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ABSTRACT

Biological systems where order arises from disorder inspires for many metaheuristic optimization tech-
niques. Self-organization and evolution are the common behaviour of chaos and optimization algorithms.
Chaos can be defined as an ordered state of disorder that is hypersensitive to initial conditions. Therefore,
chaos can help create order out of disorder. In the scope of this work, Golden Ratio Guided Local Search
method was improved with inspiration by chaos and named as Chaotic Golden Ratio Guided Local Search
(CGRGLS). Chaos is used as a random number generator in the proposed method. The coefficient in the
equation for determining adaptive step size was derived from the Singer Chaotic Map. Performance eval-
uation of the proposed method was done by using CGRGLS in the local search part of MLSHADE-SPA algo-
rithm. The experimental studies carried out with the electroencephalographic signal decomposition-
based optimization problems, named as Big Data optimization problem (Big-Opt), introduced at the
Congress on Evolutionary Computing Big Data Competition (CEC'2015). Experimental results have shown
that the local search method developed using chaotic maps has an effect that increases the performance
of the algorithm.

© 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Optimization is the technique of finding the most suitable one
among the possible solutions for a particular problem. Many prob-
lems we encounter in the real world, such as timetabling, path
planning, packing, traveling salesman, trajectory optimization,
and engineering design problems, basically point to an optimiza-
tion problem. The problem dimension, the number of possible
solutions and the problem-specific constraints are several factors
that affect the complexity of an optimization problem. Finding
the ideal solution for highly complex optimization problems
increases the cost (time, memory, etc.). The methods used to solve
optimization problems fall into two categories: deterministic and
stochastic. Deterministic methods use gradient methods to reach
the ideal solution. Deterministic methods achieve the same ideal
solution when operated under the same initial conditions. On the
other hand, stochastic methods try to reach the ideal solution using
gradient-free techniques and contain randomness. Metaheuristic
methods which are stochastic, aim to improve multiple agents
until they reach the specific stopping criteria by operating multiple
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iterations with their own rules. As the final solution, the best solu-
tion obtained at the end of the iteration is presented [1]. Although
metaheuristic methods do not guarantee the optimum solution,
they stand out with their ability to be applied easily to many prob-
lems and find solutions quickly [2]. These methods have a wider
application area since they are not problem-dependent [3].

Metaheuristic optimization algorithms have two important
search strategies: exploration and exploitation. Exploration refers
to the ability of a method to explore the search space globally,
avoiding and getting rid of the local minimum. Exploitation, on
the other hand, is the ability to discover possible new solutions
close to the current solution and improve the existing solution to
obtain better solutions. The performance of an algorithm depends
on using exploration and exploitation in a balanced way.

The Big-Opt problem set, which is utilized for performance
evaluation in this paper, is modeled in the Optimization of Big Data
2015 Competition by Goh et al. It is an NP-Hard Big Data optimiza-
tion problem (Big-Opt) abstracted from dealing with EEG signals
through ICA. This problem was categorized as a big data problem
which is complex and challenging because it involves a significant
number of decision variables, is nonlinear, and necessitates han-
dling EEG signals in real-time [4,5]. As the number of decision vari-
ables increases, the complexity of these problems grows
exponentially, making it increasingly difficult to explore all possi-
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ble solutions and more likely to stuck with local solutions. This
results in a high computational cost for evaluating the objective
function, which is used to determine the quality of a solution.
Given these challenges, it is needed to develop efficient, effective,
and robust methods for solving these problems, with a high-
quality solution. One of such effective approaches is the memetic
algorithm.

Memetic Algorithms, which get their inspiration from a combi-
nation of population’s individuals’ natural adaptation and lifelong
learning, are created by combining population-based algorithms
and local search methods. Thanks to the collaboration between
global search and local search, memetic algorithms provide higher
performance than using either stand-alone local search or stand-
alone population-based global search. Local search methods aim
to move an existing solution of the problem to a better solution
in each new iteration, and the search continues until the improve-
ment stops. In global search, unlike local search, some solutions
that do not create improvement are also considered in order to
escape from the local optimum solutions. The effectiveness of the
memetic algorithm is highly influenced by the local search tech-
nique. This study’s goal is to provide a local search method that
can be used within memetic algorithms, one of the most effective
techniques for solving large scale optimization problems (LSGO).

Chaos is a nonlinear dynamic system with random behavior
that is sensitive to initial conditions. It appears random, but ran-
domness is not necessarily required to provide chaotic behavior.
In recent years, chaotic maps have been used instead of random
number generators used in metaheuristic methods. In particular,
many successful applications have presented improvements in
the performance of metaheuristic approaches by using chaotic
maps to create the initial population, and the optimization tech-
nique’s convergence speed to the global optima and search the
solution space. In the part of the proposed method which provides
the movements that guide the local search, the number obtained
from the chaotic map is used as the coefficient. Thus, a chaotic
effect on the step size change which causes causatives in motions
that drive the local search has occurred. As a result, CGRGLS is
designed.

The reminder of the paper is organized as follows. In section 2,
related works as literature review about Big-Opt Problems and
Chaos are given. Section 3 explains the proposed local search
method in detail. Performance evaluation and experimental results
are given in section 4. Finally, in section 5, conclusions are made.

2. Related works

The aim of this study is to improve the Golden Ratio Guided
Local Search method, inspired by chaos theory, and to use the
new approach on Big Data Optimization Problems. Source research
was carried out in this direction.

Chaos is defined mathematically as “randomness” produced by
simple deterministic systems. Although it may seem random and
unpredictable due to the sensitivity of chaotic systems to initial
conditions, it has a regularity quality as well, so chaos can provide
order to arise from disorder [6]. When the uses of chaos with meta-
heuristic methods are examined, it is seen that the studies are car-
ried out for two basic purposes. One of them is to use chaos as a
random number generator, and another is to utilize chaotic search
as the local search method. Typically, the initial population of indi-
viduals representing possible solutions to the problem is one of the
influential factors for metaheuristic algorithms performance.
Because algorithms improve these individuals in the population
with operations to reach the best solutions in the search space.
Therefore, chaos is used as a random number generator in meta-
heuristic algorithms and the number obtained from this generator
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is used for the initial population generation or as a coefficient in
the operations performed during the possible solution improve-
ment process [6-11].

