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ABSTRACT: The effect of heat-treatment on phase relationships, microstructures and hardness of Co-

Cr-Mo alloys were investigated in detail. The samples were produced by investment casting technique 

and subsequently solutionized (1240 °C for 4 h) and aged (720 °C for 2, 4, 8 and 16 h). Phase analysis of 

the samples were performed via X-ray diffraction analysis, microstructural examination were done by 

light optical and scanning electron microscopy. The microstructures of as-cast and short-time (2 and 4 h) 

aged samples were composed of FCC γ-Co matrix phase and fine M23C6 (where M= Co, Cr and Mo) 

precipitates. Increasing the aging time to 8 and 16 h led to partial transformation of FCC γ-Co matrix 

phase into HCP ε-Co phase. The volume fraction of ε-Co phase increased with increasing aging time. 

Moreover, hardness of the Co-Cr-Mo samples were significantly enhanced with formation of ε-Co phase. 
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Yaşlandırma Süresinin Co-Cr-Mo Alaşımlarının Faz Dönüşümleri, Mikroyapıları ve Sertliğine Etkisi 

 

ÖZ: Bu çalışmada, ısıl işlemin Co-Cr-Mo alaşımlarının faz ilişkileri, mikroyapıları ve sertliklerine etkisi 

detaylı biçimde incelenmiştir. Alaşım hassas döküm yöntemiyle üretilmiş, takiben çözeltiye alma (1240 

°C’de 4 saat) ve yaşlandırma (720 °C’de 2, 4, 8 ve 16 saat) ısıl işlemi uygulanmıştır. Numunelerin faz 

analizleri X-ışınları kırınım yöntemiyle, mikroyapıları ise optik ve taramalı elektron mikrokobisi 

yöntemleriyle incelenmiştir. Dökülmüş haldeki ve kısa süre (2 ve 4 saat) yaşlandırılmış numunelerin 

mikroyapıları YMK kristal yapısına sahip γ-Co matris fazı ve M23C6 (M= Co, Cr ve Mo) tipi ince karbür 

çökeltilerinden meydana gelmektedir. Artan yaşlandırma süresi ile birlikte γ-Co matris fazı kısmen ε-Co 

fazına dönüşmüştür. ε-Co fazının miktarı artan yaşlandırma süresi ile artmıştır. Ayrıca, ε-Co fazının 

oluşumu alaşımın sertliğini önemli ölçüde arttırmıştır. 

 

Anahtar Kelimeler: Co-Cr-Mo alaşımları, Mikroyapı, Sertlik 

 

INTRODUCTION 

For almost 80 years Co-Cr-Mo alloys have been used as dental and orthopedic implant materials due 

to their good corrosion and wear resistance, high strength and toughness, elevated fatigue resistance and 

excellent biocompatibility (Giacchi et al., 2011; Mendes et al., 2017; Zhuang and Wagner, 1989; Bates and 

Knapton, 1977). Co-Cr-Mo alloys, also known as ASTM F75 (Standard for Co-28Cr-6Mo Alloy Castings 

and Casting Alloy for Surgical Implants), is composed of 58-69 wt.% Co, 26-30 wt.% Cr, 5-7 wt.% Mo and 

various elements (ASTM F75 Standard; Davis, 2003; Disegi et al., 1999). In this alloy system, Co is 

responsible for the modulus of elasticity, Cr provides biocompatibility and also contributes to the 
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corrosion resistance by forming a protective chromium oxide (Cr2O3) layer, while Mo contributes to the 

mechanical properties (Matkovic et al., 2004).  

Strengthening mechanism of Co-Cr-Mo alloys is combination of solid solution hardening of Co 

matrix phase and precipitation hardening due to the formation of M23C6 carbides (Matkovic et al., 2004; 

Northwood, 1985; Pickering, 1978). According to the Co-Cr binary phase diagram (Massalski and 

Okamoto, 1990), Cr has an extended solid solubility in Co and they form two Co-rich solid solutions: (i) 

γ-Co phase with FCC crystal structure and (ii) ε-Co phase with HCP crystal structure. ε-Co phase is 

harder than γ-Co phase and enhances the mechanical properties. Moreover, presence of W in alloy 

composition stabilizes the ε-Co phase in the matrix (Matkovic et al., 2004). 

