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Abstract: In this study, transportation-induced carbon footprint values before and after the consoli-
dation projects in two areas with similar agricultural characteristics were calculated. The IPCC Tier
1 method recommended by the IPCC (Intergovernmental Panel on Climate Change) was used to
calculate the carbon footprint. Furthermore, the effects of changes in road lengths and routes in these
areas after Land Consolidation (LC) on the fuel consumption of tractors and, accordingly, the carbon
dioxide (CO2) emission values were also determined. As a result of the study, the carbon footprint
value (GgCO2) decreased by 10% in the Fatih neighborhood and 33% in the Selimiye neighborhood
after the land consolidation project. Carbon equivalent (CE) is used to measure the effects on green-
house gas emissions and global warming and corresponds to the amount of carbon dioxide (CO2)
emissions. In total, 490.21 kg CO2·ha−1 of greenhouse gas (GHG) emissions were mitigated. In light
of these results, it can be concluded that LC can be considered a useful process in greenhouse gas
mitigation strategy. Based on the values obtained from the study results, it was concluded that land
consolidation contributed to reducing carbon footprint and increasing agricultural production and
productivity in rural areas. The reduction in fuel consumption and carbon emissions in rural areas
will contribute to reducing the adverse effects of air pollution and climate change.

Keywords: carbon footprint; land consolidation; ecological effect; land management; network analy-
sis

1. Introduction

Economic growth and human activities have led to an increased concentration of
greenhouse gas (GHG) emissions in the atmosphere [1,2]. Since pre-industrial times, there
has been an increase of 40% in carbon dioxide (CO2) concentrations, mainly due to fossil
fuel emissions and land use, including in the agricultural sector [3,4]. The agricultural
sector, which constitutes at least 20% of total emissions worldwide, more than 44% of
which is generated on the Asian continent, is one of the major emitters of GHG in the
world [5,6]. The rapid increase in the use of mechanization in agriculture has significantly
increased the amount of CO2 emissions [7]. The study by [8] demonstrated that fuel con-
sumption increased with the widespread use of tractors in agriculture. Irregular parcel
shapes and scattered parcels caused by land fragmentation prevent intensive agriculture
by increasing the need for machinery and manpower during production [9]. Land frag-
mentation is considered one of the most important factors that reduces the profitability of
agriculture [10–12]. Thus, land fragmentation is considered a threat to the profitability of
farms [13,14]. In addition, the distribution of parcels in the village causes both the loss
of time and fuel oil that indirectly affects the environment [15]. The use of agricultural
machinery on parcels with fragmented and irregular shapes causes large amounts of CO2
emissions due to their use far exceeding the standards of the daily agricultural activities of
farmers. The stress on tractors used on these parcels leads to excessive fuel consumption
and, accordingly, air pollution. On the other hand, the dispersion of more than one parcel
belonging to a farmer causes tractors to consume more fuel during the day. The increased
amount of fuel consumed also leads to an increase in CO2 emissions at the same rate.
Nowadays, global climate change has become a serious environmental problem due to the
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increase in CO2 and other GHG [16,17]. This problem also accelerates global warming [18].
It is highly important to reduce GHG in order to fight against this problem. At many
international meetings, such as the Kyoto Protocol and the Paris Agreement, it has been
recommended to reduce carbon emissions to the lowest possible level as a solution to this
problem. Emission quotas have been imposed on countries to accurately calculate carbon
emissions. With regard to compliance with quota values, it is necessary to establish a
GHG inventory and calculate the carbon footprints of emissions [19]. A carbon footprint is
described as a measure of the damage caused by human activities to the environment in
terms of the amount of GHG generated. From this point of view, the important of reducing
CO2 emissions is made apparent.

