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Millimeter wave(mmW) imaging has spread to a wide range of applications in the last 

quarter. One of the most important research areas of mmW is three-dimensional (3D) 

imaging systems. In this study, conical differential range-based back-projection (BP) 

algorithm is proposed for three-dimensional mmW imaging. In the algorithm, the 

differential range is created using points inside a conical volume, thus the number of 

interpolation points is considerably reduced. The performance of the algorithm is 

demonstrated by simulation and experimental studies. Cylindrical scanning is carried out by 

means of the experimental setup. Experiments are carried out at frequencies of 26.5-40 GHz. 

The traditional BP algorithm (BPA) and the proposed algorithm are used to reconstruct the 

images. With the proposed method, it is observed that ISLR for the point target increased 

by about 5 dB compared to the traditional method. Moreover, the computational complexity 

is reduced by up to 10 times, depending on the imaging area. Thanks to the proposed method, 

the image of the concealed weapon under the cloth in an experimental study is more clearly 

focused compared to the traditional method. Therefore, it can provide images that give more 

accurate results for applications such as automatic target detection methods. 
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1. INTRODUCTION

Millimeter waves (mmWs) correspond to the frequency 

range of 30–300 GHz in the electromagnetic spectrum. mmW 

has gained importance due to its high resolution and 

penetrating ability to materials such as clothing, fabric and 

wrappers and hardware advantages [1-3]. Since mmWs are 

non-ionizing and have no known side effects on health at 

moderate power levels, they can be used in public places [4]. 

mmWs have been preferred in various applications including 

security [5], medical [6], through-the-wall detection [7] and 

non-destructive testing [8]. Because of the terrorist attacks, 3D 

imaging systems in civilian fields such as airports have gained 

importance in recent years and the demand for these systems 

has increased dramatically [1]. High-resolution 3D images can 

be obtained using a broadband mmW imaging system and an 

effective reconstruction algorithm directly affecting the image 

quality. Thus, it is inevitable to develop reconstruction 

algorithms that provide more efficient images. One of the most 

used algorithms is back-projection (BP) because of obtaining 

accurate images [9-12]. Thus, BP imaging algorithm is used in 

different applications such as lunar imaging [11], medical [13] 

and ground penetrating radar imaging [14] and synthetic 

aperture radar imaging [12, 15]. Moreover, BP is a reference 

method to validate newly developed algorithms [16].  

In radar imaging, the range profile is obtained using the 

signal collected in the 3D imaging area. According to the 

imaging application, the range profile is used to calculate the 

interpolation values corresponding to the two-dimensional(2D) 

or 3D imaging areas. Thus, data collected from different 

synthetic apertures are superimposed and focused image data 

is obtained. The most effective feature of the BPA is that it 

interpolates the backscatter data obtained from the target 

region to the scene according to two or 3D imaging area. In 

order to obtain high-resolution and wide images, the projection 

scene must also be large. However, this requires more 

interpolation points and more noise may occur in the focused 

image. As a result, the reconstruction process is prolonged and 

ghost reflections occur in targetless areas. While noise affects 

the quality and focusing of image less in 2D imaging, the 

image quality can deteriorate significantly in 3D imaging. To 

avoid this problem, the imaging area is mostly kept small and 

the target area is imaged piece by piece. This process reduces 

the noise in the image, while the reconstruction time of the 

image increases. On the other hand, with the developing 

technology, wideband wide-angle applications have increased, 

and new imaging mechanisms have been tried for new 

purposes [17]. In order to accurately determine the 

performance of a developed test setup, straightforward and 

accurate reconstruction algorithms should be used. BPA is a 

very successful and popular algorithm in this regard. However, 

testing new measurement systems with BPA takes a long time, 

as processing a lot of data in mmW 3D sensing requires high 

processing ability. Therefore, the need for improvement in 

BPA's reconstruction processes is very important. Therefore, 

the main motivation of this study is to improve the 

performance of a popular algorithm such as BPA to both 

reduce the measurement time in test setups and improve image 

quality. 

In this study, 3D mmW imaging is performed for the first 
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time in BPA using the conical differential range (DR) at the 

interpolation stage. Firstly, the performance of the algorithm 

for a point target is demonstrated by a simulation study. Then, 

experimental studies are carried out using the cylindrical 

imaging geometry-based experimental setup. Experiments are 

performed in 26.5-40 GHz. In the first experimental study, the 

results of the proposed and traditional BPA algorithms for an 

F-shaped target are given. In the second experiment, 

cylindrical scanning is performed for the weapon under 

clothing. Proposed and traditional BPAs results are evaluated 

for imaging of concealed weapon. 

