean Accuracy and standard deviation 

values in Table 4 are taken together, it can be said that the most 

optimum results are achieved when the LR parameter is 10e-4.  

Table 4. Mean Acc and StdDev according to LR values 

LR Acc Mean StdDev 

10e-2 57.17 2.228 

10e-3 68.17 10.24 

10e-4 80.64 5.125 

10e-5 77.78 7.016 

10e-6 63.47 8.142 

The mean accuracy and standard deviation values obtained 

by the LRS, MBS, and ME parameters used in the experiments 

(see Table 2), are given in Tables 5, 6, and 7, respectively. 

Table 5. Mean Acc and StdDev according to LRS values 

LRS Acc Mean StdDev 

none 69.75 11.413 

piecewise 69.16 11.150 

Table 6. Mean Acc and StdDev according to MBS values 

MBS Acc Mean StdDev 

8 69.72 12.175 

16 69.77 12.513 

32 70.39 9.842 

64 67.33 9.239 

128 70.06 12.000 

Table 7. Mean Acc and StdDev according to ME values 

ME Acc Mean StdDev 

10 66.42 10.811 

25 68.50 11.247 

50 70.33 11.135 

100 70.33 11.145 

150 71.69 11.343 

When the mean accuracy and std. dev. values are examined 

in terms of the LRS parameter in Table 5, there is no 

significant difference in none and piecewise values. When 

evaluated in terms of the MBS parameter in Table 6, it is seen 

that while MBS is 32, the mean Accuracy value is 70.39%. 

However, there is no significant difference compared to other 

mean Accuracy values. Similarly, std. When the mean 

Accuracy and std. dev. values are examined in terms of the 

LRS parameter in Table 5, there is no significant difference in 

none and piecewise values. When evaluated in terms of the 

MBS parameter in Table 6, it is seen that while MBS is 32, the 

mean Accuracy value is 70.39%. However, there is no 

significant difference compared to other mean Accuracy 

values. Similarly, std. dev. values were found to be partially 

lower when MBS was 32 and 64. When evaluated in terms of 

the ME parameter in Table 7, it is seen that while ME is 150, 

mean Accuracy is in the first place with 71.69%. However, no 

significant difference was observed between the std. dev. 

values. Based on the mean Accuracy and std. dev values are 

given in LRS, MBS, and ME parameters in Tables 5, 6, and 7; 

no definite conclusion can be reached for these parameters. 

When the accuracy metric in parameter optimization 

experiments was considered, only determination was made in 

terms of the LR parameter. The parameters used during the 

training were also evaluated in terms of other evaluation 

metrics given in Table 1. As in the Accuracy metric, the mean 

values, and std. dev. of the metrics were found and interpreted. 

First, for LR values, the mean values and standard deviations 

of Sensitivity, Specificity, Precision, and F-Score metrics are 

given in Table 8. 

When the results of the four metrics in Table 8 were 

evaluated together, the mean values of each metric and the 

mean best results in all metrics were obtained when the LR 

value was 10e-4. When evaluated according to standard 

deviations, the lowest values in all metrics were found to be 

10e-2. However, while LR is 10e-2, the mean metric values 

obtained are quite low compared to the others. Therefore, it 

can be concluded that optimum results can be obtained when 

LR is 10e-4 in all metrics, as in the case of mean Accuracy.  

The mean values and standard deviations of the Sensitivity, 

Specificity, Precision, and F-Score metrics for LRS values are 

given in Table 9. 

When the LRS results in Table 9 are evaluated, we observed 

that there is no significant difference in the mean values and 

standard deviations of none and piecewise parameters in each 

metric. 

The mean values and standard deviations of the Sensitivity, 

Specificity, Precision, and F-Score metrics for MBS values are 

given in Table 10. 

When the MBS results in Table 10 are evaluated, there is no 

discriminative difference in the mean values and standard 

deviations of the parameters 8, 16, 32, 64, and 128 in each 

metric. In all of the evaluation metrics, partially better mean 

metric values and standard deviation value were obtained in 

the MBS 32 parameter compared to the others.  

The mean values and standard deviations of the Sensitivity, 

Specificity, Precision, and F-Score metrics for ME values are 

given in Table 11. 

When the ME results in Table 11 are evaluated, it is seen 

that there is no significant difference in the mean values and 

standard deviations of the parameters 10, 25, 50, 100, and 150 

in each metric. In all of the evaluation metrics, partially better 

mean metric values and standard deviation value were 

obtained in the ME 150 parameter compared to the others. 

Finally, the distributions of the results obtained in the 

experiments for LR, LRS, MBS, and ME parameters are 

shown in Figures 2, 3, 4, and 5, respectively. When Figures 2, 

3, 4, and 5 are examined, the metrics that find the best 
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parameter values given in Table 3 can be seen. It can be easily 

seen that the best Accuracy values are obtained when the LR 

parameter in Figure 2 is 10e-4 (red line), when the LRS 

parameter in Figure 3 is sgdm (blue line), when the MBS 

parameter in Figure 4 is 16 (orange line) and when the ME 

parameter in Figure 5 is 150 (blue line). 

When the tests results were examined in terms of LR 

parameter value, which shows the amount of update during 

training in deep learning architecture, 10e-4 was determined as 

the value at which the best mean values and distributions were 

the closest to each other in all test scenarios. The mean values 

were lower in all other LR values, and the differences in the 

distributions (Standard Deviation) were higher. When 

considered in terms of the optimizer algorithm, standard 

deviations and mean values of sgdm, rmsprop, and adam 

algorithms could not be interpreted as distinguishing 

parameters since they were very close to each other. Therefore, 

the results in the sgdm optimizer algorithm, where the best 

results were obtained, are discussed.  