Land consolidation (LC) is a land management tool that readjusts land parcel shapes
and reallocates land rights to minimize the fragmentation of farmland, increase agricultural
production, and provide optimal living and working conditions in rural areas. LC has
become a crucial part of rural development worldwide for more than a century to address
land fragmentation problems, especially in countries where agricultural lands are highly
fragmented, and is applied in many countries around the world [20,21]. LC is considered
an important tool to modernize agriculture and rural development [22–25]. Additionally,
land consolidation studies are very important in terms of improving the spatial structure
of the village [26]. LC is an important policy to improve the quantity and quality of
cultivated land, reduce land fragmentation, adjust land ownership, optimize the land use
structure, accelerate the development of modern agriculture, prevent rural land use and
the degradation of the rural ecosystem, improve the rural environment, and support rural
development and poverty reduction [20,27–31].

In the literature, there are numerous studies on land consolidation. Some of these
studies are important stages of LC: determination of land value [32–34], land realloca-
tion [35–37], and land parceling [38,39]. Studies on the social dimension [40] and economic
evaluation [41] of LC have been conducted recently. Other studies on LC focus on the eval-
uation of these projects. Various studies have been conducted to evaluate the effectiveness
of LC [42–45]. Furthermore, very few studies have focused on the economic, social, and
environmental evaluation of the effects of LC [23]. LC can be a contributing tool within the
context of reducing carbon emissions in the agricultural sector. Improvement in the farming
economy resulting from implementing land consolidation projects is usually associated
with reduced fuel consumption on farms [46]. Ref. [47] conducted a study to evaluate
the carbon effect of LC using life cycle assessment. Ref. [48] evaluated the land consoli-
dation process from an environmental perspective. Ref. [49] investigated the joint effects
of multiple land consolidation strategies on ecosystem service interactions. In their study,
Ref. [50] established a carbon effect accounting and analysis framework for the three phases
of the land consolidation project: project initiation and design, project implementation, and
operation management.

Unlike in the above-mentioned articles, an attempt was made in this study to deter-
mine the effects of changes in road lengths and routes before and after the land consolidation
project on the fuel consumption of tractors and, accordingly, transportation-induced carbon
footprint values. Transportation usually indicates the amount of fuel consumed to provide
raw materials, carry out farming operations, or transport the harvest in journeys between
farms and parcels. The road distances traveled by enterprises in project areas between the
neighborhood center and the field parcel before and after consolidation were calculated by
network analysis in ArcGIS. The calculation was based on the distance from land parcels
for all parcels before and after the LC project by considering the shape of the road network.
Accordingly, carbon footprint values and carbon equivalents were calculated. An ecological
assessment of LC projects based on transportation-induced carbon footprint values has
never been carried out before. Thus, the present study has filled this gap in the literature.
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2. Materials and Methods
2.1. Study Area

Figure 1 shows the map of the study areas. The data of two different land consolidation
projects, which were carried out in very close regions, were used in the study. These data
included geometric data of parcels before and after the consolidation project, transportation
networks, and ownership information of parcels. For the neighborhoods examined, both
the location of the borders and the shape of the transportation network were determined
before and after completing the consolidation project. Table 1 contains information about
the projects used.
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Figure 1. Map of the study areas.

Table 1. Information on the study area.

Selimiye Neighborhood Fatih Neighborhood

Size of the Project Area (ha) 835.66 289.08
Number of Enterprises 283 149
Number of Parcels before LC 383 137
Number of Parcels after LC 292 122
Consolidation Rate (%) 0.24 0.11

2.2. The Framework for Carbon Footprint Assessment of LC

After the land consolidation projects were completed, changes (to different extents)
occurred in the shapes and locations of parcels belonging to enterprises. These changes
also occurred in the shape of the transportation network (Figure 2).
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Figure 2. Changes in the layout of the transport network in the study areas (before and after LC).