The rest of this paper is organized as follows. Related works 

is summarized in the next section. In the third part, the 3D 

mmW radar imaging technique for cylindrical geometry and 

the proposed conical BPA are given in detail, whereas in the 

fourth part, the simulation and experiment results are 

evaluated. In the last section, the study is summarized and its 

contributions are presented. 

 

 

2. RELATED WORKS 

 

In this section, we have briefly mentioned the related works 

in terms of mmW imaging systems and reconstruction 

algorithms. 
In the last quarter, mmW imaging studies have increased 

dramatically. Studies are generally carried out within the scope 

of the development of reconstruction algorithms, microwave 

elements and imaging geometries. In the development of 

algorithms, it is desirable to focus the target with fewer data 

and improve the quality of the target image. In the 

development of algorithms, it is aimed to reconstruct the target 

image using fewer measurement data and improve the quality 

of the reconstructed image. In this context, the holographic 

microwave imaging technique is proposed for 3D mmW 

imaging [5, 18, 19]. Range migration algorithm (RMA) [20], 

one of the most popular reconstruction algorithms, also named 

as Omega-K is developed in the studies [9, 10, 16, 21-24] for 

mmW imaging systems. In addition, RMA is used for ground-

based synthetic aperture radar (SAR) imaging [12]. Another 

approach is a sparse representation-based compressed sensing 

(CS) algorithm. CS has great potential for imaging systems 

since it can reconstruct the image with a portion of full data. 

CS algorithm are used in the mmW SAR imaging [25, 26]. 

Besides, CS for 3D mmW imaging is proposed in the studies 

[27-30] The other popular reconstruction method is BPA. BPA 

is first proposed for medical imaging systems [31, 32]. Then, 

BPA is adopted for radar imaging systems [33]. Although 

BPA has high computational costs, it is preferred in many 

applications because it provides quality images [34]. In this 

context, different BPA algorithms are developed to reduce 

computational costs [35-38]. BPA is used to reconstruct 

ground-based SAR images [15, 37, 39, 40]. In addition, 

ground penetrating radar images are obtained using BPA in 

[41, 42] and a comparison of BPA and RMA is performed in 

[9]. The integration of BPA for the 3D mmW helical imaging 

system is carried out [17]. On the other hand, deep learning 

[43, 44], which has been popular recently, has also been used 

in the imaging system for the improvement and reconstruction 

of the image [1, 30, 45, 46]. 

 

 

3. METHOD 

 

3.1 Conical back-projection algorithm for 3D imaging 

 

An illustration of cylindrical imaging geometry is shown in 

Figure 1. This geometry is constituted by scanning the target 

for two different synthetic apertures. The signals reflected 

from the target are collected by placing sensors for the azimuth 

and vertical apertures of the imaging area. This geometry can 

also be constituted using a mechanical system. By using a 

rotating and linear moving system, the sensors are moving 

both the azimuth path and the vertical path of the geometry 

area. In this way, the cylindrical scanning geometry is 

completed. 

Radar echo signal reflecting from the target at (x, y, z) for 

stepped frequency continuous wave radar, Es(k) can be 

expressed as follows [12, 16]: 

 

Es𝑎(𝑘𝑟) = ∫∫∫ρ(x, y, z) e−j𝑘𝑟R𝑝,𝑖dxdydz (1) 

 

where, Rp,i is distance from target at (xp, yp, zp) to antenna at 

(𝑥𝑖 = 𝑅0 𝑐𝑜𝑠(θ𝑖) , 𝑦𝑖 = 𝑅0𝑠𝑖𝑛(θ𝑖), 𝑧𝑎), defined as follows: 

 

R𝑝,𝑖 = √(x𝑝 − xi)
2 + (y𝑝 − yi)

2 + (z𝑝 − za)
2 (2) 

 

and 𝑘𝑟 =
4πf

c
 is the two-way wave phase constant, R0 is 

distance from the antenna to imaging center, θ ∈
{θ1, θ2, … , θ𝑀} is angle between antenna and x axis, 𝑖 ∈ [1𝑀] 
is index of θ, p is index of target, a ∈ [1𝑍] is index of vertical 

position of antenna (za) and ρ(x, y, z) is reflectivity function of 

target. 

