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Tree-Seed algorithm (TSA) is a recently developed nature inspired population-based iterative search algo-
rithm. TSA is proposed for solving continuous optimization problems by inspiring the relations between
trees and their seeds. The constrained and binary versions of TSA are present in the literature but there is
no discrete version of TSA which decision variables represented as integer values. In the present work, the
basic TSA is redesigned by integrating the swap, shift, and symmetry transformation operators in order to
solve the permutation-coded optimization problems and it is called as DTSA. In the basic TSA, the solution
update rules can be used for the decision variables whose are defined in continuous solution space, this
rules are replaced with the transformation operators in the proposed DTSA. In order to investigate the
performance of DTSA, well-known symmetric traveling salesman problems are considered in the exper-
iments. The obtained results are compared with well-known metaheuristic algorithms and their variants,
such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), Simulated Annealing (SA), State
Transition Algorithm (STA), Artificial Bee Colony (ABC), Black Hole (BH), and Particle Swarm
Optimization (PSO). Experimental results show that DTSA is another qualified and competitive solver
on discrete optimization.
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1. Introduction

Traveling Salesman Problem (TSP) is a well-known combinato-
rial optimization problem. Although the mathematical model of
the algorithm and understanding are too easy, effectively solving
this problem is really difficult because TSP is in category of NP-
Hard problems [1] so an algorithm that solves this problem at
the polynomial time has not yet been proposed. The main problem
is finding a Hamiltonian path with minimum cost on a weighted
graph. TSP is an important benchmark problem because it models
very significant problems such as scheduling, routing, threading of
scan cells in a testable Very-Large-Scale-Integrated (VLSI), com-
puter wiring, automatic drilling of printed circuit boards and cir-
cuits, movement of people, X-ray crystallography [2]. For solving
TSP, some exact and heuristic methods have been proposed. Some
exact methods are the branch and bound [3], branch and cut [4],
branch and price [5], cutting planes [6], and Lagrangian dual [7].
Heuristic methods are ABC [8-12], PSO [13-18], SA [16], ACO
[11,15,16,18-22], neural network [23], tabu search [24], artificial
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immune systems [25], cuckoo search [26,27], BH [28], STA
[29,30], fruit fly [31], imperialist competitive algorithm (ICA)[32],
physarum-energy optimization (PEO) [33], and GA [16,18,34-50].
Generally, two main groups of approaches are outstanding for solv-
ing permutation coded optimization problems. These approaches
are based on path construction and path improvement [11].

Path construction methods usually use problem information,
therefore they spend more time to create new solutions for prob-
lems. Path improvement methods create new solutions via cross-
over, mutation and swap etc. Usually, path improvement
methods do not use problem information and they consume less
time to create candidate solution but they need long iteration time
to obtain a quality solution. Our approach only uses information in
the population during the candidate solutions are created but in
the initialization of the algorithm, a tour that is created by using
the nearest nodes are assigned to a tree in order to improve the
convergence characteristics of the proposed DTSA. For the rest of
trees, random permutation solutions are generated and assigned.
After initialization, these solutions are improved by swap, shift
and symmetry transformation operators [29,30]. After the termina-
tion criterion is satisfied, obtained solution is improved with 2-opt
algorithm. 2-opt algorithm [51] is a local search technique which is
used for enhancing the solution quality.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The rest of the paper is arranged as follows. The literature
review is given in Section 1.1, Main contribution and motivation
of study are given in Section 1.2. In Section 2, the basic TSA is given,
and DTSA is introduced with two subsections which are Section 3.1
(transformation operators) and Section 3.2 (proposed method). TSP
is mentioned in Section 4. Section 5 is reserved for experimental
results and discussions. Finally, our work is concluded in Section 6.

1.1. Literature review

In this section, we briefly talk about some well-known evolu-
tionary computation and swarm intelligence methods for solving
TSPs. The methods are given chronologically in this section.