In this study, changes in CO2 emissions before and after LC in the entire project area
were calculated for each enterprise. The round trip of tractors (in two directions), journeys
to parcels, and maneuvers inside parcels were taken into account in the calculations. It is
not easy to determine the distances traveled by enterprises. It is impossible to determine
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the routes of enterprises, the order of parcel visitation, and the time spent for agrotechnical
operations for each parcel. With the help of field survey data and the ArcGIS program, the
road routes followed by landowners between the neighborhood center and agricultural
lands were determined by network analysis of the maps before and after the consolidation.
GIS-based network analysis applications include transportation planning, shipping, distri-
bution, communication, and shortest path analysis. Digital data regarding linear objects
such as roads, streets, and communication networks are among the most utilized sources
of spatial information [51]. The main problem in network analysis is finding the shortest
route from one node to another. It is necessary to create a topology from the road network
in order to obtain accurate and good results from the analysis [52]. To this end, based
on the route information of the road network in the consolidation area (before and after
the consolidation project), graphical structures reflecting the shape of this network were
created.

2.3. Calculation Procedure

The total amount of CO2 emissions generated directly or indirectly by a product that
results from human activities during its entire life cycle is called its carbon footprint [53].
It is calculated in units of CO2. Carbon footprint can be examined under two headings:
personal and institutional [54]. The carbon footprint resulting from human activities
should be examined under the parameters of transportation, food production, housing,
products, and services so that it can be understood more clearly. During the calculation
of each parameter, the social and economic structure of each country differs. Under the
transportation parameter, fuel use is the primary footprint, whereas public transportation,
air transport, and automobiles are listed as secondary footprint parameters. In the current
study, calculations were made based on the IPCC’s Tier 1 method. The steps of carbon
footprint calculation are explained below.

Step 1. Determination of average fuel consumption (L/100 km):
Fuel consumption varied by engine type, engine characteristics, land structure, topog-

raphy, condition of roads, and loading of tractors. In accordance with the studies conducted
by [46,55–57], it was assumed that a tractor consumed an average of 0.44 L of diesel fuel
per kilometer. In the present study, this value was used during the calculations.

Step 2. Calculation of fuel consumption (kt):
The amount of fuel consumed by motor vehicles in transportation sectors is calculated

in kt (Equation (1)). In this study, calculations were made based on the diesel fuel type. The
diesel fuel density was considered as 0.86 kg/L [58].

Fuel consumption = Distance (km) × Fuel consumption (L/km) × Fuel density (kg/L) × 10−6 (kt/kg) (1)

Step 3. Calculation of energy consumption (TJ):
The energy content is calculated by multiplying the total amount of fuel consumption

calculated in the road, rail, and air transport sectors by the fuel conversion factor, selected
according to fuel type (Equation (2)). The fuel conversion factors are shown in Table 2.

Energy consumption = Fuel consumption (kt) × Fuel conversion factor (Tj/kt) (2)

Table 2. Fuel conversion factors [59].

Fuel Type Conversion Factor (TJ/kt)

Gasoline 44.30
Diesel Fuel (Diesel) 43.00
Fuel Oil 40.4
LPG 47.3
Natural gas 48.0
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Step 4.Determination of the carbon content of fuel (tC):
The carbon content is found by multiplying the energy content of the fuel by the

carbon emission factor, selected according to fuel type (Equation (3)). The fuel carbon
emission factors are shown in Table 3.

Carbon content of fuel = Energy consumption (tj) × Carbon emission factor (tc/TJ) (3)

Table 3. The fuel carbon emission factors [60].

Fuel Type Carbon Emission Factor (t C/TJ)

Gasoline 18.9
Diesel Fuel (Diesel) 20.2
Fuel Oil 21.2
LPG 17.2
Natural gas 15.3

Step 5. Calculation of C emission (tC):
Since not all of the fuel in the combustion chamber of vehicles is oxidized, the carbon

content of the fuel is multiplied by the rate of carbon oxidation. The Rate of Carbon
Oxidation was considered as (Gasoline-Diesel-LPG) = 0.99 (Equation (4)).