 

 
 

Figure 1. Cylindrical imaging geometry 

 

The range profile esi,a can be obtained by taking the inverse 

Fourier transform (IFT) of the received signal as following 

function: 

 

 

 

1982



 

𝑒𝑠i,a = ∭ρ(x, y, z)𝛿(𝑅 − 𝑟)𝑑𝑥𝑑𝑦𝑑𝑧 (3) 

 

 
 

Figure 2. Flow chart for conical 3D-BPA 

 

The expression of the target reflectivity function can be 

defined as follows: 

 

ρ(x, y, z) = ∫ ∫ ∫ Es𝑎(kr)
+∞

0

+∞

0

eikrRpdxdy
𝑧/2

−𝑧/2

dz (4) 

 

If the above equation is written for cylindrical coordinates, 

it becomes as follows: 

 

ρ(x, y, z) = ∫ ∫ ∫ Es𝑎(kr)
∞

0

+π

−π

eikrRpkrdkrdθ
+𝑧/2

−𝑧/2

dz (5) 

 

The inverse Fourier transform of the expression Es𝑎(kr)kr 
in the equation can be written as follows: 

 

qa(Rp) = IFT{Es𝑎(kr)kr} = ∫ Es𝑎(kr)e
ikrRpkrdkr

+∞

0

 (6) 

The last expression of reflectivity function is written as 

follow [12, 45]: 

 

ρ(x, y, z) = ∫ ∫ qa(Rp)
+π

−π

dθ
𝑧/2

−𝑧/2

dz (7) 

 

Eq. (7) is the final expression of the traditional BPA at the 

za vertical position of antennas [47].  

On the other hand, implementation of proposed 3D-BPA is 

given in Figure 2. The algorithm can be summarized in the 

following steps [15]: 

(1) The algorithm starts with the introduction of the 

experimental parameters. A 3D dimensional SBP matrix 

consisting of zeroes and i=a=1 are defined.  

(2) The main stage of the algorithm starts for za.  

(3) In the main stage of the algorithm, the range profile is 

obtained by applying IFT to the signals reflected from the 

target for θi angle.  

(4) DR values corresponding to possible target range Rp are 

calculated according to the current position of the antenna.  

(5) The reflection values corresponding to the DR are 

determined by interpolation using the range profile. 

(6) The obtained reflection values are summed up with the 

𝑆𝐵𝑃  matrix.  

(7) i is incremented by 1 and if i is less than M, algorithm 

continues by going to step 3.  

(8) a is incremented by 1 and if a is less than Z, the 

algorithm continues by going to step 2; otherwise, it is stopped 

and focused image data is obtained. 

In the traditional BPA, the DR is determined for the entire 

imaging area, and the reflectance values corresponding to all 

pixel points of the image scene in step 4 are calculated using 

the range profile as seen in Eq. (7).  

 

 
(a) all                                (b) conical 

 
(c) points inside conical area onto y-z plane 

 

Figure 3. Pixel points of image scene 

 

When the DR is determined for all points in imaging scene 

as shown in Figure 3(a), undesirable echoes may occur in the 

image. Therefore, in this study, as in Figure 3(b), DR is 

calculated for the points inside a conical area. In the 

implementation of algorithm, only the reflection values 
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corresponding to these points are determined by interpolation. 

In Figure 3(c), possible target points in the imaging area are 

shown on the y-z plane. In the proposed method, it is necessary 

to determine the points within the conic region. The angle ∅p 

between these points and the y-axis can be determined as 

follows: 

 

∅p = cos−1
√(xi−x𝑝)

2+(yi−y𝑝)
2

√(xi−x𝑝)
2+(yi−y𝑝)

2+(za−z𝑝)
2
  (8) 

 

If ∅pis less than the half angle of the cone's vertex∅cone, 

then this point is in the conical region. In this context, Eq. (7) 

can be expressed as follows: 

 

ρ(x, y, z) = ∑ ∑ qa(Rp,i)
𝑀
𝑖=1

𝑃
𝑝=1   (9) 

 

where, P is the last index of points inside conical area. 

Since the number of interpolation points in the proposed 

method is reduced, the elapsed time of the algorithm is reduced. 

The performances of the proposed algorithm and the 

traditional BPA are given in the fourth section using 

simulation and experimental data. 

 

 

3.2 Evaluation metrics 

 

Two different metrics, integrated side lobe ratio (ISLR) and 

computational complexity [14, 48] are used to measure the 

performance of the proposed method for mmW 3D imaging. 

While ISLR is an indicator of non-target reflections of the 

focusing algorithm, the computational complexity gives the 

matrix processing load required for reconstruction. These two 

metrics are used as an effective comparison parameter for 

applications where high resolution and fast results are required. 

 

3.2.1 Computational complexity 

Traditional BPA and conical BPA are evaluated in terms of 

the number of interpolated points. In traditional BPA, for an 

imaging area with pixel numbers Px, Py, and Pz, interpolation 

is performed for the total Px×Py×Pz points in the interpolation 

step [47]. However, since the conical BPA uses points in a 

conic area, the number of interpolation points is decreased. 

