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Abstract: The aim of this article was to investigate the effect of carbon nanotubes (CNTs) on the
buckling behavior of fiber-reinforced polymer (FRP) composites. The materials used included three
layers: carbon-fiber-reinforced polymer (CFRP), epoxy and CNTs. A set of mechanical tests, such
as compression and buckling tests, was performed, and also analytical solutions were developed.
Damage analysis was also carried out by controlling the damage initiation and crack progression on
the composite samples. Experimental results revealed that using 0.3% with CNT additives enhanced
the buckling performance of the composite. Finally, the average load-carrying capacity for the
clamped–clamped boundary condition was 268% higher in the CNT samples and 282% higher in the
NEAT samples compared to the simple–simple condition.

Keywords: carbon nanotube; polymer composites; buckling analysis; laminated composites

1. Introduction

CNTs are utilized as important additive materials for high-performance structural com-
posites, which have a lot of application potential [1]. The extreme interest in nanostructures
among scientists and researchers is leading to the rapid development and characterization
of nanocomposite material. When the dimensions of these structures are very small, at
micro and nano scale, it has been shown using both experimental and atomistic simulation
that the size effect on mechanical properties gains importance [2]. A single-walled carbon
nanotube (SWCNT) is formed as a cylinder with a diameter of 1 nm. A multi-walled
carbon nanotube (MWCNT) consists of a concentric form and a 0.35 nm separated array of
cylinders from 2 to 100 nm in diameter and tens of microns in length [3]. Fidelus et al. [4]
reported the experimental elastic properties of SWCNT and MWCNT. The elastic modulus
of CNTs is reported to vary in a wide range from 200 GPa to 5.6 TPa [5].

Composite materials consist of matrix and reinforcement phases, and it is a material
system that achieves distinctive features that no single component can achieve alone [6–15].
Generally, composites are formed by dispersing the reinforcement phase in a matrix phase.
The reinforcement phase, which is a load-bearing element, determines the strength of the
composite and its structural properties, such as thermal stability, electrical thermal conduc-
tivity, etc. It is effective in determining other functions such as the matrix phase holding the
reinforcement materials together, transferring the load to the reinforcements and protecting
the reinforcements from chemical and mechanical damage [15]. The matrix phases may be
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metals, polymers or ceramics, while the fibers may be particles or whiskers [16–19]. The
performance of load-bearing fibers in composite constructions is significantly influenced
by the matrix’s mechanical properties [20]. The matrix’s presence ensures that the load is
evenly distributed among all fibers. The mechanical characteristics of the matrix and the
bond strengths between the fiber and the matrix are significant parameters that define the
strength of the composite structure in the direction perpendicular to the fiber orientations
(i.e., toward the length of the fibers) [6,21–23]. The matrix is more ductile and less strong
than fiber. The design of composite constructions should take this aspect into account.
A break in either the fiber or the matrix could spread in all directions without changing
direction if the shear strength of the matrix and the bond strength between the matrix and
the fiber are sufficiently high [24]. In this case, since the composite acts as a brittle material,
the rupture surface shows a clean and shiny structure. If the bond strength is too low, the
fibers behave like a fiber bundle in the void, and the composite weakens. At a moderate
bond strength, a crack in the transverse direction starting from the fiber or matrix may
return to the fiber/matrix interface and progress in the fiber direction. In this case, the
composite exhibits a fibrous surface, such as in the rupture of ductile materials.