Goldberg and Lingle [52] proposed the partially-mapped cross-
over (PMX) operator for solving TSP. Grefenstette et al. [38] dis-
cussed ordinal and adjacency representation in genetic algorithm
for TSP. Heuristic Crossover (HX) is proposed in this work. HX
solved synthetically created problems which have 50, 100, and,
200 cities, and obtained results showed that HX is not a good solver
for TSP. But this work pointed some important future directions for
solving TSPs. Fogel [53] discussed the performance of evolutionary
algorithm (EA) on TSP. This approach compared with PMX inte-
grated GA. Reported experiments show that EA outperforms GA
in terms of solution quality. In another study, Braun (Braun,
1990) used GA for solving large TSPs. In this work, GA initialized
with the nearest neighbor heuristic and it finalized with 2-opt
and or-opt heuristics. Braun [36] proposed Insular GA which is a
parallel approach using order crossover (OX) for creating offspring.
Experimental investigations showed that this approach useful for
solving TSPs. Ulder et al. [47] analyzed 2-opt and Lin-Kernighan
local search methods on Genetic Local Search GA and Multi-start
Local Search GA. Obtained results are compared with 2-opt SA
and 2-opt Threshold Accepting. Genetic Local Search with Lin-
Kernighan neighborhoods outperformed other approaches. Stark-
weather et al. [46] discussed the differences between blind TSP
and classic TSP. In this work, improved edge recombination cross-
over (ERX), order based crossover (OBX), position-based crossover
(PBX), PMX, and cycle crossover (CX) are compared. Enhanced ERX
method has also been developed for preserving the important
edges in parent individuals. OLIVER30 TSP is solved with these
six methods and the results are compared. Also, a warehouse/ship-
ping scheduling problem is solved with these methods. The perfor-
mance of the algorithm for solving OLIVER30 TSP is acceptable, on
the contrary is not for solving scheduling problem. This situation
proves that the success of the operators is problem-dependent.

Potvin [34] prepared a survey about genetic algorithms for solv-
ing TSP. In this work, the author discussed crossover and mutation
techniques for TSP and touched on parallel implementations. PMX,
CX, modified crossover, OX, OBX, PBX, ERX, alternate edges cross-
over, HX are discussed as crossover techniques. Swap, local hill-
climbing, and scramble techniques are mentioned as mutation
approaches. Larranaga et al. [41] discussed various representations
such as binary, path, adjacency, ordinal and matrix. In this work, 48
combinations of 8 crossover operators (alternating position cross-
over (APX), CX, ERX, OX, OBX, PMX, PBX, and voting recombination
crossover (VRX)) and 6 mutation operators (exchange mutation
(EM), inversion mutation (IVM), displacement mutation (DM),
insertion mutation (ISM), simple inversion (SIM), scramble muta-
tion (SM)) in GA are examined on three TSPs. There are three
important results are obtained in this study. First, ERX outper-
formed all other crossover operators. Second, there is no significant
difference between mutation operators. Third, the best representa-
tion type for TSP is path representation.

Bryant and Benjamin [37] investigated the effects of crossover
and mutation methods in GA on TSPs. The results show that matrix
representation and HX gave good results in terms of solution qual-

ity. Ucoluk [35] proposed a new permutation crossover genetic
operator which based on PMX technique. The proposed method
produced worse results than PMX on BAYS29, BERLIN52 and
EIL101 problems. Moreover, both PMX and the proposed method
did not achieve optimum results. Wang et al. [13] used PSO algo-
rithm which equipped with swap operator and swap sequence
mutation methods for BURMA14 problem. Tsai et al. [50]
researched the performance of genetic operators on TSPs and pro-
posed an approach which maintains the population diversity. DPSO
algorithm is presented by Shi et al. [17] for solving symmetric and
generalized TSPs. 5 symmetric and 19 generalized TSPs are solved
by DPSO. Results show that DPSO is an alternative solver for these
types of problems. In DPSO, candidate solutions are created by the
slide and reverse operators. Also, delete-crossover process (similar
to 2-opt) is integrated this algorithm for improving the solution
quality. Ahmed [42] proposed sequential constructive crossover
(SCX) technique for TSPs. SCX compared with ERX and generalized
N-point crossover (GNX) on symmetric and asymmetric TSPLIB
instances. Experimental results show that SCX is better than ERX
and GNX.