The chaos approach is preferred as a useful method to ensure
performance stability of algorithms by balancing exploration and
exploitation [8]. There are many algorithms which have chaotic
version such as genetic [12], Firefly [13], Krill Herd [14], PSO
[15], Differential Evolution [11], Butterfly [16], Grey Wolf[17],
Grasshopper [18], Fruit Fly [19] etc. The methods using chaos have
a high-level mixing capability in all of these approaches and this
leads to solutions that are more diverse and mobile. These kinds
of algorithms behave better than original forms in terms of the out-
put due to the ergodicity and mixing properties of chaos [19].

Local search methods act by applying local changes from solu-
tion to solution in the space of candidate solutions until a satisfac-
tory solution is found. Therefore, different local search methods are
incorporated into optimization algorithms for enhancing their
search ability. There are a lot of local search methods designed
for this purpose and used within optimization algorithms such as
chaotic search, gravitational search, golden section search, multi-
ple trajectory search, variable neighborhood search, greedy ran-
domized adaptive search, etc. [20-26].

In this paper, Big-Opt benchmark is used for evaluation the per-
formance of proposed method. This problem set has a multi-
objective version and a single objective version. This publication
focuses on a single objective version therefore, the studies were
examined in this context. When the studies on big data optimiza-
tion problems are examined, it is understood that swarm
intelligence-based algorithms or evolutionary algorithms cannot
perform successfully on these problems as they are designed. For
this reason, it is seen that these algorithms are modified according
to the problem and its properties or strengthened with new mech-
anisms before being used to solve Big-Opt problems.

One of these mechanisms is a population initiation technique
introduced by Majdouli et al. They used data directly from the orig-
inal EEG signal rather than randomly initializing parameters of the
potential solutions within the specified lower and upper bounds in
the Fireworks Algorithm [27]. Subsequently, they introduced a
Fireworks Algorithm based Framework (FAF) for Big Data opti-
mization that uses besides the population initiation technique a
modified search strategy to enhance the exploration capabilities
of the classical fireworks algorithm [28]. Loukdache et al. proposed
a new variant of the Clonal Selection Algorithm (Big-OPT CLO-
NALG) by using this population initiation technique and a search
strategy based on the hyper-mutation operator for the single
objective form of Big optimization problems [29]. Another algo-
rithm using this technique is the source-dependent Harmony
Search Algorithm (slinkHSA) [30].

Differential Evolution (DE) algorithm is one of the best perform-
ing algorithms in the field of large-scale optimization [6,8]. There-
fore, it has also been preferred in solving Big-Opt problems and
many improvements were made on. Elsayed and Sarker proposed
an adaptive configuration of DE (ACDEs) which determines the best
variant to evolve individuals from three different DE variants in
parallel and additionally applies a local search to enhance the
exploitation capability of the algorithm [4]. In their other study,
they also proposed a general differential evolution framework that
starts solving problems with multiple initial populations instead of
a single initial population, and uses DE algorithms with different
candidate generation mechanisms and control parameters for each
population [5]. Another DE algorithm (CC-HDE) which is supported
by a cooperative co-evolution method and heterogeneous memetic
approach yields superior outcomes compared to other adaptive DE
methods for the mentioned big data optimization problems [31].

Meselhi et al. designed a fast differential evolution algorithm
which is a DE Framework by using the parallel computing power
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of a graphics processing unit (GPU). The techniques it uses can be
listed as an adaptive way to control the DE parameters, parallel
operations to reduce computational time, a gradient based local
search to increase the algorithm’s rate of convergence [32,33].

Arslan and Aslan modified the standard ABC algorithm with
some techniques (initial solution generation approach, neighbor-
hood competition, crossover operators, lattice-based approach)
taking into account the big data features, and suggested the
lattice-based ABC (LBABC) algorithm [34]. By adapting the ABC
algorithm to take into account the unique properties of big data
optimization issues, a novel variant of the algorithm known as
genetic big data ABC, or simply gdatABC is introduced by Aslan
and Karaboga [35]. In another study of Aslan, the standard ABC
algorithm and its well-known variants on handling big data opti-
mization challenges are compared. According to his experimental
investigations, the conventional ABC (COABC) algorithm is still
protecting its advantageous sides [36].

Many different algorithms have been used to solve Big-Opt
problems. Cao et al. proposed a nature inspired algorithm (PBO)
that mimics the motion properties of materials in three different
phase types (solid phase, liquid phase and gas phase) by using cor-
responding operators (perturbation operator, flowing operator, dif-
fusion operator) [37]. A novel form of the Immune Plasma
algorithm (IPA) known as regional IPA (rIPA) used a pandemic
management strategy centered on restricting the free movement
across regions to solve Big-Opt problems [38]. Zhang et al. pro-
posed the multi-agent genetic algorithm for solving a single objec-
tive EEG optimization problem and called as MAGA-BigOpt. In this
algorithm, neighborhood competition and self-learning operators
are redesigned by combining with crossover and mutation opera-
tors [39].

3. Methodology
3.1. Chaotic maps

Chaos theory refers to chaotic dynamic nonlinear systems.
These systems show high sensitivity to initial parameters. Minor
chaotic improvements in the preliminary parameters cause signif-
icant changes in the output and performance of the system. How-
ever, chaos systems are random. Although chaotic systems show
random behavior, they do not need random parameters. Another
feature of these systems is ergodicity. The ergodicity property of
chaos can ensure that chaotic variables traverse all states non-
repeatedly inside a certain range according to their laws. So, this
can be used to avoid falling into the local minimum solution.
Thanks to these features, chaotic maps inspired by chaos systems
are frequently used to increase the performance of population-
based optimization methods [40].

Chaotic maps are stochastic, deterministic, and nonlinear strat-
egy frequently used to generate long-term random numbers. The
numbers in the sequences created by these maps have great
advantages such as not falling into repetitions, being spread over
a wide spectrum instead of being stuck in a certain region, and
low sequence production and storage costs. Because the randomly
generated numbers in metaheuristic algorithms could be the same
and within a certain range, these random numbers sometimes
cause algorithms to be stuck into local minimums. For such rea-
sons, chaotic sequences with a certain systematic, which can
encompass the entire spectrum and do not fall into repetition,
can be produced, and these sequences can be used instead of using
randomly generated numbers. Although there are many different
types of chaotic maps in the literature, there are ten chaotic maps
that are frequently preferred in studies. These maps: Chebyshev
[41], Circle [42], Gaussian [43], Iterative [44], Logistic [45], Piece-
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wise [46], Sine [47], Singer [15], Sinusoidal [48] and Tent [13]
chaotic maps. Chaotic sequences are created from these chaotic
map equations with an initial parameter of the desired size.
Instead of using random numbers in the required position, the next
number is drawn from the generated chaotic sequence and used.
The numbers in this sequence are unlikely to be the same and
spread over a wide spectrum [49]. The chaotic maps formulation
is given in Table 1. As a result of the evaluations detailed in section
4, it was decided to use singer as a chaotic map within the pro-
posed method. The spectrums of 100 numbers generated using
Singer Chaotic Map is shown in Fig. 1.