The interpolation points corresponding to some imaging scene 

dimensions and voxels are given in Table 1. As can be seen 

from the results, the number of interpolation points decreased 

between 2 and 10 times depending on the imaging scene 

dimensions and the number of pixels. As the dimensions of the 

imaging scene reduce, the interpolation ratio reduces. In this 

context, as the dimensions of the imaging scene increase, the 

interpolation ratio increases. Therefore, the proposed 

algorithm requires less number of interpolation points for large 

imaging scene. 

 

3.2.2 Integrated side lobe ratio 

ISLR is one of the parameters used to evaluate the 

performance of algorithms. ISLR is obtained by dividing the 

within -3dB energy by the total of the remaining energy [48]. 

ISLR is defined as follows: 

 

𝐼𝑆𝐿𝑅 =
∫ 𝐼𝑑𝑥𝑑𝑦

−3𝑑𝐵

∫ 𝐼𝑑𝑥𝑑𝑦
+∞
−∞ −∫ 𝐼𝑑𝑥𝑑𝑦


−3𝑑𝐵

  (10) 

 

where, ∫ 𝐼𝑑𝑥𝑑𝑦


−3𝑑𝐵
 and∫ 𝐼𝑑𝑥𝑑𝑦

+∞

−∞
correspond to the energy 

within the −3 𝑑𝐵  width of the main lobe and total energy, 

respectively. 

 

Table 1. Number of interpolation points of traditional and proposed BP algorithms 

 

∅𝐜𝐨𝐧𝐞 Voxels Imaging Scene Dimensions 
Number of interpolation points Ratio 

Traditional BPA / Proposed BPA Traditional BPA Proposed BPA 

5 100×100x100 1 m×1 m× 1 m 106 102905 9.71 

10 100×100x100 1 m×1 m×1 m 106 207414 4.82 

5 100×100x100 0.5 m×0.5 m× 0.5 m 106 180815 5.53 

10 100×100x100 0.5 m×0.5 m× 0.5 m 106 352823 2.83 

 

 
 

Figure 4. Representation of the experimental system 

 

3.3 Experimental system 

 

The geometry of the experimental system is given in Figure 

4. The experiment system consists of EBTRO EAMS turntable, 

horn antennas operating at frequencies of 26.5-40 GHz, 

positioner and Keysight 5224A vector network analyser (VNA) 

and computer. In order to realize the cylindrical scanning 

geometry, the target is rotated with a turntable at each vertical 

position of the antennas along the 𝑧 aperture. Backscattering 

signals reflected from the target are collected. 

 

 

4. EXPERIMENTS AND RESULTS 

 

4.1 Simulation 

 

The performance of the proposed method is demonstrated 

with simulation data. Therefore, an ideal perfect scattering 

target is used. The target is located at the origin as shown in 

Figure 5.  

Data is collected for the frequency range 26.5 to 40 GHz 

sampled at 301 points. The cylindrical apertures are a radius 

of 0.5 m and a height of 0.8 m. The target is scanned for θ=0 

to 360 sampled at 721 points for a total of 100 vertical points. 

The imaging scene dimension is 0.5 m×0.5 m×0.8 m with 

128×128×128 voxels. 
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Figure 5. Coordinates of point scatterer 

 

 
(a) BPA 

 
(b) proposed BPA 

 
(c) 3D reconstruction result with BP (under -10dB) 

 
(d) 3D reconstruction result with proposed method BP (under 

-10dB) 

 

Figure 6. Maximum projection onto yz plane of 3D 

reconstructed image 

The results obtained with the proposed method (∅cone=5º) 

and the traditional BPA are given in Figure 6. When the 

maximum projection images obtained from 3D images are 

compared for the -40 dB level, it is seen that the proposed 

algorithm includes less noise. On the other hand, it is also seen 

that both algorithms successfully reconstruct 3D images at the 

-10 dB level. 

The performance results of the algorithms are given in Table 

2. ISLR of traditional BP is calculated as -13.68 dB, while 

ISLR of proposed BP is calculated as -8.62 dB. These results 

show that the proposed algorithm has better side lobe 

suppression ability. In addition, in the proposed method, the 

image is obtained using about 88% fewer interpolation points. 

 

Table 2. Performance of algorithms 

 
Algorithm ISLR (dB) # of interpolation points 

Traditional BP -13.68 2097152 

Conical BP -8.62 233873 

 

4.2 Experiment-1 F shaped target 

 

In this experiment, F shaped target with the size of 13 cm x 

16 cm is used. The frequency range of the experiment is 26.5-

40 GHz with a total number of 301 points. The target is rotated 

from θ=0 to θ=360 for a total number of 51 vertical points. 

