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A B S T R A C T   

Photocatalytic hydrogen evolution using by semiconductor materials have been studied effectively by converting 
solar energy into the chemical energy. Perovskite-based materials have been widely used as semiconductor 
catalysts for the photocatalytic hydrogen production. Herein, molybdenum sulfide photodeposited onto MTiO3 
(M: Ba, Sr) perovskites (MTiO3/MoSx) have been investigated on the photocatalytic hydrogen evolution under 
solar light irradiation in the presence of triethanolamine (TEOA) and eosin Y (EY) as an electron donor and 
photosensitizer, respectively. Compared to pristine MTiO3, BaTiO3/MoSx and SrTiO3/MoSx show a remarkable 
improvement in the hydrogen production efficiency and stability. Photocatalytic hydrogen evolution activities 
found in the order of SrTiO3/MoSx > BaTiO3/MoSx > MoSx > SrTiO3 > BaTiO3. In addition, photocatalytic 
hydrogen activity of SrTiO3/Pt was evaluated for comparison with SrTiO3/MoSx under the same conditions and 
SrTiO3/MoSx produced higher hydrogen activity than SrTiO3/Pt due to the high active sites created by MoSx on 
the catalyst surface which is originated from Mo–S and S–S bonds.   

1. Introduction 

The photocatalytic hydrogen production by sunlight has attracted 
great attention due to its potential applications in clean energy pro-
duction. Most of the photo/catalysts are facing with the recombination 
of electron-hole pairs which is a key factor negatively affect the pho-
tocatalytic efficiency. In order to prevent this drawback, researchers 
have utilized comprehensive techniques on the design of efficient cat-
alysts, such as dye sensitization [1], surface modification [2], noble/ 
non-noble metal deposition [3] or adding co-catalyst [4]. Photo-
catalytic hydrogen production by using noble-metals increases the cost 
and also reduces industrial applicability. 

SrTiO3 and BaTiO3 perovskite-type oxides can be used as an alter-
native to mostly used TiO2 because of suitable band positions, optical 
and crystallographic properties for the efficient photochemical energy 
conversion reactions [5,6]. These perovskites have been widely used for 
the photocatalytic hydrogen evolution systems due to their structural 

flexibility, suppression of photocorrosion, and physicochemical stability 
[5]. For example, numerous valuable studies have been recently re-
ported by using different kinds of perovskite based catalysts such as NiO- 
SrTiO3 [7], BaTiO3/ZnO [8], Rh-doped SrTiO3 [9], g-C3N4 coated 
SrTiO3 [10], Cr/N-codoped SrTiO3 [11], Cu–SrTiO3 [12], TiO2/BaTiO3 
[13], BaTiO3/SrTiO3 [14], Co3O4/CdS/SrTiO3 [15], SrTiO3/Bi2S3 [16], 
Al/BaTiO3 [17], Mo doped BaTiO3 [18], NiS/g-C3N4/SrTiO3 [19], La, 
Rh-doped SrTiO3 [20]. Co-catalyst free BaTiO3 were investigated for 
UV-light-driven photocatalytic hydrogen evolution reaction (HER) in 
Na2S/Na2SO4 electron donor medium [21]. The photocatalytic HER 
activity of Ag co-catalyst loaded SrTiO3 enhanced 1.25 fold when 
compared to bare SrTiO3 [22]. The wide band gap catalysts used for 
photocatalytic water splitting are not suitable for solar driven reactions. 
In the dye sensitization system, visible light can be captured by dye 
molecules to produce photogenerated electron/hole pairs and transfer to 
the conduction band (CB) of the wide band gap semiconductors [23]. 
Dye-sensitized MgTiO3, CaTiO3 and SrTiO3 perovskite nanocrystals 
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were investigated for the photocatalytic HER and the highest hydrogen 
evolution performance was observed by using Ptloaded SrTiO3 [24]. 
Transition metal dichalcogenides (TMDs) structures are used to improve 
the catalytic activity by creating active edge sites on the catalyst surface, 
significantly reducing the charge recombination rate of the catalyst 
[25–29]. Photocatalytic hydrogen production studies in which it was 
studied alone with MoS2 photosensitizer material have been reported, 
especially TMDs sensitized with Eosin Y produced high photocatalytic 
hydrogen production [30,31]. 