The use of long-period random number sequences plays an
important role in optimization processes. Ideal sequences of ran-
dom numbers should have a spread spectrum, be non-uniform,
have a low cost of storage, and should not take much time to gen-
erate. However, since the random number sequences used gener-
ally have a uniform distribution, the generated numbers can be
stacked in a certain range or the same values can be repeated. This
may cause the algorithm to decrease the diversity in the produc-
tion of new individuals or to get stuck in the local minimum. The
use of chaotic maps can help to eliminate these negativities.
Because chaotic structures make it possible to scan a larger solu-
tion space, increasing the probability of convergence to the global
optimum without being stuck with the local optimum.

3.2. Chaotic golden ration guided local search (CGRGLS)

In this paper, Golden Ratio Guided Local Search was improved
using chaotic step size and its performance was tested in
MLSHADE-SPA which is a memetic framework. In CGRGLS, a local
search process is implemented on the best individual which has
the best fitness value in the population along each dimension from
the first to the last. There is an initial step size that is 0.1 corre-
sponds for each dimension of problem and these step sizes are
stored in a Dynamic Step Size (dss) array which has an equal item
with dimension number. The step size of each dimension varies
throughout the search process depending on how the best individ-
ual’s fitness value improves. In order to obtain a better new solu-
tion by improving the existing solution, opposite points are
evaluated in each dimension as much as the step size of that
dimension. The most important factor affecting the performance
of this method is the adaptive step size. In the previous version
of GRGLS [50], the adaptive step size was changed using a coeffi-
cient based on the golden ratio and the inverse golden ratio. In
the new proposed version, which is named as CGRGLS, the value
produced by the chaotic map is used as another coefficient in addi-
tion to the existing equation. In this way, the change of the step
size, which provides the movements that guide the local search,
in the golden ratio guidance, is affected chaotically. Flowchart of
the CGRGLS is presented in Fig. 2. All following equations in flow-
chart, x{ represents current position,x{*! represents next position,

dss; represents current step size of corresponding dimension,

dssf+1 represents next step size of corresponding dimension, GR
represents golden ratio 1.618, IGR represents inverse golden ratio
0.618, CN represents chaotic number produced by Singer Chaotic
Map.

The time complexity of an algorithm is a measure of the amount
of time it takes for the algorithm to complete its task as a function
of the size of its input. Big O notation provides an upper bound on
the number of operations required as a function of the size of the
input. The main subject of this study is to develop a local search
algorithm that can be used within memetic algorithms or frame-
works. Therefore, the local search algorithm proposed in the time
complexity analysis is focused on. The proposed method CGRGLS
works on each dimension of best solution one by one for improving
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Table 1
Ten Different Chaotic Maps.
No. Map Name Definition
M1 Chebysev map [41] X1 = coscos(k(xy))
M2 Circle map[42] Xge1 = mod(1)
M3 Gauss [43] Xgs1 = {0% = 0, oy = w — [Xlk] symearn Otherwise, x > 0
M4 Iterative map [44] Xir1 = sinsin(%),a € (0,1)
M5 Logistic map [45] Xpe1 = X (1 — Xy)
M6 Piecewise map [46] 1 = (% 0 <x <Psh P<x <3 obp 1 <x<1-PLE1-P<x <1
M7 Sine map [47] Xps1 = §sinsin(mxy),0 <a< 4
M8 Singer map [15] X1 = J(7.86x, — 23.31x2 + 28.75x; — 13.302875x¢) pu = 1.07
M9 Sinusodial map [48] X1 = axﬁsinsin(nxk)
M10  Tent map(13] X1 = {85, % < 0.72(1 — x,), % > 0.7
Singer solve large-scale global optimization problems [51]. While
L MLSHADE-SPA stands for LSHADE quasi-parameter adaptation
on memetic framework, LSHADE-SPA means *“differential evolution
based on success history with linear population size reduction
08 and quasi-parameter adaptation”. In this algorithm, the
e ‘ population-based algorithms LSHADE-SPA [52], EADE [53], and
‘ ’ ANDE [54] are employed for global exploration, while the local
-~ 06 search method MMTS [51] is employed for local exploitation. As
f_i i a part of its search process, MLSHADE-SPA employs a variety of
3 .5 techniques, including population reduction, divide and conquer,
S o4 and sharing computational resources. For detail information
[50,51].
03 In this study, MLSHADE-SPA is improved by replacing its local
= search method (MMTS) with Chaotic Golden Ratio Guided Local
o Search (CGRGLS) and it is named Chaotic Improved MLSHADE-
01- - SPA (CIMLSHADE-SPA). Fig. 3 shows in blue where CGRGLS is used
i in the corresponding algorithm.
"0 20 40 60 80 100
ltarations { k )

Fig. 1. Singer Chaotic Map Spectrum.

the quality of the best solution found. As seen in Fig. 2, the pro-
posed algorithm consists of only one loop containing equation,
assignment, comparison instructions, each of which costs O(1).
This loop is repeated as many as the number of dimensions. There-
fore, the time complexity of proposed local search algorithm is O
(n) according to Big O notation. n represents dimension size of best
individual in this notation. This means that the running time of the
algorithm increases linearly as the input size increases.

3.3. Main algorithm MLSHADE-SPA

Algorithm created by combining population-based algorithms
and local search methods are called memetic algorithm. It is an
effective option for solving large-scale optimization problems.
The objective of this study is to develop a local search method that
can be utilized within memetic algorithms. So a memetic algo-
rithm is needed to evaluate the performance of the proposed local
search method.

Memetic algorithms or frameworks may use one or more local
search methods due to their design. In order to evaluate the effec-
tiveness and success of the proposed method, memetic algorithms
using a single local search method have been considered. In partic-
ular, algorithms using local search methods that have common fea-
tures with the proposed method are emphasized. For this reason,
MLSHADE-SPA, which has proven its success in LSGO competitions
at CEC conferences, has been chosen as the main framework.