Co-Cr-Mo alloys can be manufactured by various techniques such as powder metallurgy, forging 

and investment casting technique. Among these methods, investment casting technique is attractive 

since orthopedic implants having complex shape can be produced at very low cost with dimensions and 

tolerances very close to the final dimensions (Escobedo et al., 1996; Giacchi et al., 2011). However, poor 

mechanical properties is the main disadvantage of investment casting technique compared to powder 

metallurgy and forging. Cast Co-Cr-Mo alloys exhibit lower fatigue resistance and low ductility along 

with casting and solidification defects such as micro porosity, chemical inhomogeneity large grain sizes 

(Giacchi et al., 2011; Pickering, 1978; Shi et al., 1994; Lee et al., 2005).  

Co-Cr-Mo alloys like other biomedical materials used for dental and orthopedic implants should 

have reliable physical and mechanical properties (Lee et al., 2006). For example, they should not be 

fractured in vivo. Thus, their poor mechanical properties should be improved. Proper heat-treatment 

and alloying additions appear to be effective methods to improve insufficient mechanical properties (Lee 

et al., 2005).  

This study aims to to investigate the effect of heat-treatment on phase relationships, microstructures 

and hardness of commercial purity Co-Cr-Mo alloys produced by investment casting technique in detail. 

MATERIAL AND METHOD 

The Co-Cr-Mo alloy was produced by investment casting technique in protective argon atmosphere 

(details is described elsewhere (Yıldırım and Keleş, 2018)). The chemical composition of the as-cast 

sample was determined using Oxford Foundry Master Model optical emission spectrometer, and the 

results are listed in Table 1. The composition of the investigated sample matches with the composition 

given in the ASTM F75 Standard. 

 

Table 1. Chemical composition of investigated Co-Cr-Mo sample determined from optical emission 

spectroscopy analysis 

Element Co Cr Mo Fe Si Mn Ni C W 

wt.% 64.1 27.7 6.19 0.627 0.681 0.369 0.0385 0.184 < 0.02 

 

Small samples with rectangular cross sections (20 x 10 mm) were cut and then subjected to the heat-

treatment. The heat-treatment consisted of a solution treatment at 1240 °C for 4 h followed by water 

quenching. Aging of the solution treated sample was carried out at 720 °C for 2, 4, 8 and 16 h. All heat-

treatment process was performed in a Protherm 130/9 model electrical furnace.  

The phase analysis of the as-cast and aged Co-Cr-Mo samples were carried out using X-ray 

diffraction (XRD) analyses. XRD analyses were conducted using a Bruker D8 Discover Model 

diffractometer with Cu-Kα radiation (λ=1.54056 Å) and an X-ray source operating voltage of 40 kV. XRD 

scans were performed in the 2θ range of 20-100 ° using a scanning rate of 2°/min. 

Samples for microstructural examination were mechanically grinded (with 120-1200 grit SiC papers), 

and then polished with 1 µm Al2O3 suspension. Finally, samples were electrotically etched with chromic 

acid solution at a voltage of 4 V for 12 s. The microstructures of the samples were examined by Nikon 

Eclipse MA100 Model inverted optical microscope and SM Zeiss LS-10 Model scanning electron 

microscope (SEM) equipped with energy dispersive x-ray spectroscopy (EDS). 
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Rockwell-C hardness measurements were performed using a Digirock RBOV Hardness Tester. 10 kg 

of preloading, 150 kg of loading and loading time of 10s were used for the hardness testing. The mean 

hardness values were determined by averaging at least three measurements obtained from each 

polished sample. 