In a study using ZnIn2S4 catalyst, the increase in catalytic activity 
was discussed when Ni-Mo-S was used as co-catalyst [32]. It was re-
ported that the catalytic activity increased by 5.28 and 2.33 times, 
respectively, in two different systems with lactic acid and Na2S/Na2SO3. 
A highly active and cheap co-catalyst MoS2 is known as an alternative to 
noble metal Pt for photocatalytic water splitting reactions [33,34]. The 
catalytic activity of MoS2 is orginated from the unsaturated S atoms in 
the edge regions due to the low Gibbs free energy for hydrogen 
adsorption [35]. The effect of photogenerated MoSx co-catalyst loaded 
on SrTiO3 and BaTiO3 have not been reported yet in the literature. 

In this study, firstly MoSx were in situ generated on the MTiO3 by 
reduction of (NH4)2MoS4 from excited electrons during the photo-
catalytic reaction. Then, the effect of the photodeposited MoSx on MTiO3 

(M:Ba, Sr) (MTiO3-MoSx) were systematically investigated for the pho-
tocatalytic HER by using TEOA as a sacrificial electron reagent and EY as 
a sensitizer. Noteworthily, MTiO3-MoSx displayed higher photocatalytic 
activity compared to the pristine SrTiO3, BaTiO3, and MoSx. MTiO3- 
MoSx shows enhanced catalytic performance due to the unsaturated S 
atoms of the photodeposited MoSx. The HER activities change in the 
order of SrTiO3/MoSx > BaTiO3/MoSx > MoSx > SrTiO3 > BaTiO3. 
SrTiO3/MoSx and BaTiO3/MoSx display enhanced photocatalytic activ-
ity, which increased 18 and 6-fold respectively, as well as show 
improved stability when compared to pristine MTiO3. 

2. Experimental section 

2.1. The photocatalytic hydrogen evolution 

Before the photocatalytic hydrogen evolution experiments, the pH of 
the electron donor TEOA solution was adjusted at 9 according to our 
previous papers with similar catalysts. The whole solutions were 
bubbled with nitrogen gas in order to remove oxygen [36]. Photo-
chemical Pyrex cell involving the 10 mg catalysts (SrTiO3 and BaTiO3 
were commercially obtained from Nanografi), 0.5 mM co-catalyst pre-
cursors ((NH4)2MoS4 or H2PtCl6), and 0.33 mM EY in aqueous 20 ml 5 % 

Fig. 1. Elemental MAP images of the photodeposited BaTiO3 and SrTiO3 nanocrystal clusters, respectively.  
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TEOA solution were combined in the oxygen-free glovebox which are 
determined in our previous paper with similar oxide materials[37]. The 
photochemical cell, which was sealed with a silicon rubber septum, was 
positioned under the solar simulator (300 W) with a fixed distance to 
obtain 1 sun irradiation intensity measured by a radiometer. The 
evolved hydrogen was analyzed with a gas chromatography technique 
(Shimadzu GC-2010 Plus). The solar-to-hydrogen conversion effi-
ciencies (STH) of catalysts were calculated for the photocatalytic HER as 
follows; 

STH =
ΔGoxRH2

PxA
(1)  

Where H2 represents the H2 production rate (mmol s− 1), ΔGo the Gibbs 
free energy of water splitting (237 kJ mol− 1), P is the irradiation power 
density of incident light and, A represents the irradiated area by the 
incident light (cm2). 

3. Results and discussion 

3.1. Characterization of MTiO3 and MTiO3-MoSx (M: Ba, Sr) 

The phase structures and purity of SrTiO3 and BaTiO3 were 
confirmed by powder X-ray diffraction (XRD) analysis. The XRD analysis 
results for both nanocrystalline structures were given in Figure S1. 
According to the obtained results, both of the nanocrystals show a cubic 
crystal structure. The obtained XRD results were compared with ICCD 
data and were found to be compatible (for BaTiO3; 00-031-0174 and for 
SrTiO3; 00-035-0734). The unit cell of this polyhedral Ba or Sr centered 
cubic structure consists of total 9 polyhedral centered on titanium and 
Ba or Sr. In this structure, each titanium bonds with 6 oxygen atoms, 
while each Ba or Sr atoms make 12 bonds with O (Figure S1b). Also, the 

sharp and smooth peaks suggest all of the products being highly crys-
tallized. Moreover, the absence of additional peaks other than the main 
structure confirms that the perovskites used in the experiments are pure 
and of high crystallinity. 