MLSHADE-SPA is a memetic framework designed by combining
three population-based algorithms with a local search method to

4. Performance evaluation
4.1. Experimental environment

The computer platform used for the performance evaluation
tests is based on an Intel(R) Core i7-7700HQ processor running
at 2.80 GHz, 16.0 GB of RAM, and the Microsoft Windows 10 Enter-
prise operating system. MATLAB was used for all experimental
work. The MLSHADE-SPA code, which served as the basic basis
for our tests, can be downloaded from the authors’ website [55].
In addition, the proposed method CGRGLS was also coded in
MATLAB.

4.2. Benchmark functions

EEG is a test that measures the electrical activity in the brain
and records brain wave patterns through electrodes placed on
the scalp. EEG signals play an important role in detecting neurolog-
ical disorders and certain conditions in the nervous system. With
EEG, non-brain electrical activities which are called artifact such
as swallowing, coughing, eye and heart movements can be
recorded by electrodes. Noise in EEG signals increases the exami-
nation and interpretation time and might prevent diagnosing neu-
rological disorders accurately [56]. For the purpose of removing
artifacts, the signals are passed through an Independent Compo-
nent Analysis, which is a well-known blind source separation
(BSS) technique for the removal of artifacts, to reconstruct the sup-
posed true brain signals [57]. Goh et al. modeled an NP-Hard Big
Data optimization problem (Big-Opt) abstracted from dealing with
EEG signals through ICA in the Optimization of Big Data 2015 Com-
petition. This problem has a huge number of decision variables,
nonlinear and requires a real-time handling of EEG signals, so it
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Fig. 2. Flowchart of the CGRGLS.

was categorized as a big data problem which is complex and chal- reach the correct EEG signals by minimizing the artifacts for every
lenging [57,58].The main purpose of the Big-Opt problem is to second measurement from the device. Therefore, the problem tries
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- Firstly, the framework starts with a randomly generated
population (initial population size=250).

- All parameters of the framework ( LSHADE_SPA, EADE ,
ANDE , MMTS) are initialized.

- The available computational resource(max Fitness Evolution
number=maxFEs) is divided into rounds (rounds=50).

- While sharing computational resources in each round,
Fitness Evolution number (FEs) are split into two equal parts.
Population-based algorithms use up half of the FEs, with the
remaining amount being consumed by local search.

Initialization

- The number of FEs allocated for population-based
applications is also divided into two. Half of it is consumed by
the LSHADE_SPA algorithm by working on all dimensions,
while the other half is shared equally among three algorithms
(LSHADE_SPA, ANDE, EADE) once , and then the sharing
process is calculated and distributed according to the
improvement ratio of each algorithm. At this stage, each of the
3 algorithms(LSHADE_SPA, ANDE, EADE) works on one of
3 randomly divided groups. In other words, each of the
population-based algorithms as subcomponent optimizers
tries to optimize the problem by focusing on the dimensions
assigned to it.

- At the end of each round, first the performance of each
population-based algorithm is calculated and then using this
value, improvement ratio is calculated. Thus, resources
allocated for each algorithm are updated according to the
improvement ratio of each algorithm.

The other half of the FEs allocated for a round is consumed
by the local search method (CGRGLS) to improve the quality
of the best solution ever found. CGRGLS works on each
dimension of the best solution one by one.

To improve the performance of CIMLSHADE-SPA, Linear
Population Size Reduction (LPSR) method which decrease
the population size according to a linear function is applied at
the end of each round. Population size will reach the minimum
number of individuals which is 20 within the first half of
maxFEs. At the end of the 50 rounds, maxFEs is consumed
and the best solution will be achieved.

Local

Memetic Framework (Chaotic Improved MLSHADE-SPA (CIMLSHADE-SPA))
Population-Based Algorithms (EAs)

Finalization

Fig. 3. Structure of Chaotic Improved MLSHADE-SPA.

to separate the obtained EEG signal into two components, one of
which focuses on getting the most similar to the original signal,
while the other tries to remove artifacts as much as possible.
Goh et al. took 256 samples over 4, 12 and 19 interdependent
time series, taking one second of measurements and recording
the measurement results. Thus, they generated synthetic data from
the measurements of the EEG signals and separated data as six dif-
ferent problem instances. Six datasets which have different sizes
and difficulties in terms of the number of local signals, artifact
sources and noise level are as shown in Table 2. While the names
D4, D12 and D19 are used for the default state of recorded one sec-
ond measurements by referencing the number of interdependent
time series, the names D4N, D12N and D19N are used for the state
of added a certain amount of artifact to the default state. The num-
ber of variables in the problem is defined by multiplying the num-
ber of time series and the length of EEG signals. For each time
series, the length is determined as 256 so for example, if the data-
set has 4 time series, this will define a 1024 variables optimization
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problem. Therefore D4, D12 and D19 problems have 1024, 3072,
and 4864 variables respectively. This benchmark set consists of
real-world problems, provides a larger number of different data-
sets than those used in LSGO benchmarks, and contains noise
and noiseless problems that are not common in the LSGO domain
[59].

Let N indicates the number of inter-dependent time series, M
represents the number of samples obtained, and NxM represent
the size of the X matrix which store the results of measurement.
A linear transformation matrix and S signal matrix consisting of
N rows and N columns, X matrix can be defined as follows:

X=AxS (1)

The problem is to divide the matrix S which represents EEG sig-
nal into two matrices, S1 and S2, each of which has the same num-
ber of dimensions as S [58]. The S1 matrix represents the noise-
separated part of the S matrix, and the S2 matrix represents the
noise-correlated part of the S matrix [34].

S=S1+52 (2)

X=A%S51+AxS2 (3)

Goh et al. determined that Pearson correlation coefficients cal-
culated as in equation (4) by using X, A and S1 matrices can be used
to divide the S matrix into S1 and S2 matrices in the most appropri-
ate way. In Eq.4, C represents the Pearson correlation coefficient
between X and A x S1,covar(.) represents the covariance matrix,
and o(.) represents the variance. Maximizing C's diagonal elements
is the goal, while reducing off-diagonal elements to zeros. The dif-
ference between S and S1 should also be as small as possible; in
other words, S1 should be as identical to S as possible [58].