Carbon-fiber-reinforced epoxy resin composites are polymeric composites that are
used extensively in aerospace and military fields due to their durability and lightness.
Carbon fiber shows good mechanical properties [25–27] as well as good fatigue resistance
and heat resistance. When a polymer is used as the matrix phase, low shrinkage, good
adhesion, excellent mechanical properties and chemical resistance are achieved. In addition
to these advantages, carbon fiber also has some disadvantages. For example, composite
laminates using carbon fiber exhibit relatively weak interlayer bond properties. This is due
to the low fracture toughness of epoxy resins caused by the high crosslink density. To find
a solution to this disadvantage, the excellent thermal, electrical, mechanical and functional
properties of CNTs have been the subject of significant research in recent years. CNT-based
fiber-reinforced polymer (FRP) composite materials have become the focus of attention in
various applications [28]. Numerous analytical, experimental and numerical studies have
been performed to demonstrate the ultra-high strength-to-weight ratio and stiffness-to-
weight ratio of CNT-reinforced composite (CNTRC) structures [29–38]. Depending on the
matrix class, various composite materials with CNT reinforcement have been produced.
Recently, studies including bending, buckling and vibration analyses of polymer matrix
composites reinforced with carbon fibers and CNTs have been of interest. Peigney et al. [39]
and Zhan et al. [40] created several examples of CNTs-reinforced ceramic resin, and Milo
et al. [41] embedded CNTs in a polymer matrix. In larger matrix layers, reinforcing by
adding a little amount of nanotube leads to a significant gain in beam stiffness, and SWCNT
buckles at reduced bending angles and greater flattening ratios according to published data
on CNTRCs [42]. CNTs have been successfully incorporated into FRPs, providing increased
strength and stiffness compared to standard carbon fibers. Shahbaz [43] presented a study
on the effect of CNTs on hybrid GFRP/CFRP composites. He used two different techniques
to add CNTs to hybrid glass/carbon-fiber-reinforced composites. Madenci [44] performed
free vibration analysis of FG-CNT composite beams. He estimated the effective material
properties of nanobeams using the mixing rule. Qian et al. [45] showed that, by adding
different percentages of CNT (about 1% by weight) to the matrix material, in their research
on the sample obtained, the hardness of the composite could be increased by between
36% and 42%, and the tensile strength could be increased by 25%. Zhu et al. [46] obtained
the stress–strain curve of 1 and 4 wt% CNT-reinforced epoxy resin. The authors found
a 30–70% increase in the elastic modulus for these weight fractions. Tarfaoui et al. [47]
investigated the effect of CNT in CNTRCs with different volume fractions. They observed
that an increase in the CNT volume fraction decreased (0.5–2%) the material properties after
a certain value. Gouda et al. [48] investigated the impact of CNT on a hybrid composite
GFRP/CFRP at various volume ratios.

The low mechanical properties of the matrix and the weakness of the CFRP interface
are the main reasons for improving the interfacial behavior and epoxy properties of CFRP
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composites by the addition of nanoparticles. Doping large-scale composites with another
material such as CNT can offset the disadvantage of single reinforcement. With the addition
of CNTs to carbon-fiber composites, structural improvements are expected in through-the-
thickness properties, particularly interlayer strength and toughness, which can lead to
increased damage resistance and damage tolerance. On the other hand, the addition of
CNTs may raise other issues that need to be considered; the dispersion of carbon nanotubes
in the matrix phase and the coupling between the matrix and the CNTs should be examined.

A crucial element of structural and continuum mechanics, stability theory, has limitless
applications in civil, mechanical, aerospace, naval and nuclear engineering [49]. The impact
of CNTs added to conventional polymer-mix-based composites during buckling analysis is
examined in this research. Low-CNT volume fractions can visibly change the mechanical
behavior of composites. Experimental tensile and compression tests are used to obtain the
mechanical properties of CNTRC beam, and theoretical and experimental buckling analyses
are presented. Mechanical properties such as density and Young’s moduli are obtained
through experimental tests; thus, the accurate predictions of such composite beams are
significant research objectives. A buckling analysis is performed by applying Timoshenko
theory. The governing equations of motion are derived from the theory using Hamilton’s
principle. In addition to the experimental tests, calculations are made with the mixture rule
model. Within the scope of the study, neat epoxy and 0.3% by weight CNTRC carbon-fiber
composite samples were prepared.