C Emission = Carbon content of fuel (TC) × Oxidation rate (4)

Step 6. Calculation of CO2 emission (GgCO2):
To find the CO2 gas released from the fuel, C emission is multiplied by the mole

weight ratio of CO2/C, and the CO2 emission is found (Equation (5)). The CO2 calculated
is converted into GHG emission units (Gg) which are used by the IPCC.

CO2 emission = C emission (t) × 44/12 (CO2/C) × 10−3 (Gg/t) (5)

While calculating carbon equivalents with the second method, fuel consumption was
determined in L per hectare. Carbon emissions were also calculated in kg per hectare based
on fuel consumption.

1 L of agricultural diesel = 2.664 kg of CO2 (6)

All calculations are expressed in km·ha−1 to compare the travels before and after LC.
The parameter Rij is defined for each drawing. This parameter is the sum of distances in
each cultivation operation (RNCI), crop monitoring and surveillance operations (Rseg), and
crop harvest operations (RCOS) (Equation (7)) [48]. Calculations were repeated for before
and after LC.

Rij= RNCI+Rseg+RCOS (7)

The fuel consumption (K1) measured in L·ha−1, Equation (8) [48].

K1=
∑n

n=1
(
∑ Rij×E×c

)
n

(8)

Rij: Distance between the parcel and the neighborhood center, in km,
E = Coefficient according to the type of road,
c = Fuel consumption according to energy requirements (light or heavy, L·km−1) (In the
calculations, the type of road and the energy requirements for each travel were considered
constant),
n = Number of exploitations in each LC.
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3. Results

Many factors, such as the type of equipment used on parcels, soil structure, topography,
the habits of the person driving the tractor such as gear, speed, and maneuvering, the road
condition on off-field roads, the type of production, and the method followed in production,
affect the fuel consumption of tractors. In the calculations, the main factors affecting fuel
consumption are the distance of parcels from the neighborhood center, the number of
parcels, and the distribution of parcels belonging to the enterprise. Carbon footprint and
carbon emission values were calculated depending on the tractor specifications accepted
on the road routes and field parcels before and after LC. Changes in carbon footprint
(GgCO2) for each enterprise before and after LC are presented in Figures 3 and 4. For
the Fatih neighborhood, while the average carbon footprint value before LC was 7.79038
× 10−6 GgCO2, it decreased to an average of 6.16032 × 10−6 GgCO2 after LC. For the
Selimiye neighborhood, while the average carbon footprint value before LC was 1.69582
× 10−5 GgCO2, it decreased to an average of 1.13369 × 10−5 GgCO2 after LC. In total, the
carbon footprint value (GgCO2) decreased by 10% in the Fatih neighborhood and 33% in the
Selimiye neighborhood. Changes in carbon emission values (CE) between the neighborhood
center and the enterprise parcels in each enterprise before and after consolidation are given
in Figures 5 and 6. For the Fatih neighborhood, the carbon equivalent value before LC
varied by enterprise between 0.5476 kg CO2·ha−1 and 11.2537 kg CO2·ha−1. This value
varied between 0.5476 kg CO2·ha−1 and 5.0620 kg CO2·ha−1 after LC. For the Selimiye
neighborhood, the carbon equivalent value before LC varied by enterprise between 0.3453
kg CO2·ha−1 and 50.0965 kg CO2·ha−1. This value varied between 0.2808 kg CO2·ha−1 and
17.3783 kg CO2·ha−1 after LC. For the Fatih neighborhood, whereas the average carbon
equivalent before LC was 2.0831 kg CO2·ha−1, it decreased to 1.652 3 kg CO2·ha−1 after
LC. In the Fatih neighborhood, there was a total decrease of 64.19 kg CO2·ha−1. For the
Selimiye neighborhood, while the average carbon equivalent before LC was 4.5452 kg
CO2·ha−1, it decreased to 3.0482 kg CO2·ha−1 after LC. In the Selimiye neighborhood, a
decrease of 426.02 kg CO2·ha−1 occurred.
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The change in GgCO2 emission values according to the enterprise areas is presented in
Figures 7 and 8. Since only the carbon footprint due to transportation between the parcels
was calculated, the enterprise areas did not affect the carbon footprint.
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Figure 7. Changes in carbon footprint according to enterprise areas before and after LC (Fatih
Neighborhood).