_ covar(X,AxSy)

— 0(X)xa(AXS;) “)

The objective functions aimed at determining the quality of the
signal segment are defined as follows.[57,58]

minf, = > G Y (1- G 5)
i j#i i
minf, = o 3 57 (8- Siy)” )
i
minF =f1+f2 (7)

This benchmark has a multi-objective version and a single
objective version. While multi-objective version is related with
the minimization and maximization properties of the off-
diagonal and diagonal elements of the C matrix, single objective
version is used to evaluate how the S1 matrix is similar to the S
matrix [58,60]. The single objective which is studied in this paper
occurs by combining linearly the results of two fitness functions.

Table 2

Problem Details of Big-Opt Benchmark Set.
Dataset Instance Number of Artifact Number of Source Data Length Size Noise
D4 2 4 256 1024 No
D4N 2 4 256 1024 Yes
D12 6 12 256 3072 No
D12N 6 12 256 3072 Yes
D19 6 19 256 4864 No
D19N 6 19 256 4864 Yes




Havva Giil Koger, B. Tiirkoglu and S.A. Uymaz
4.3. Experimental results

GRGLS was improved using chaotic step size and the perfor-
mance of proposed CGRGLS was tested with Big-Opt Problems in
MLSHADE-SPA which is a memetic framework.

Within the scope of the study, four performance analysis exper-
iments were performed to verify the efficiency of the proposed
CGRGLS which is a local search method.

These performance analysis experiments can be listed as
follow:

1. Choosing the most successful chaotic map by comparing 10 dif-
ferent chaotic maps that are well known in the literature.

2. Comparison of the data obtained from running the algorithms
created by using MMTS, GRGLS and the proposed method
(CGRGLS), one by one as a local search method within the same
memetic framework, under the same conditions.

3. To show the performance of a memetic framework which use
proposed CGRGLS as local search method over Big-Opt prob-
lems by comparing with other algorithms.

4, The success of the proposed method was verified by comparing
the performance with the winners of the LSGO Competitions of
CEC.

4.3.1. Chaotic map selection

When publications about chaotic maps are examined, it is not
easy to identify which chaotic map will perform best. For this rea-
son, 10 different chaotic maps, which are well known in the liter-
ature and shown in Table 1, were tested separately, and the most
suitable chaotic map that would increase the performance of the
method was tried to be determined.

Experimental results were obtained from the mean of 25 inde-
pendent runs. As the stopping criterion, 50.000 Fes (Fitness Evolu-
tion) for D4 and D4N which has 1024 variables, 150.000 FEs for
D12 and D12N which has 3072 variables, 250.000 FEs for D19
and D19N which has 4864 variables. Table 3 lists the results of
the tests performed using each map separately. The results of 25
independent runs are shown as std, mean, and best values. The
best average value obtained in each function is marked with a bold
style. At the bottom of the table, there are the overall total ranking
values.

The results in Table 3 show that the algorithm using Map8
achieves the best results among the ten maps. It is seen that 4
out of 6 functions obtained the best value, in other word, map8
is successful in 67 % of the functions. The most successful maps
after Map8 are Map2 and Map10, with the best value in only one
out of the entire dataset. We understand that since map8 has bet-
ter values in most of the functions, it creates a better exploration-
exploitation balance than other methods, so it is more perfor-
mance. Therefore, it was decided to use the numbers produced
by the Singer Chaotic Map (Map8) as a multiplier within the pro-
posed local search method.

Chaotic maps are mostly used as random number generators in
metaheuristic algorithms. In the proposed first version of the local
search method, named as GRGLS, the step size change was made
with the golden ratio (GR = 1.618) or inverse golden ratio
(IGR = 0.618) according to the conditions. In new proposed version
of the local search method, named as CGRGLS, by using the value
obtained from singer chaotic map as another multiplier besides
GR and IGR in the equation, it is ensured that changing the motion
step size corresponding to each dimension that play an important
role in the performance of the local search method is affected
chaotically.

Engineering Science and Technology, an International Journal 41 (2023) 101388

4.3.2. Comparison of local search methods

When the memetic algorithms used in the Large-Scale Global
Optimization (LSGO) field are examined, MTS-LS1 came into
prominence and it is seen that it and its variants are preferred in
many algorithms as local search method [26,50,51,61-64]. This
technique was proposed in Multiple Trajectory Search for LSGO
(MTS) by Tseng and Chen in 2008 [26]. In this algorithm, 3 different
local search methods are used but MTS-LS1 is the most effective
one for LSGO among these methods. This local search method,
which strikes a fair balance between exploration and exploitation,
makes it possible to construct powerful and effective algorithms to
deal with the difficulties of LSGO.

In order to test the performance of CGRGLS, the local search
method proposed in this publication, MMTS and GRGLS methods
which were used as local search methods within the MSHADE
SPA, were chosen. The common point of the three methods is that
they are the suggested methods inspired by the MTS-LS1 method.
MMTS was used in MLSHADE-SPA algorithm as a local search
method by Hadi et al. in 2019 [51]. In this method, the difference
between the current minimum and maximum values of each
dimension is multiplied by a random number in the range [0,1],
and this yields the initial step values for each dimension. In order
to obtain a better new solution by improving the existing solution,
opposite points are evaluated in each dimension as much as the
step size of that dimension. As long as the result is successful,
the step size is increased linearly.

GRGLS was proposed in MLSHADE-SPA algorithm as a local
search method by Koger and Uymaz 2021 [50]. In this method,
there is an initial step size that is 0.1 corresponds for each dimen-
sion of problem. The step size of each dimension varies throughout
the search process depending on how the best individual’s fitness
value improves. Opposite points are evaluated in each dimension
as much as the step size of that dimension as in the other method
MMTS. The adaptive step size is changed using a coefficient based
on the golden ratio and inverse golden ratio unlike MMTS.
Although the CGRGLS method works the similar as the GRGLS local
search method, there is a difference in adaptive step size change.
Step size changes by multiplying by the number produced by the
singer chaotic map in addition to the existing multipliers which
are golden ratio or inverse golden ratio.

As a result of the map selection tests explained in detail in the
previous section, it has been determined that the chaotic map that
provides the most effective and efficient contribution to the pro-
posed method is Singer. CGRGLS, which was developed with the
effect of Singer chaotic map used as a random number generator,
was compared with the other two local search strategies. The
parameter values and the termination conditions selected same
as Chaotic Map Selection part.