2. Production of Materials

In order to manufacture composite material using the hand layup method, fabric
layers were manually placed into the mold, and the epoxy resin was applied between
each layer of the carbon fabric to completely coat the layer. By using a small roller, the
air was trapped and evacuated. The process was performed at room temperature, and
no curing process was carried out. By uniformly combining CNTs in epoxy resin and
using the mixture of resin/CNT as the matrix of the composite, CNTRC was manufactured
(Figure 1). The industrial method is a production method that uses atmospheric pressure
to compress resin-impregnated layers together. The equipment that was used included a
vacuum pump, peel ply, sealant tape, bagging films, carbon fabric, epoxy resin and infusion
mesh (Figure 2). After layup was finished, the peel ply was applied over the layers to create
a clean surface, and, over the peel ply, a layer of infusion mesh was placed to assist the flow
of resin across and throughout the laminate during the resin infusion process. Layers were
sealed in an airtight vacuum bag, and epoxy resin was transferred by force of vacuum and
passed through the fabric layers. Like the previous method, the process was performed at
room temperature, and no curing was carried out. Some of the advantages of this method
are that no air is trapped, and uniform resin distribution is achieved.

The composite material was manufactured by three layers of carbon fibers as well as
resin epoxy (Figure 3).

The epoxy resin utilized in the manufacturing had a viscosity of 600–900 mPas and
was two phase, with 80–90% diglycidyl ether bisphenol A, and it contained a mixture
of 10–20% aliphatic diglycidyl ether. Multi-walled carbon nanotubes (MWCNTs) were
preferred in the current study due to their low cost and homogeneous dispersibility in
epoxy resins compared to MWCNTs. The mechanical properties of the MWCNTs were a
diameter of 5–50 nm and a length of 10–30 µm. In this study, 200 gr carbon-fiber fabric
produced from Tenax-E HTA 40 3k yarn in plain weave type was used. Carbon-fiber fabric
(CFRP) is ideal for applications where lightness, strength and carbon are important. The
mechanical properties obtained from the manufacturer of these materials are shown in
Table 1.
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3. Analytical Methods
3.1. Effective Properties of CNTRC

Young’s modulus, Poisson’s ratio and shear modulus are a few examples of the
material parameters that need to be understood in order to predict the mechanical behavior
of CNTRCs under buckling stress. In this section, the theoretical mixture rule model utilized
to determine the properties of composites (CNT + epoxy) is defined as [50]:

Eepoxy+CNT
11

= η1VCNTECNT
11 + VmEm (1)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em
22

(2)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm
(3)

ν12 = VCNTνCNT
12 + Vmνm (4)

ρ = VCNTρCNT + Vmρm (5)

where ECNT
11 , ECNT

22 and GCNT
12 are Young’s and shear modulus of the single-walled CNT,

respectively, and Em and Gm represent the corresponding properties of the isotropic matrix.
To account for the scale-dependent material properties, ηi(i = 1, 2, 3) is the CNT/matrix
efficiency parameters which can be determined by matching the effective properties of
the CNTRC observed from the molecular dynamics simulations with the predictions of
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the extended rule of mixture. ρCNT and ρm are the mass densities of the CNT and matrix,
respectively. VCNT and Vm are the volume fractions of the CNT and the matrix, respectively,
and are related by:

VCNT + Vm = 1 (6)

The mixture rule was developed for the mechanical properties of the fiber and matrix
(CNT + epoxy) as follows [51]:

Ecomposite
11

= Vf iberE f iber
11 + VmE(epoxy+CNT)

m (7)

νcomposite
12

= Vf iberν
f iber
12 + Vmνepoxy+CNT

m (8)

3.2. Governing Equations of CNTRC

The displacement field consisting of the axial displacement u and the transverse
displacement w based on the Timoshenko beam theory of the forms are [52–54]:

u(x, z, t) = u0(x, t) + zφx(x, t)
v(x, z, t) = 0
w(x, z, t) = w0(x, t)

(9)

where u0 and w0 are the axial and transverse displacements in the mid plane (z = 0) of the
beam, respectively. φx is the mid-plane rotation of the transverse normal about the y-axis.