The surface morphology and further purity of Ba and Sr based 
perovskite nanocrystals and their MoSx deposited forms were charac-
terized by scanning electron microscopy (SEM) analysis. The SEM im-
ages of the nanocrystals before and after deposition were given in 
Figure S2. From the SEM images, it is clearly seen that the Ba-based 
perovskites are smaller in size and exhibit a more homogeneous distri-
bution than the Sr-based ones. However, particle agglomeration were 
seen in the BaTiO3 due to the smaller size of particles, which is origi-
nated from increasing surface energy [38,39]. It has been also under-
stood that the partial spaces on the surfaces of the particles were filled 
with MoSx after deposition (Figure S2b and d). According to the EDX 
analysis results given in Figure S2e and f, it is clearly seen that BaTiO3 
and SrTiO3 have approximately the close stochiometric composition. 
However, due to the homogeneous and smaller size of BaTiO3, higher 
amount of MoSx accumulated on BaTiO3 than SrTiO3. Further elemental 
distribution analyzes of the catalysts were carried out with the SEM- 
elemental mapping method. As can be clearly seen in Fig. 1, the ele-
ments that consisted of the particles are clearly visible on the particle 
clusters. Also, the homogeneous distribution of Mo and S atoms on the 
particle clusters confirms the SEM and EDX results. 

X-ray photoelectron spectroscopy (XPS) analysis has been performed 
to determine the chemical valance state of elements forming BaTiO3/ 
MoSx and SrTiO3/MoSx catalysts. When the high-resolution XPS spectra 
of Ba 3d are investigated, it is seen that the main peaks centered at 778.8 
eV and 794.1 eV correspond to 3d5/2 and 3d3/2 spin–orbit doublet, 
respectively (Fig. 2a). Further, these peaks have composed of two 
components ascribed to BaO (778.7 and 794.0 eV) and BaO2 (780.0 and 
794.4 eV) [40]. As can be seen in Fig. 2b, Sr 3d spectra consist of four 

Fig. 2. High resolution XPS spectra of Ba 3d (a), Sr 3d (b), Ti 2p (c-d), O 1 s (e-f), Mo 3d (g-h) and S 2p (i-j) belonging to BaTiO3-MoSx (a-c-e-g-i) and SrTiO3-MoSx 
(b-d-f-h-j). 
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components at 132.6, 133.9, 134.6, and 135.55 eV. The peaks at 132.6 
and 134.6 eV have been assigned to Sr 3d5/2 and Sr 3d3/2, while the 
peaks at 133.9 and 135.5 eV have been attributed to bonds between 
strontium and surface impurities [41]. Ti 2p, O 1s, Mo 3d, and S 2p 
spectra of other common elements forming catalysts show similar 
characteristic properties. For example, Ti 2p spectra of both materials 
have formed from two main peaks of spin–orbit doublet consisting of 
four components (Fig. 2c-d).The peaks located at 458.3 and 464 eV 
correspond to the +4 valance state of titanium, while those at 457.6 and 
460.1 eV indicate the existence +3 valance state[42]. The O 1 s spectra 
were given in Fig. 2e-f, and both spectra were fitted with four peaks 
centered at about 529.0, 530.5, 532.1, and 533.6 eV. The O1 compo-
nents at 529.0 eV were assigned to oxygen bonds in the crystal structure. 
The other peaks belonging to O2, O3, and O4 were ascribed to different 
oxygen bonds such as H2O, C–Ti–O, and C–Ti–OH originating from air 
ambient [43]. Fig. 2g-h shows high resolution Mo 3d spectra, and these 
spectra were fitted by four peaks corresponding to S 2s, Mo 3d5/2, Mo 
3d3/2, and Mo+6 peaks at approximately 225.8, 228.9, 232.1, and 235.3 
eV, respectively. The presence of low intensity Mo+6 peaks indicate the 
slight oxidation of molybdenum in the crystal structure. Fig. 2i-j is 
clearly seen that the peaks at 162.1 eV were deconvoluted into 2p3/2 and 
2p1/2 doublet of S2-. Moreover, the peaks at the higher binding energy 
(~168.2 eV) demonstrate insufficient oxidation of sulfur atoms [44]. 