When the results were examined according to the other 

parameters (MBS, ME, LRS), error rates in standard deviation 

were high. Therefore, no definite conclusion could be reached 

when all parameters values except for LR were grouped 

together. It is thought that the initial weight values of AlexNet 

architecture are important in finding these parameter values. 

Table 8. Mean values and standard deviations of LR for other metrics 

Sensitivity Specificity Precision F-Score

LR Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

10e-2 33.84 3.549 66.91 1.669 35.29 0.875 18.32 6.519 

10e-3 51.71 16.154 75.65 7.918 63.53 23.427 46.06 22.75 

10e-4 71.20 7.797 85.27 3.931 82.97 9.576 71.04 7.831 

10e-5 66.43 10.683 83.05 5.348 79.12 11.822 66.27 11.339 

10e-6 44.92 12.257 72.34 6.073 58.01 16.022 44.48 12.816 

Table 9. Mean values and standard deviations of LRS for other metrics 

Sensitivity Specificity Precision F-Score

LRS Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

none 54.01 17.718 76.88 8.726 64.56 22.649 49.51 23.384 

piecewise 53.22 17.399 76.40 8.617 63.01 21.916 48.95 22.809 

Table 10. Mean values and standard deviations of MBS for other metrics 

Sensitivity Specificity Precision F-Score

MBS Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

8 53.89 19.050 76.78 9.422 63.66 24.784 47.54 26.253 

16 53.78 19.570 76.78 9.669 61.91 22.898 48.36 25.741 

32 55.12 15.241 77.40 7.562 66.62 19.136 51.70 20.319 

64 50.60 14.347 75.12 7.021 62.26 20.786 47.07 18.967 

128 54.70 18.595 77.12 9.187 64.46 23.134 51.47 22.894 

Table 11. Mean values and standard deviations of ME for other metrics 

Sensitivity Specificity Precision F-Score

ME Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

10 49.04 16.626 74.39 8.267 60.75 22.562 43.84 21.750 

25 52.12 17.538 75.92 8.635 60.58 21.213 47.40 22.919 

50 54.90 17.430 77.280 8.615 64.99 23.008 51.03 23.143 

100 55.05 17.449 77.364 8.572 65.02 22.504 50.75 23.207 

150 56.96 17.664 78.253 8.752 67.57 21.324 53.12 23.291 

Figure 2. LR parameter distributions in the experiments Figure 3. LRS parameter distributions in the experiments 
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Figure 4. MBS parameter distributions in the experiments 

 

 
 

Figure 5. ME parameter distributions in the experiments 

 

 

4. CONCLUSION  

 

A number of studies address the effect of deep learning 

architectures used in the classification of images related to a 

particular problem. In this paper, the extent to which the 

parameters used in the training of AlexNet architecture used 

in the classification of medical wound images affect the 

success was investigated. By interpreting the classification 

success of AlexNet architecture with evaluation metrics, this 

study examined how the optimizer algorithm, LR, LRS, MBS, 

and ME parameters were used to affect the result of 

classification success with different values.  

In the experiments, the performance of AlexNet architecture 

on the original wound images data set was examined. In this 

paper, sgdm, rmsprob and adam optimizer methods were used. 

Mini Batch Size parameter has been chosen as multiples of 2, 

with a minimum of 8 and a maximum of 128. For Maximum 

Epoch parameter, trained up to 10,25,50,100 and 150 epoches. 

10e-2,10e-3,10e-4,10e-5,10e-6 was used as the Learning Rate value. 

None and piecewise values are taken as LearningRateSchedule 

parameter. 750 experiments were conducted to observe which 

parameter affected the evaluation metrics. In the experiments, 

the results obtained in the sgdm method, which produces the 

best results compared to rmsprop and adam optimizer 

algorithms, which are among the parameters used in the 

training phase, were discussed. The results obtained with the 

Sgdm optimizer algorithm were evaluated by grouping LR, 

LRS, MBS, and ME parameters according to different values. 

In the interpretations made by calculating the mean values and 

standard deviations of Accuracy, Sensitivity, Specificity, 

Precision, and F-Score evaluation metrics, it was determined 

that significantly better results were found in the LR parameter. 

According to the results of all parameter optimization 

experiments, good results were obtained when the LR 

parameter is at 10e-4. Since there are no significant differences 

in the results obtained by other parameters, it is thought that 

similar results are produced due to the initial weight values of 

the architecture.  

In the field of medicine, wound evaluation and follow-up of 

care processes are a field of study. It is important that wounds 

are detected with high accuracy with deep learning to 

contribute to wound care processes. Thanks to this study, 

appropriate parameter values have been determined for the 

optimization of the parameters of the AlexNet architecture. 

The effects of parameter pairs used in the training of the 

architecture on wound classification were measured and the 

parameter that increased success most was determined and 

their effects on datasets were examined. As a result, on our 

data set, AlexNet architecture yielded the highest accuracy in 

classification with a rate of 95.48% with the sgdm optimizer 

algorithm, 16 MBS, 150 ME, and 10e-4 LR parameters. In 

addition, with all experiments, the study examined how each 

parameter affects classification success.  

Further studies can examine the success rates of different 

CNN architectures in the classification of wound images. 

Optimum parameter determination experiments can also be 

performed using new methods. 
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