The strain–displacement relations can be evaluated as:

εxx = ∂u0
∂x + z ∂φx

∂x
γxz =

∂w0
∂x + φx

(10)

Hamilton’s principle can be written as [55]:

t2∫
t1

(δU + δV − δK)dt = 0 (11)

where K denotes the kinetic energy given by [56]:

δK =
L∫

0

∫
A

ρ(z)[uδu + wδw]dAdx

=
L∫

0
[I0(u0δu0 + w0δw0) + I1(φxδu0 + u0δφx) + I2φxδφx]dx

(12)

in which Ii(i = 0, 1, 2) is the mass moment of inertia given by:

Ii =
∫
A

ρ(z)zidA (i = 0, 1, 2) (13)

and δU is the virtual variation of the total strain energy:

δU =
L∫

0

∫
A
(Q11εxxδεxx + Q55γxzδγxz)dAdx

=
L∫

0

(
Nx

du0
dx − Mx

dδφx
dx + Qx(

dδw0
dx − δφx)

)
dx

(14)

and δV is the virtual work performed by the transverse load q and axially compressive
force Nx0, represented as:
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δV = −
L∫

0

(
qδw0 + Nx0

∂w0

∂x
∂δw0

∂x

)
dx (15)

where the stress-related effects are as follows:

Nx =
∫
A

σxxdA

Mx =
∫
A

σxxzdA

Qz =
∫
A

σxzdA

(16)

The simplified stress–strain constitutive equations are given below:

σxx = Q11εxx
σxz = Q55γxz

(17)

where
Q11 = E1

1−ϑ12ϑ21
Q55 = G13

(18)

Substituting Equations (10) and (17) into Equation (16), the following is a list of all the
stress resultants that may be expressed as material stiffness components and displacements:

∂φx
∂x = D∗

11Mx
∂w0
∂x + φx = 1

ks
A∗

55Qx
(19)

where ks =
5
6 is the shear correction factor, and D∗

11 and A∗
55 are the elements of the inverse

matrix of D11 and A55.

D11 =
h/2∫

− h/2

Q11z2dz =
N
∑

k=1

zk+1∫
zk

Q(k)
11 z2dz

A55 =
h/2∫

− h/2

Q55dz =
N
∑

k=1

zk+1∫
zk

Q(k)
55 dz

(20)

The following equations of motion are obtained for symmetrically laminated beams
by using the integration-by-parts approach and gathering the coefficients of δw0 and δϕx
when the in-plane displacements u0 are zero.

∂Qx
∂x + N̂x0

∂2w0
∂x2 + q = I0

∂2w0
∂t2

∂Mx
∂x − Qx = I2

∂2φx
∂t2

(21)

The equation of motion, Equation (21), may be expressed using Equation (19) in terms
of displacements as:

ksGxz A( ∂2w0
∂x2 + ∂φx

∂x ) + bN̂x0
∂2w0
∂x2 + q̂ = Î0

∂2w0
∂t2

Exx Iyy
∂2φx
∂x2 − ksGxz A( ∂2w0

∂x + φx) = Î2
∂2φx
∂t2

(22)

To obtain the governing equation of buckling under compressive edge load, the inertia
terms and applied transverse load q are both set to zero for the buckling analysis, and
N̂x0 = −N0

xx.
ksGxz A( d2W

dx2 + dφx
dx ) + bN̂x0

d2W
dx2 = 0

Exx Iyy
d2φx
dx2 − ksGxz A( dW

dx + φx) = 0
(23)
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Equation (23) can be solved for dφx/dx to obtain:

ksGxz A
dφx

dx
= −(ksGxz A − bN̂x0)

d2W
dx2 (24)

Integrating Equation (24) with respect to x and differentiating Equation (23) with
respect to x, then substituting them for dφx/dx from Equation (24) obtains the result:

Exx Iyy(1 −
bN0

xx
ksGxz A

)
d4W
dx4 + bN0

xx
d2W
dx2 = 0 (25)

The general solution of Equation (25) is:

W(x) = c1 sin λx + c2 cos λx + c3x + c4 (26)

where

bN0
xx =

λ2Exx Iyy(
1 + λ2Exx Iyy

ksGxz A

) (27)

where the boundary conditions of the beam may be used to derive the integration constants
c1, c2, c3 and c4.