Vertical and radius aperture lengths of cylindrical scanning 

geometry are 26 cm and 60 cm, respectively. A scene of 

experiment 1 is shown in Figure 7.  

The 3D images obtained with traditional 3D-BPA and the 

proposed 3D-BPA and maximum projections onto yz plane is 

given in Figure 8. It is observed that the image of the target is 

better focused with proposed method. As can be seen, the 

image resolution in Figure 8(d) is better than the image in 

Figure 8(c). While the F shape is not fully formed in Figure 

8(c), it is clearly seen in Figure 8(d). In addition, when the 

reflections in the area of images outside F shape are visually 

compared in both images, it is clearly seen that a much cleaner 

background in the reconstructed image is obtained using the 

proposed method. In this section, the performance of the 

method is demonstrated using a simple F shaped target. The 

result of the proposed algorithm is given using a more complex 

target in the second application. 

 

 
 

Figure 7. A scene of first experiment 

 

 
(a) Traditional BPA 
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(b) BPA. Maximum projection of 3D images onto yz plane 

 
(c) Traditional BPA 

 
(d) BPA (∅𝑐𝑜𝑛𝑒=5º) 

 

Figure 8. Reconstructed 3D image 

 

4.3 Experiment-2 concealed gun 

 

In this experiment, the algorithm is tested under more 

difficult conditions after a successful result is obtained in the 

first measurement. Since the plastic mannequin is used, high 

backscattering signals are reflected from the mannequin. After 

the system shown in Figure 9(a) is constituted, a 100% cotton 

t-shirt is put on the mannequin as in Figure 9(b). The 

measurements are carried out in the anechoic chamber. The 

frequency range of the experiment is 26.5-40 GHz with a total 

of 301 points. The target is rotated by 360 degrees with a 

number of 1144 sample points. Whereas the vertical aperture 

is 60 cm with a 0.5 cm interval, the radius aperture length is 

60 cm. 

 

 
 

Figure 9. Scenes of second experiment 

 
(a) Traditional BPA 

 
(b) BPA 

 

Figure 10. Reconstructed 2D image 

 

 
(a) Traditional BPA 

 
(b) BPA 

 

Figure 11. Reconstructed 3D images 

 

2D images obtained from the 3D image, both traditional and 

conical BPA are given in Figure 10. When Figure 10a is 
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examined, it is not fully understood what the target is in the 

image obtained with conventional BPA. However, as seen in 

the image obtained with conical BPA(∅𝑐𝑜𝑛𝑒=5º), it is clearly 

observed that there is a weapon in the target area. 

3D images are given in Figure 11 coloured according to the 

dynamical range. As seen from the figures, imaging the 

weapon with the proposed method is more successful than 

conventional BPA under challenging conditions. 

 

 

5. CONCLUSIONS 

 

In this study, conical BPA, which uses points inside the 

conical region in the interpolation step, is proposed for 3D 

mmW imaging. Therefore, the number of interpolation points 

and the elapsed time of the algorithm decreased. In addition, 

ISLR is reduced by the proposed method. The performance of 

the algorithm is demonstrated by one simulation and two 

experimental implementations. Cylindrical scanning in 

simulation and real experiments is carried out at 26.5-40 GHz 

frequencies. A point scattering target is used in the simulation 

study. The image of the target is obtained with traditional and 

conical BPA. The proposed method in terms of ISLR and 

computational complexity is better than traditional BP. In real 

experiments, 𝑆21 data reflected from the targets are collected 

along to radius and vertical aperture. The obtained raw data 

are focused to reconstruct images of the targets using 

traditional BP and the proposed conical BPA. In the proposed 

method, while the number of interpolation points decreased, it 

is observed that the image of targets improved. The results 

show that it can provide more useful images for applications 

such as automatic target recognition. 
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NOMENCLATURE 

 

x X-axis of cartesian coordinate 

y Y-axis of cartesian coordinate 

z Z- axis of cartesian coordinate 

kr two-way propagation constant 

P total pixel number 

Px Pixel number of image at x 

Py Pixel number of image at y 

Pz Pixel number of image at z 

R distance from antenna to target 

R0 distance from antenna to imaging center 

 

Greek symbols 

 

δ direct delta function 

θ angle between antenna and x axis 

ρ reflectiviy function of target 

∅𝑝 angle between possible target and antenna 

∅𝑐𝑜𝑛𝑒  half angle of cone 

 

Subscripts 

 

a the index of the antenna at the z position 

i index of θ 

p index of possible target 
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