RESULTS AND DISCUSSION  

The XRD patterns of the as-cast and aged Co-Cr-Mo alloys are shown in Figure 1. The diffraction 

patterns of as-cast and short-time (2 and 4 h) aged samples revealed that γ-Co phase with FCC crystal 

structure (JCPDS Card No: 15-0806) was the only detected phase, while the peaks observed in the long-

time (8 and 16 h) aged samples indicated that γ-Co phase is the predominant phase with a small amount 

of ε-Co phase having HCP crystal structure (JCPDS Card No: 05-0727). However, any diffraction lines 

corresponding to the neither intermetallic compounds nor carbides were detected.  

 

 
Figure 1. XRD patterns of as-cast and aged Co-Cr-Mo alloys 

 

The relative amounts of FCC γ-Co and HCP ε-Co phases were predicted by measuring the 

integrated intensities of the FCC (200) and HCP (101) peaks. The weight fraction of the HCP ε-Co phase 

was calculated according to the following equation, developed by Sage and Guillaud (Sage and 

Guillaud, 1950), 

 

𝑓𝐻𝐶𝑃(𝑤𝑡.%) =
𝐼101
𝐻𝐶𝑃

𝐼101
𝐻𝐶𝑃 + 1.5𝐼200

𝐹𝐶𝐶  (1) 

 

where f is fraction of corresponding phase and I is the integrated intensity of the peak present on the 

XRD diagram. The weight fraction of the HCP ε-Co phase was found to be 3.1 % and 12.5 % for 8 and 16 

h aged samples, respectively. Moreover, the lattice parameters of γ-Co phase in as-cast and aged 

samples were calculated by applying well-known Bragg’s Law, and the results are given in Table 2. The 

calculated lattice parameters for investigated samples were much higher than that of pure γ-Co phase 

given as 3.545 Å in standard card file of JCPDS No: 05-0727. The reason for the higher lattice parameter 
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can be attributed to the atomic radius differences among constituent elements forming the lattice. The 

solvent element Co, present in the highest quantity of 64 %, and the main solute element Cr, present as 

27.7 % in the alloy, have very similar atomic radius of 0.125 nm. However, presence of Mo, which has a 

larger radius (0.136 nm) than Co and Cr, is believed to increase the lattice parameter of γ-Co phase.  

 

Table 2. Calculated lattice parameters of γ-Co phase in as-cast and aged Co-Cr-Mo alloys 

Sample  Lattice parameter (Å) 

As-cast 3.5769 

2h aged 3.5811 

4h aged 3.5707 

8h aged 3.5790 

16h aged 3.5829 

 

Optical and SEM micrographs of as-cast Co-Cr-Mo samples are given in Figure 2. The 

microstructure of the as-cast Co-Cr-Mo alloy consisted of γ-Co based dendrites and fine precipitates 

present at interdendritic zones and grain boundaries. These precipitates can be identified as M23C6 

(where M= Co, Cr and Mo) carbides according to the EDS measurements (Figure 3). The measured 

compositions of γ-Co matrix phase and precipitates are listed in Table 3. Based on these results, 

measured composition of γ-Co phase was similar to the composition obtained from spectrometric 

analysis. Exact composition of the precipitates should be determined via EPMA-WDS analysis since the 

EDS is a semi-quantitative technique.  However, the observed microstructures of as-cast alloy agreed 

well with those reported in the literature (Giacchi et al., 2011; Sims et al., 1987; Ramirez et al., 2009; 

Kilner et al., 1982). In addition, some amount of solidification and casting defects such as micropores and 

flaws were observed in the microstructure of as-cast alloy. The presence of such defects was probably 

due to the high pouring temperature. 