Diffuse reflectance measurements of produced catalysts were carried 
out to determination of the band gap type and values (Figure S3a). The 
obtained data were used to calculate the absorption of BaTiO3 and 
SrTiO3 by the Kubelka-Munk equation. The band transition types of the 
materials were determined as stated in previous studies [45–47], and 
thus it was confirmed that BaTiO3 has forbidden direct transition and 
SrTiO3 has allowed direct transition band type. Finally, the energy band 
diagrams were plotted given in Figure S3b according to these results. 
The band gap values of BaTiO3 and SrTiO3 were estimated from the 
energy band diagram as 3.23 eV and 3.31 eV, respectively. It has been 
also measured band gap of EY, which is found as 2.2 eV and in harmony 
with the literature [48], by using diffuse reflectance spectrum with the 
same method with MTiO3 (Figure S4). 

3.2. Photocatalytic HER activities 

The photocatalytic HER by in situ photodeposited MoSx structures on 
the surface of MTiO3 (M: Ba, Sr) were investigated under visible light by 
using EY and TEOA as photosensitizer and electron donor, respectively. 
There is no hydrogen gas was detected without any compounds of the 
system. Firstly, the photocatalytic HER were performed by using bare 
SrTiO3 and BaTiO3 and produced hydrogen were found as 2.24 and 2.16 

mmol g− 1, respectively, under solar light irradiation for 8 h (Fig. 3a). 
When the effect of MoSx co-catalyst loading on MTiO3 (M: Ba, Sr) were 
examined, the HER activities of BaTiO3-MoSx and SrTiO3-MoSx were 
increased about 6 and 18-fold compared to bare BaTiO3 and SrTiO3, 
respectively. It can be seen that SrTiO3/MoSx was shown the highest 
photocatalytic HER performance as 40.57 mmol g− 1, while BaTiO3/ 
MoSx was produced 11.88 mmol g− 1 hydrogen for 8 h of photocatalytic 
reaction. In order to compare the HER activity of pristine MoSx with 
MTiO3 and MTiO3-MoSx, the photocatalytic activity of only photo-
deposited MoSx were investigated and found as 10.07 mmol g− 1 for 8 h. 
Photocatalytic hydrogen evolution activities were changed in the order 
of SrTiO3/MoSx > BaTiO3/MoSx > MoSx > SrTiO3 > BaTiO3. In the 
absence and presence of co-catalyst, SrTiO3 displayed more stable 
photocatalytic HER activities than BaTiO3 due to aqueous solubility 
differences, in which BaTiO3 is slightly soluble in the aqueous solutions 
by leaching of Ba2+ species from the surface of BaTiO3 [49]. Insolubility 
properties of SrTiO3 may be provided the edges for the deposition of co- 
catalysts. Although the deposition amount of MoSx on BaTiO3 is more 
than that of SrTiO3 (as provided from EDX analysis), the higher HER 
activity and stability is observed with SrTiO3/MoSx. It can be explained 
that increasing co-catalyst amount both decreases active site of the 
catalyst and increases recombination rate due to the aggregate forma-
tion [50]. Moreover, the photocatalytic hydrogen production activity of 
MTiO3/MoSx structures were compared with photodepositied MTiO3/Pt 
by using photoreduction of H2PtCl6. BaTiO3/MoSx showed almost the 
same photocatalytic activity with BaTiO3/Pt. Besides, SrTiO3/MoSx 
displayed more hydrogen production than that of SrTiO3/Pt (Figure S5). 
STH efficiencies of SrTiO3/MoSx, BaTiO3/MoSx, MoSx, SrTiO3, BaTiO3 
were found out as 13.08, 3.84, 3.25, 0.72, 0.70, respectively. The sta-
bilities of MTiO3 species have been also investigated before and after 
photocatalytic reactions by XRD analysis. The obtained results were 
given comparatively in Figure S1a. It can be seen from the XRD patterns 
that no deformation or change occurred in the diffraction peaks after the 
reaction. These results show that the catalysts used in hydrogen evolu-
tion reactions are stable. In the literature, it is crucial to increase the 
number of active unsaturated S atoms to obtain high HER activity. Also, 
photodeposited MoSx on CdS produced higher amount of hydrogen 
compared to Pt/CdS, which are very promising in terms of finding an 
alternative to the noble-metal co-catalysts in the previous study [51]. 