Table 4 lists standard deviations, mean, best and time values of
the tests results. According to the Table 4, proposed local search
method achieved the first place by obtaining the best results in
four of the six data sets (D12, D12N, D19, D19N), while the MMTS
method achieved the best results in the D4 and D4N data sets and
became the second method. However, the GRLGS algorithm, which
is the previous version of the proposed method, could not obtain
the best value in any data set. This status proves that proposed
CGRGLS method effectively improves the previous version of itself.
The strong performance of the CGRGLS algorithm is the result of
the ergodicity of chaotic maps and an effective exploration of the
solution space. Also, it is seen that the local search methods close
to each other in terms of time and the developed method has
slightly better results than the others.

Optimization methods show unique search behaviors while
searching for the optimum solution. Convergence curves are the
most important tool in revealing the solution-seeking behavior of
an optimization method. Convergence curves are generated based
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Table 3
Results of Chaotic Maps Comparison.
Map1 Map2 Map3 Map4 Map5 Map6 Map7 Map8 Map9 Map10
D4 Best 6.895E-02 6.973E-02 6.824E-02 6.814E-02 6.953E-02 6.960E-02 6.795E-02 6.831E-02 6.741E-02 6.901E-02
Mean 7.315E-02 7.492E-02 7.208E-02 7.310E-02 7.209E-02 7.333E-02 7.299E-02 7.168E-02 7.261E-02 7.358E-02
Std. 2.980E-03 7.918E-03 3.018E-03 3.975E-03 1.500E-03 3.939E-03 3.530E-03 2.413E-03 3.553E-03 5.764E-03
Rank 7 10 2 6 3 8 5 1 4 9
D4N Best 6.682E-02 6.647E-02 6.648E-02 6.697E-02 6.578E-02 6.682E-02 6.642E-02 6.675E-02 6.592E-02 6.727E-02
Mean 7.066E-02 7.099E-02 7.088E-02 7.105E-02 7.135E-02 7.233E-02 7.130E-02 6.948E-02 6.961E-02 7.058E-02
Std. 3.488E-03 3.645E-03 3.952E-03 4.380E-03 3.761E-03 4.065E-03 3.413E-03 2.373E-03 2.267E-03 3.021E-03
Rank 4 6 5 7 9 10 8 1 2 3
D12 Best 3.601E-02 3.776E-02 4.020E-02 4.094E-02 3.569E-02 4.632E-02 3.589E-02 3.408E-02 3.601E-02 3.924E-02
Mean 5.392E-02 5.544E-02 5.908E-02 5.736E-02 5.959E-02 5.713E-02 5.341E-02 5.287E-02 5.749E-02 5.836E-02
Std. 1.025E-02 1.010E-02 1.373E-02 1.005E-02 1.061E-02 7.781E-03 8.253E-03 1.009E-02 1.344E-02 9.868E-03
Rank 3 4 9 6 10 5 2 1 7 8
D12N Best 4.278E-02 4.344E-02 3.867E-02 4.285E-02 4.395E-02 4.151E-02 4.170E-02 3.417E-02 4.111E-02 3.878E-02
Mean 5.658E-02 5.696E-02 5.451E-02 5.694E-02 5.855E-02 5.943E-02 5.507E-02 5.606E-02 5.653E-02 5.280E-02
Std. 8.928E-03 9.255E-03 8.064E-03 1.066E-02 1.130E-02 9.942E-03 8.839E-03 1.161E-02 1.021E-02 1.046E-02
Rank 6 8 2 7 9 10 3 4 5 1
D19 Best 4.844E-02 5.093E-02 4.790E-02 4.830E-02 4.800E-02 4.451E-02 4.846E-02 4.743E-02 4.793E-02 4.987E-02
Mean 6.314E-02 6.223E-02 6.276E-02 6.293E-02 6.384E-02 6.223E-02 6.238E-02 6.298E-02 6.256E-02 6.277E-02
Std. 8.622E-03 9.358E-03 8.925E-03 8.969E-03 9.451E-03 9.304E-03 7.469E-03 1.086E-02 9.130E-03 9.808E-03
Rank 9 1 5 7 10 2 3 8 4 6
D19N Best 4.642E-02 4.412E-02 5.230E-02 4.612E-02 4.992E-02 4.738E-02 4.700E-02 4.587E-02 4.678E-02 4.755E-02
Mean 6.340E-02 6.210E-02 6.333E-02 6.228E-02 6.219E-02 6.215E-02 6.221E-02 6.046E-02 6.178E-02 6.169E-02
Std. 7.960E-03 9.513E-03 8.579E-03 9.655E-03 8.541E-03 9.583E-03 9.081E-03 8.496E-03 8.875E-03 9.267E-03
Rank 10 4 9 8 6 5 7 1 3 2
Best count 0 1 0 0 0 0 0 4 0 1
Total Rank 39 33 32 41 47 40 28 16 25 29
Table 4
Comparison results of CGRGLS with other local search methods.
MMTS GRGLS CGRGLS
Best Mean Std Time Best Mean Std Time Best Mean Std Time
D4 6.683E-02  7.052E-02 2.119E-03 1.87E+01 9.376E-01 1.023E+00 5.247E-02 1.96E +01 6.831E-02 7.168E-02 2.413E-03 1.86E + 01
D4AN  6.559E-02 6.817E-02 1.347E-03 2.06E +01 8.651E-01 1.031E+00 8.335E-02 2.16E+01 6.675E-02 6.948E-02 2.373E-03 1.86E + 01
D12 5.097E-02 5.975E-02 3.771E-03 1.30E + 03 5.299E-01 5.798E-01 3.430E-02 1.26E + 03 3.408E-02 5.287E-02 1.009E-02 1.25E + 03
D12N 5.328E-02 5.953E-02 4.309E-03 1.32E +03 5.228E-01 6.020E-01 3.990E-02 1.31E+03 3.417E-02 5.606E-02 1.161E-02 1.28E + 03
D19 7.653E-02 8.520E-02 5.668E-03 3.05E + 03 3.082E-01 3.611E-01 2.347E-02 3.10E + 03 4.743E-02 6.298E-02 1.086E-02  3.04E + 03
D19N 7.743E-02 8.711E-02 5.848E-03 3.12E +03 3.118E-01 3.687E-01 2.469E-02 3.11E+ 03 4.587E-02 6.046E-02 8.496E-03 3.10E + 03

on the best solution obtained by the method throughout the itera-
tions. The convergence curves obtained by three various local
search techniques in six well-known Big-Opt Benchmark Functions
were produced as a result of the experimental study. These conver-
gence curves are shown in Fig. 4.