The enterprises with the largest changes in carbon footprint value in both application
areas are presented in Figures 9 and 10. In the Fatih Neighborhood, while the CO2 emission
value of enterprise number 55 was 0.041476 tons before LC, it decreased to 0.018894 tons
after LC. For enterprise number 156, CO2 emission was 0.042005 tons before LC and
0.014479 tons after LC. In the Selimiye Neighborhood, whereas the CO2 emission value
of enterprise number 89 was 0.186456 tons before LC, this value decreased to 0.039285
tons after LC. While the CO2 emission value of enterprise number 61 was 0.122521 tons
before LC, this value decreased to 0.044512 tons after LC. Likewise, considering the carbon
equivalent (CE) values of these enterprises, while the CE value was 11.1122 kg CO2·ha−1

for enterprise number 55 in the Fatih Neighborhood, it decreased to 5.0620 kg CO2·ha−1

after LC. In enterprise number 156, while the CE value for the enterprise was 11.2537 kg
CO2·ha−1 before LC, it decreased to 3.8793 kg CO2·ha−1 after LC. For enterprise number 89
in the Selimiye Neighborhood, the carbon equivalent decreased from 49.9539 kg CO2·ha−1

before LC to 10.5249 kg CO2·ha−1 after LC. For enterprise number 61, the carbon equivalent
decreased from 32.8250 kg CO2·ha−1 before LC to 11.9254 kg CO2·ha−1 after LC.

Since some parcels did not have direct access to a road before LC, farmers may have
struggled to reach their own parcels through the boundaries of parcels belonging to other
people. On the other hand, the use of these areas, which do not have road features, for
transportation caused stress in vehicles and excessive fuel consumption. Furthermore,
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since the decrease in the number of parcels after LC reduces the distance between the
parcels and the neighborhood center, less fuel consumption and CO2 emissions occur due
to the shortening of the road and the execution of works in a single parcel. Therefore, LC
decreased the carbon footprint value.
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enterprises to reach the field parcels after land consolidation.
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and number 89 to reach the field parcels before land consolidation; (b) route followed by the same
enterprises to reach the field parcels after land consolidation.

4. Discussion

After LC, the shortening of the length of the existing access roads to the parcels resulted
in lower cost, shorter shipping, and shorter time to implement agricultural work [61]. Due
to fragmented parcels, the lack of access to the road for some parcels, and irregular road
routes before LC, there is an increase in the fuel consumption of vehicles and, accordingly,
carbon footprint values and carbon emissions. In this study, the carbon footprint value and
carbon equivalent decreased after LC in the vast majority of enterprises, as seen in previous
studies [7,48]. However, the reduction amount differed between enterprises due to reasons
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such as topography, soil, and former ownership status. Due to increased transportation
lengths for some enterprises, their carbon footprint values and carbon equivalent increased.
This means that they obtained worse plot locations compared to the layout before the
consolidation. Therefore, the road length also increased in some cases. However, in
practice, the improvement in the structure of the roads used after LC also reduced the fuel
consumption of vehicles. In some enterprises, the carbon footprint values were almost the
same. It should not be forgotten that even if distances stay the same, the travel times have
halved since the number of parcels has halved [43]. Thus, from the point of view of the
landowner, this is considered a positive development since planting costs will decrease
along with the travel costs.