4. Experimental Program

Two different tests were applied in this study: compressive and buckling tests. Two
different types of samples with 0% (neat epoxy) and wt 0.3% CNT were examined. For
each type of sample, two repetitions were investigated to give more accurate results.

4.1. Tensile Test

In order to obtain the tensile strength of the samples, the samples with nominal
dimensions of 250 mm × 25 mm × 3 mm (length x width x thickness) were tested under
tensile forces using a universal testing machine with 10-ton capacity. The distance between
the gages was 200 mm. The procedure given in ASTM D3039 was utilized. The forces were
applied at the speed of 1 mm/min.

4.2. Compressive Test

In order to obtain the compressive strength of the samples, the samples with nominal
dimensions length 150 mm, width 25 mm and thickness 3 mm were exposed to axial
compression forces using a Shimadzu universal testing machine with a capacity of 10 tons.
The distance between the gages was 40 mm. The procedure given in ASTM D695 was
applied. The forces were applied at the speed of 1 mm/min. The test setup utilized in this
study is presented in Figure 4.

4.3. Buckling Test

The samples were examined under compression loads to determine the buckling
behavior of the samples. The nominal dimensions of the specimens were 250 mm ×
25 mm × 3 mm. The samples were tested with the same test machine. Similar to the
compression test, buckling tests were carried out with a load speed of 1 mm/min. Utilizing
clamped–clamped and simple–simple boundary conditions, the buckling performance of
the samples was examined. Claw spacings of 200 mm and 250 mm were chosen for the
clamped–clamped and simple–simple boundary conditions, respectively. The tests setups
for different boundary conditions are shown in Figure 5.
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5. Results

The material properties of the samples produced using micro-mechanical models were
determined analytically, and the outcomes are presented in Table 2 in comparison with the
experimental findings.

Table 2. Young’s modulus model results.

Sample
Young’s Moduli (GPa)

Experimental Analytical

0.0%wt CNT 12.18 14.48

0.3%wt CNT 13.42 16.18

For the buckling analysis of the samples, the analytical solutions based on Timoshenko
theory were in good agreement with the buckling results of the samples obtained by
experiments, as shown in Tables 3 and 4.

Table 3. Comparisons of critical loads for simple–simple CNTRC beams.

0% 0.3%

Experimental 933 1036
Analytical 947 1102

Table 4. Comparisons of critical loads for clamped–clamped CNTRC beams.

0% 0.3%

Experimental 3572 3817
Analytical 3593 3899

Load–displacement curves of the compression tests are depicted in Figure 6. The
results demonstrate that the average compressive strength of CNT1 and CNT2 at the time
of collapse was 17,291.76 N, while that of NEAT1 and NEAT2 was 15,661.21 N. Maximum
compressive load values of CNT1 and CNT2 were 6% and 8.10% higher than those of
NEAT1 and NEAT2, respectively, while CNT2 was 12.6% and 14.80% higher (Table 5). That
is, it was determined that the samples with CNT carried an average of 10.4% more load than
the samples with NEAT. All specimens reached the collapse position after approximately
2.5 mm of displacement. Another issue to be considered when comparing the samples with
CNT and samples with NEAT is that the displacement amounts were the same under these
loads. In other words, samples with CNT carried more load for the same displacement.
In addition, the ratio of the maximum load value to the cross-sectional area of the sample
(25 mm × 3 mm) and the stress values were also calculated (Figure 6). Damage formations
in the samples occurred as shown in Figure 7. The experiment was terminated by observing
fiber breakage damage as a result of typical pressure crushing. The initial stiffness values,
that is, the angle of the curve with the horizontal, were higher in the CNT.