As seen in Fig. 4, CGRGLS and MMTS methods obtain close
results on 1024 dimensional D4 and D4N than GRLGS method. As
the problem size increases, the convergence curves of D12 and
D19 show that the chaotic approach increases the success of the
local search method, and this situation supports the results in
Table 4. The success of the chaotic method increases with the size
of the problem. It also has a regular improvement as iterations pro-
gress. In other words, when the curves on D19 and D19N are exam-
ined, it can be concluded that if more iterations are run, CGRGLS
will reach a much better solutions than the other methods.

The MMTS method performs better than the GRGLS algorithm
which is the previous version of the proposed method. The previ-
ous version, GRGLS, converged early and stuck to local minima
and could not form a significant curve in any dataset. The perfor-
mance of GRGLS and CGRGLS shows that algorithms with local
search strategies perform much more successfully when powered
by chaotic maps.

The Wilcoxon signed-rank test was used to analyze the
problem-solving performance of the local search methods. The test
was conducted by using the global minimum values obtained as a
result of 25 runs for problem-based pairwise comparison of the
algorithms. Table 5 shows statistical comparisons by the Wilcoxon

signed-rank test between CGRGLS and other local search methods.
Table 5 present the p-Value, T, and W values. If the W value is “=",
there is no statistical difference (equal), if it is “+”, there is a mean-
ingful difference between the results and the CGRGLS method is
more successful than the other method (win), if it is “-”, there is
a meaningful difference between the results and the other method
is more successful (lose). From the last line of Table 5, total win,
equal, and lose values are given for the two methods compared
as a result of the Wilcoxon signed-rank test. Table 5 shows that
CGRGLS can achieve statistically better results than the compar-
ison algorithms, with a level of significance a = 0.05. The advantage
of the CGRGLS seems better as the fitness evaluation number
increases.

4.3.3. Comparison with other algorithms

In this paper, MLSHADE-SPA is improved by replacing its local
search method (MMTS) with CGRGLS and it is named Chaotic
Improved MLSHADE-SPA (CIMLSHADE-SPA). In order to analyze
whether the performance of the proposed algorithm is sufficient
compared to other evolutionary or swarm intelligence-based opti-
mization algorithms, the results obtained are compared with the
results of 5 algorithms directly taken from [36]. The average results
were obtained after CIMLSHADE-SPA was performed 30 runs for
each problem for 100.000 fitness evaluations. Comparison results
are shown in Table 6. The results obtained from CIMLSHADE-SPA
are compared with the other algorithms in literature. These algo-
rithms are as follows:
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Fig. 4. Convergence curves of Local Search Methods on Big-Opt Problems.
Table 5
The results of two-sided Wilcoxon signed-rank test for local search methods.
Func. CGRGLS versus GRGLS CGRGLS versus MMTS
p Value T w p Value T w
D4 1,23E-05 0 + 1,50E-01 216 =
D4N 1,23E-05 0 + 8,71E-03 260 -
D12 1,23E-05 0 + 6,31E-03 61 +
D12N 1,23E-05 0 + 1,15E-01 104 =
D19 1,23E-05 0 + 1,23E-05 0 +
D19N 1,23E-05 0 + 1,23E-05 0 +
+[=]- 6/0/0 +[=]- 3/2)1

1. COABC: Converge-onlookers ABC is a modified version of the
ABC algorithm which includes a new solution search equation in
the onlooker stage [65].

2. ACDE: Automatic Configurations of DEs is a memetic frame-
work which combines DE variants as population-based global
search and the interior point method as local search algorithm [4].

3. SaNSDE-CC: Self-Adaptive Differential Evolution with Neigh-
borhood Search with Cooperative Co-evolution is an improved DE
variant [66].

4. JADE is a variant of DE algorithm, which implements a muta-
tion strategy “DE/current-to-pbest” with optional archive and con-
trols F and C R in an adaptive manner [67].

5. SHADE: Success-history-based adaptive DE is an adaptive dif-
ferential algorithm which uses a history-based parameter adapta-
tion scheme [68].

When Table 6 is examined, CIMLSHADE-SPA, COABC and ACDE
methods are close to each other and give more successful results
than the others. CIMLSHADE-SPA gives the best results on D4
and D4N, COABC D19 and ACDE D12, D12N and D19N data.
CIMLSHADE-SPA method was one of the most successful methods
on all data. Total rank values prove that these 3 methods are far
more successful than the others. CIMLSHADE-SPA shows that it is

a method that gives consistent results by giving the best or near-
best values.

The Friedman test is a non-parametric statistical test used to
test for differences between multiple variables measured in the
same sample. It is preferred when the assumption of normal distri-
bution is not met in small samples and produces results using the
ordering of the data. In Table 6 and Table 7, the results obtained by
other algorithms are obtained from related publications, and only
the average of the results is available instead of each run result.
For this reason, Friedman test was applied to show whether there
is a significant difference between the listed results. The signifi-
cance level is set at 0.05 for this statistical test. If the p-value is less
than 0.05, it means that there is a statistically significant difference
between all results obtained. Otherwise, there is no significant dif-
ference. It is seen in Table 6 that the p-value obtained from the
Friedman test is smaller than the level of significance. It shows that
there is a statistically significant difference between all results
obtained.