As can be seen from the results obtained, the decrease in the number of parcels after
LC, the merging of scattered parcels belonging to the same enterprise, and each parcel’s
access to the road reduced the fuel consumption of each enterprise and, thus, the carbon
footprint value decreased. Ref. [62] argue that the implementation of land consolidation
projects which combining scattered parcels makes it possible to reduce air pollution and
the greenhouse effect as less carbon dioxide emissions are released into the environment.
Ref. [63] stated that during the preparation of land consolidation projects it is possible
to achieve good results in protecting the environment by reducing air pollution. The
implementation of LC projects in Finland has had a positive impact on the climate. The
LC project carried out in Järilä resulted in a reduction in working hours in agricultural
production and thus a reduction in fuel consumption in production. These actions resulted
in reduced CO2 emissions to the atmosphere [64]. Ref. [46] determined in their study that
land consolidation contributes especially to time and fuel savings. The fact that some
parcels of landowners are not adjacent to the road increases the fuel costs for transportation
to the parcels. Benefits such as facilitating transportation by providing the front of each
parcel access to the road and, accordingly, reducing fuel consumption and carbon dioxide
emission values are not the only ones provided with land consolidation. With these projects,
parcel shapes are also improved and, thus, the use of vehicles in parcels is facilitated in
agrotechnical activities. Refs. [65,66] demonstrated a strong correlation between the shape
and size of these areas and higher fuel consumption efficiency, lower number of turns,
and “non-operating distance”. It can be said that the average fuel consumption of tractors
decreases due to reasons such as the improvement of parcel shapes and making parcels
irrigable after consolidation.

The road network was completely changed after LC. The LC project eliminated all
right of way, thus allowing direct access to all parcels and minimizing the number of
journeys on roads and in urban areas. Along with the improvement of the infrastructure
and superstructure of roads, there was also a decrease in problems such as difficulties and
malfunctions in the tools and equipment used. Thus, the fuel consumption of tractors and
trucks above the predicted average fuel consumption was significantly prevented. There-
fore, Ref. [67] argued that land consolidation methods should be developed to overcome
future challenges for the environment, especially in terms of climate change mitigation.
Ref. [68] showed that improved road quality as a result of land consolidation also positively
affects transport-related emissions.

5. Conclusions

In order for land consolidation projects to be successful in terms of environmental
protection, effective models should be developed for the transition from multi-part and
small-scale enterprises to modern enterprises with one piece or few parts with sufficient
size. Therefore, the use of land banking is required in land consolidation projects. With LC
projects, landscape features are improved in rural areas and negative environmental effects
caused by agricultural activities are easily controlled.

Our developing world needs more food and energy every day due to rapid population
growth. Providing all this food and energy leads to by-products and waste, with a certain
level of adverse effects. Nowadays, the monitoring and evaluation of carbon footprint has



Land 2023, 12, 507 14 of 17

become an extremely important process to classify these wastes and measure their effects
on our world. The present study aimed to calculate the carbon footprint values of land
consolidation projects, with the change due to transportation.

The study results showed that land consolidation projects reduced the carbon footprint
value, which significantly affects climate change; therefore, land consolidation significantly
contributed to the protection of the air quality and climate of the rural environment.
Although the extent of the impact of these projects depends on the fuel density in a
particular area, this impact increases with the size of the implemented project. In this study,
it was concluded that the carbon footprint values resulting from agriculture decreased after
LC by the reduction in planting and travel times (due to transportation) in the study areas.
Based on these study results, it can be stated that the GHG reduction strategy contributed
to LC projects. In light of our results, it can be concluded that LC projects can be considered
a useful process in the GHG mitigation strategy. The method employed in this study
can be used to make an environmental assessment in every land consolidation project.
Land consolidation projects do not only provide benefits such as facilitating transportation
between the neighborhood center and the enterprise parcel and reducing fuel consumption
and CO2 emission values. Moreover, since improvements are made in the shapes of parcels,
they also contribute to agricultural activities based on mechanization, such as the use of
vehicles on the parcel, plowing the field, planting, fertilization, and irrigation. Furthermore,
the change in the parcel’s shape affects both the working conditions and working hours
of tractors in the parcel. In the future, a more comprehensive study will be conducted by
considering changes in the parcel’s shape and including different criteria, such as soil type
and road type related to the road network, in calculations.
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