Table 5. The maximum compression load and displacements of samples.

Sample Maximum Load (N) Rate of Increase (%) Maximum
Displacement (mm)

NEAT1 15,816.18 — 2.51
NEAT2 15,506.25 — 2.65
CNT1 16,771.16 6 and 8.10 2.46
CNT2 17,812.36 12.10 and 14.80 2.64
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The buckling load–displacement plots of the specimens are shown in Figures 8 and 9.
The relationship for simple–simple is given in Figure 8, and the relationship for the clamped–
clamped situation is given in Figure 9. When Figure 8 is examined, it can be seen that
the mean buckling load value of CNT1 and CNT2 was 1036 N, while the mean buckling
load value of NEAT1 and NEAT2 was 933 N. Maximum buckling load values of CNT1
and CNT2 were 12.8% and 10% higher than NEAT1 and NEAT2, respectively, while CNT2
was 11.8% and 9.1% higher (Table 6). In other words, samples with CNT carried a 11%
greater buckling load on average than samples with NEAT. All specimens had vertical
displacements between 5.48 mm and 6.73 mm due to buckling. This shows that the simple–
simple supported CNT specimens achieved similar displacement with a higher buckling
load. When Figure 9 is examined, it can be seen that the mean buckling load value of CNT1
and CNT2 was 3817 N as a result of the buckling test, while it was calculated as 3572 N
for NEAT1 and NEAT2. The average load-carrying capacity for the clamped–clamped
boundary condition was 268% higher in the CNT samples and 282% higher in the NEAT



Materials 2023, 16, 614 12 of 17

samples compared to the simple–simple condition (Table 7). Up until the critical buckling
threshold, the specimens showed a more rigid behavior as a result of the clamped–clamped
boundary conditions.
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Table 6. The buckling load and vertical displacements of simple–simple supported samples.

Sample Maximum Load (N) Rate of Increase (%) Maximum
Displacement (mm)

NEAT1 922.20 — 5.48
NEAT2 945.28 — 6.73
CNT1 1040.44 12.8 and 10 6.30
CNT2 1031.68 11.8 and 9.1 6.35

Table 7. The buckling load and vertical displacements of clamped–clamped supported samples.

Sample Maximum Load (N) Rate of Increase (%) Maximum
Displacement (mm)

NEAT1 3516.02 — 3.88
NEAT2 3629.42 — 4.11
CNT1 3825.80 8.8 and 5.4 4.02
CNT2 3808.21 8.3 and 4.9 4.13
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Final damage views on the samples are given in Figure 10. The final damage in both
support boundary conditions was fiber breakage. However, this situation was observed
more clearly in the clamped–clamped boundary condition.
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6. Conclusions

In this paper, the impact of CNTs on the buckling analysis of CNTRC beams was
analyzed analytically and experimentally. The mechanical behavior of composites was con-
siderably altered by small CNT ratios. Considering the literature, significant improvements
were obtained in the case of low CNT ratios.

• The experimental outcomes indicated that adding CNT can improve a composite’s
mechanical performance by up to 0.3%;

• The developed analytical model and the previously presented experimental results
exhibited great agreement;

• The average load-carrying capacity for the clamped–clamped boundary condition was
268% higher in the CNT samples and 282% higher in the NEAT samples compared
to the simple–simple condition. Therefore, the supporting conditions of the samples
caused the capacity and load–displacement curves of buckling behavior to change;

• The damage modes that occurred after compression and buckling were intense fiber
breakage. In other words, in all buckling tests, it was observed that the damage
initiated with micro cracks and showed progressive damage in the form of fiber
rupture.

This study was limited to CNTRC beams and to the compression and elastic buckling
behavior. In further research, many different types of laminates could be employed.
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