4.3.4. Comparison with large scale competition winners

LSGO is a term for a special category of global optimization
problems involving a large number of decision variables. In LSGO,
both the modeling and the solution process can become quite com-
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Table 6
Comparison results of CIMLSHADE-SPA with other algorithms.
CIMLSHADE-SPA COABC ACDE SaNSDE-CC JADE SHADE
D4 Mean 6.14E-02 6.35e — 02 6.55e — 02 5.11E + 00 2.70E + 00 3.22E + 00
Best 6.11E-02 6.29e — 02 6.13e — 02 3.28E + 00 1.81E + 00 1.42E + 00
Std. 1.51E-04 2.80e — 04 3.01e — 06 1.57e — 01 4.76e — 01 7.23e — 01
Rank 1 2 3 6 4 5
D4N Mean 5.91E-02 6.14e — 02 5.93e — 02 1.11E + 01 9.45E + 00 4.19E + 00
Best 5.90E-02 6.10e — 02 5.93e — 02 1.79E + 00 1.02E + 00 2.11E + 00
Std. 8.09E-05 2.62e — 04 3.51e — 06 2.11E + 00 9.62e — 01 1.41e — 01
Rank 1 3 2 6 5 4
D12 Mean 2.72E-01 6.26e — 02 5.12e — 02 6.22E + 00 8.05E + 00 5.16E + 00
Best 1.49E-01 5.26e — 02 3.61e — 02 4.22E + 00 4.12E + 00 2.64E + 00
Std. 5.09E-02 4.62e — 03 9.60e — 03 1.02e — 01 2.73E + 00 1.84e — 01
Rank 3 2 1 5 6 4
D12N Mean 2.56E-01 6.21e — 02 5.09e — 02 1.27E + 01 1.38E + 01 7.73E + 00
Best 1.68E-01 5.48e — 02 3.63e — 02 5.11E + 00 7.28E + 00 3.17E + 00
Std. 5.13E-02 4.54e — 03 1.11e — 02 1.13E + 00 1.09E + 00 1.27e — 01
Rank 3 2 1 5 6 4
D19 Mean 1.07E + 00 1.58e — 01 2.15e — 01 1.97E + 02 1.08E + 01 9.10E + 00
Best 8.41E-01 1.40e — 01 6.28e — 02 1.23E + 02 5.17E + 00 6.17E + 00
Std. 1.24E-01 1.08e — 02 7.49-e02 2.32E + 01 2.30E + 00 1.76e — 01
Rank 3 1 2 6 5 4
D19N Mean 1.15E + 00 1.59e — 01 1.36e — 01 1.86E + 02 1.67E + 01 8.26E + 00
Best 7.41E-01 1.40e — 01 7.02e — 02 1.47E + 02 9.72E + 00 4.42E + 00
Std. 1.90E-01 8.88e — 03 5.16e — 02 1.26E + 01 1.28E + 00 1.282e - 01
Rank 3 2 1 6 5 4
Total Rank 14 12 10 34 31 25
Friedman’s Test Mean Rank 2.333333 2 1.666667 5.666667 5.166667 4.166667
p-Value 1.10E-04
Table 7
Comparison results of CIMLSHADE-SPA with CEC Competition Winners.
MOS-2011 MOS-2013 MAGA SHADE-ILS MLSHADE-SPA CIMLSHADE-SPA
D4 0.06103 0.06103 0.0610 0.06103 0.06103 0.06103
D4N 0.05897 0.05897 0.0590 0.05897 0.05897 0.05897
D12 0.00198 0.00194 0.0019 0.00194 0.00194 0.00194
D12N 0.00188 0.00183 0.0018 0.00183 0.00183 0.00183
D19 0.08940 0.00251 0.0025 0.00252 0.00252 0.00252
D19N 0.09180 0.00256 0.0026 0.00256 0.00256 0.00256
Friedman’s Test Mean Rank 5.166667 3.083333 2.5 3.416667 3.416667 3.416667
p-Value 6.19E-02

plex and difficult due to some factors caused by the increase in the
number of variables. These factors can be listed as exponential
increase in the search area with the increase in size, the complexity
and properties of some functions may change, the increase in the
number of interdependent variables, etc. For these reasons, algo-
rithms with high performance in normal size may lose their effec-
tiveness as the size grows. Researchers are trying to develop
various algorithms and techniques to overcome these problems.
IEEE Congress of Evolutionary Computation (CEC) has been orga-
nizing competitions and special sessions in this field since 2008
to encourage and motivate researchers. A detailed information
about CEC special sessions and competitions of LSGO can be found
in [69].

Big-Opt problems which are used as a benchmark set in this
paper have a huge number of decision variables, are nonlinear
and require real-time handling of EEG signals, so they can be cate-
gorized as a LSGO problems which are complex and challenging.
Therefore, to show the sufficiency of the proposed method, it will
be an effective indicator to compare it with the winners of the
LSGO Competitions of CEC.

To ensure a fair comparison, the parameter values and the ter-
mination condition of winners are fixed with the same values as in
[59].The average results were obtained after CIMLSHADE-SPA was
performed 10 times for 1.000.000 fitness evaluations of each task.
The results are compared with the results of 5 winners directly
taken from [59] and comparison results are shown in Table 7.

10

MOS-2011 is the winner of SOCO 2011 Special Issue by using a
benchmark created especially for this competition [70]. MOS-2013
and its variants are the winners of CEC'2012, CEC’2013, CEC'2015
for large-scale global optimization [71]. In 2015, a Big Data Compe-
tition was carried out and a new benchmark which is also used in
this paper, for large-scale global optimization was proposed. Even
though several methods were proposed to this special session
there were not enough to run a real competition. MAGA (A
Multi-Agent Genetic Algorithm) [39] is the algorithm that had
the best results among them [69]. In 2018, SHADEILS is the winner
of the CEC'2018 Competition by using CEC'2013 LSGO benchmark
[64]. And MLSHADE-SPA is the runner-up in the CEC'2018 compe-
tition with better results than MOS-2013[51].

A real-world problem with a relatively small number of vari-
ables might be thought to be easier to solve, but sometimes the
algorithm needs a certain number of variables to obtain enough
information for identifying the correlation between signals and
separating the artifacts from them. Which means that D4(1024)
is the least representative of a real environment among problems.
Although there are more variables to optimize in the D12 problem
(3072 variables), algorithms still get the best results since more
information is accessible. Although it is anticipated that the D19
problem which has 4864 variables will produce inferior results
than D12 because of the required greatest domain searching, it
can still be optimized more effectively than D4 because of the
knowledge gleaned from a significant number of variables [39].
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The results listed in Table 7 show that the results produced by
the different algorithms are quite similar or even identical. This
shows that the proposed CIMLSHADE-SPA algorithm has success-
fully reached the targeted optimum values like other LSGO winner
algorithms. The fact that the p value obtained as a result of the
Friedman test shown below the Table 7 is greater than the level
of significance (0.05) confirms this situation.

5. Conclusion

The large search space in multidimensional optimization prob-
lems requires very efficient search strategies. In this study, non-
repetitive random number generation features of chaotic maps
were used to increase efficiency. Thanks to this feature, the
improvement in local search methods has been observed. Espe-
cially as the problem size increases, the success of the local search
method increases. Studies and comparisons have shown that using
the value obtained by chaotic mapping as a coefficient in the step
size change part of the algorithm, which is one of the most impor-
tant factors of the algorithm, is an update that increases the effi-
ciency of the algorithm.

For future studies, the population initialization technique which
was introduced by Majdouli et al. can be used in the CIMLSHADE-
SPA algorithm and the effect of the technique on performance can
be investigated. This technique uses data directly from the original
EEG signal rather than randomly initializing parameters of the
potential feasible solutions within the specified lower/upper
bounds.
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