 

  
Figure 2. (a) Optical and (b) SEM micrographs of as-cast Co-Cr-Mo alloys 

 

The optical micrographs of aged Co-Cr-Mo samples are shown in Figure 4. The microstructure of the 

as-cast sample significantly changed after solutionizing and aging treatments. The microstructures of 

short-time (2 and 4 h) aged samples consisted of γ-Co based coarse grains and M23C6 carbides distributed 

along the grain boundaries as a hard skeleton, while the microstructures of long-time (8 and 16 h) aged 

samples consisted of mainly γ-Co based coarse grains and small amount of ε-Co martensite type 

microstructures with grain boundary M23C6 carbides. The grain sizes of aged samples varied between 

200-350 µm depending on the aging time. 8 and 16 h isothermal aging resulted in the transformation of 

FCC γ-Co phase into HCP ε-Co phase. The ε-Co phase, also known as athermal martensite, nucleated 

randomly at the grain boundaries and inside the grains of FCC γ-Co phase developing a pearlite-like 
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morphology having thick and discontinuous bands. The reason for the dual phase formation, FCC to 

HCP transformation, can be explained with stacking faults. 

 
Figure 3. EDS analysis of as-cast Co-Cr-Mo alloys (a) γ-Co based matrix phase and  

(b) M23C6 carbides. 

 

Table 3. Chemical composition of the γ-Co phase and M23C6 carbide determined from  

EDS analysis (wt.%) 

Element Co Cr Mo Fe Si Others 

γ-Co phase 67.1 26.6 5.18 2.5 0.6 Balance 

M23C6 carbide 34.9 31.9 18.4 1.9 0.8 Balance 

 

It is well-known that when dislocations separate into Shockley partials because of the low stacking 

fault energy, FCC stacking faults are formed (Garcia et al., 1999; Lopez and Garcia, 2008). These stacking 

faults can be considered as potential HCP ε-Co nucleus since Shockley partial dislocations on FCC 

planes produce HCP crystals. Olson and Cohen (Olson and Cohen, 1976) presented that high 

temperature annealing above γ-Co ↔ ε-Co transformation temperature led to formation of stacking 

faults. Therefore, as this study also shows, potential nucleation sites for HCP ε-Co phase would be 

increased with increasing aging temperature and time (Garcia et al., 1999). 
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Figure 4. Optical micrographs of aged Co-Cr-Mo alloys (a) 2 h, (b) 4 h, (c) 8 h and (d) 16h.  

 

The results of the hardness measurements for as-cast and aged samples are listed in Table 4. As-cast 

and short-time aged samples exhibited very similar hardness values. However, long-time aging 

increased the hardness values significantly. This increase is directly attributed to the FCC γ-Co ↔ HCP 

ε-Co transformation after certain aging time. HCP ε-Co phase is harder than FCC γ-Co phase and age 

hardening of Co-Cr-Mo samples increased the amount of HCP ε-Co phase. The measured hardness 

values for the investigated samples mainly met the ASTM F75 standard hardness values (25-35 HRC) 

except for 16 h aged sample. The high hardness value for 16h aged sample may result in fracture of the 

sample. In order to avoid fracture, such a long aging time should not be preferred.  

 

Table 4. Hardness values for as-cast and aged Co-Cr-Mo alloys 

 

Sample Hardness (HRC) 

As-cast 27.1 

2h aged 24.7 

4h aged 25.7 

8h aged 36.7 

16h aged 42.1 

 

The present study reports promising properties of Co-Cr-Mo alloys. 8 h aged sample presented here 

exhibit good structural and mechanical properties and can be used as a material for orthopedic and 

dental implants. 
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CONCLUSIONS  

The effect of heat-treatment on phase relationships, microstructures and hardness of Co-Cr-Mo 

alloys were investigated in detail and the following conclusions can be drawn. 

 The microstructure of the as-cast alloy consisted of γ-Co based dendrites and fine M23C6 carbides 

at interdendritic zones and grain boundaries. 

 After solution and aging treatments M23C6 carbides distributed along the grain boundaries of γ-Co 

based coarse grains. 

 Transformation of FCC γ-Co ↔ HCP ε-Co was observed after 8 and 16 h aging time. 

 FCC γ-Co ↔ HCP ε-Co transformation led to significant increase in hardness values. 

 High hardness value of 42.1 HRC for 16 h aged sample did not meet the ASTM F75 standard. 
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