The photostability of species can be explained by the degradation of 
the EY dye which is determined by UV–vis absorption spectroscopy 
technique as shown in Fig. 3b. Herein, the characteristic peak of EY at 
520 nm shifts to 490 nm after visible light illumination, which can be 
explained by the removal of some bromine atoms from EY [52–54]. In 
the presence of BaTiO3/MoSx, BaTiO3, and SrTiO3, the decreased peak 

Fig. 3. The comparison results of (a) photocatalytic HER performance in TEOA solution with MoSx, BaTiO3, SrTiO3, BaTiO3/MoSx and SrTiO3/MoSx, (b) UV–vis 
absorption spectrums of reaction solutions before and after 8 h illumination. 
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intensities are lower than that of SrTiO3/MoSx. These results are in 
agreement with the hydrogen production rates and stability of MTiO3 
and MTiO3/MoSx [52–54]. 

Fig. 4 shows the proposed photodeposition and photocatalytic HER 
mechanism under visible light irradiation. Photogenerated electron-hole 
pairs are produced in EY under visible light irradiation, then electrons 
transferred from the LUMO level of EY to the CB of MTiO3. These excited 
electrons can be used two different reactions, which are (i) photo-
deposition of co-catalyst precursors on the MTiO3 and also (ii) reduction 
of water to produce hydrogen. For MoSx photodeposition onto MTiO3 
using (NH4)2MoS4 as a precursor, MoS4

− 2 was reduced to MoSx by 
accepting photo-excited electrons from MTiO3. MoSx provides abundant 
active sites for photocatalytic hydrogen evolution activity. Also, MoSx 
loaded on the perovskite surfaces has abundant unsaturated S atoms 
which provide strong bonds with H+ in solution, when compared to 
bridging S2

2− and apical S2− [55]. Photogenerated electrons migrate to 
MoSx, then protons adsorbed on MoSx are reduced to hydrogen. As 
sacrificial agents, TEOA injected the electrons to photogenerated holes, 
which suppresses the rate of recombination. This reduction reaction 
provides efficient hydrogen production under visible irradiation. 

4. Conclusions 

Photocatalytic HER activities of MTiO3 were enhanced by loading 
MoSx, which is obtained by photodeposition of (NH4)2MoS4 reduction, 
as a non-noble metal co-catalyst. The HER rates of SrTiO3/MoSx and 
BaTiO3/MoSx were increased approximately 18 and 6-fold, respectively, 
when compared to their pristine MTiO3 forms. The activity differences 
between MTiO3 and MTiO3/MoSx were based on enlarged active sites to 
occur HER, which is originated from rich in unsaturated S atoms of 
MoSx. SrTiO3/MoSx were displayed more hydrogen evolution activity 
than BaTiO3/MoSx because of lower amount of photodeposited MoSx on 
SrTiO3, which inhibits the aggregation and decreases charge recombi-
nation rates. It is also observed that MTiO3/MoSx shows enhanced and 
comparable hydrogen production activities than that of MTiO3/Pt. 
Herein, MoSx deposition provides the enhanced activity and stability 
during the photocatalytic reaction, which gives new hope for the use of 
non-noble metal co-catalyst in perovskites. MTiO3/MoSx perovskites 
favors to in-depth understanding for photo/catalysis and also paves the 
way for current and future research for the design of perovskite mate-
rials to improve their photo/catalytic performance and stability. 
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