ABC algorithm is discretized with integrating swap operators by
Li et al. in [10]. In this work, discrete ABC (DABC) is compared with
PSO in [13] and GA in [36]. The results show that, DABC is better
than PSO algorithm on BURMA14 and DANTZIG42 problems, and
compete with GA algorithm. Albayrak and Allahverdi [43] pro-
posed a new mutation operator called as Greedy Sub Tour Muta-
tion (GSTM) and compared with EM, DISP, INV, ISM, SIM, SCM,
and GSM mutation techniques and DPX, OX, CX, and PMX cross-
over techniques. Experimental results show that GSTM produced
acceptable solutions in a reasonable time when compared the
other techniques. BERLIN52, KROA100, PR144, CH150, KROB150,
PR152, RAT195, D198, KROA200, TS225, PR226, PR299, LIN318,
and PCB442 problems are used as benchmark set. Karaboga and
Gorkemli [12] developed the Combinatorial ABC (CABC) algorithm
for solving combinatorial optimization problems. At the initializa-
tion phase, CABC used the nearest neighbor tour construction
heuristic method and GSTM [43] technique is used for producing
candidate solutions. KROB150 and KROA200 problems are used
for analyze the efficiency of this approach, and good results are
obtained. Chen and Chien [16] proposed a new method for solving
TSPs, named as genetic simulated annealing ant colony system
with particle swarm optimization (GSA-ACS-PSOT). In GSA-ACS-
PSOT, initial solutions are created with ACS, after then these solu-
tions are given to genetic simulated annealing techniques. After a
certain iteration passes, obtained solutions are improved by parti-
cle swarm optimization technique. This approach has been created
by hybridizing four different metaheuristic algorithms. The perfor-
mance of GSA-ACS-PSOT is tested on 25 different TSPs. Chunhua
et al. [30] proposed the discrete STA (DSTA). DSTA uses three state
transformation techniques as swap, shift and symmetry for creat-
ing candidate solutions. In this work, DSTA compared with SA
and ACO and the results show that DSTA consumes much less time
and has better search ability than SA and ACO. A hybrid approach
whose name is GA-PSO-ACO is proposed by Deng et al. [18]. In GA-
PSO-ACO, GA and PSO work on exploration phase and ACO works
on exploitation phase. Gorkemli and Karaboga [8] modified quick
ABC (gABC) for solving TSPs. Onlooker bee phase is different in
gABC than the basic ABC. In this work, a new similarity measure
is developed and onlooker bees used this measure for new candi-
date solutions. This approach is named as quick Combinatorial
ABC (qCABC). KROB150 and KROA200 problems are solved with
qCABC. qCABC is compared with CABC and GSTM and outperforms
these methods. Kiran et al. [9] used neighborhood operators for
creating candidate solutions in discrete artificial bee colony algo-
rithm. Random Swap (RS), Random Insertion (RI), Random Swap
of Subsequences (RSS), Random Insertion of Subsequence (RIS),
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Random Reversing of Subsequence (RRS), Random Reversing Swap
of Subsequences (RRSS), and Random Reversing Insertion of Subse-
quence (RRIS) operators are used in this study. Also these operators
grouped and used as swapping group (RS, RSS, and RRSS) and inser-
tion group (R, RIS, and RRIS). OLIVER30, EIL51, BERLIN52, ST70,
PR76, KROA100, EIL101, TSP225 and A280 are used as benchmark
set for experimental results. Ouaarab et al. [26] proposed discrete
cuckoo search (DCS) algorithm. 41 symmetric TSPs are solved by
DCS. The obtained results by DCS are compared with some
approaches. The results show that DCS is an alternative solver for
symmetric TSPs. DCS is equipped with 2-opt and double bridge
techniques [54]. 2-opt is used as local search, and double bridge
is used as global search method in every iteration although these
techniques are very time consuming approaches. TSPs which have
51 cities to 1379 cities are solved with DCS in this work.

Gunduz et al. [11] proposed a hybrid algorithm whose names is
ACO-ABC. ACO and ABC are combined for solving TSPs. This hybrid
approach has been proposed using the successful aspects of ABC
and ACO algorithms. In this work, weaknesses of ABC and ACO,
are stated and the hybrid approach is defended. Mahi et al. [15]
proposed a hybrid solver which contains PSO, ACO, and 3-opt algo-
rithm. At the starting phase of hybridization, the peculiar parame-
ters of ACO which denoted as o and B are optimized by PSO and
ACO solves the TSPs according to these parameters. When termina-
tion criterion is satisfied, the best tour which obtained by ACO is
given to 3-opt algorithm and this local search method tries to
improve the solution. This approach tested on EIL51, BERLIN52,
ST70, EIL76, RAT99, KROA100, EIL101, LIN105, CH150 and
KROA200 problems. The random key approach is integrated to
cuckoo search for solving traveling salesman problem by Ouaarab
et al. [27]. Random-key cuckoo search (RKCS) uses random-key
encoding scheme for transferring the variables in continuous
search space to integer search space. In RKCS, 2-opt local search
works until a better result is obtained. The hybrid max-min ant
system (HMMA) with a local search algorithm is proposed by Yong
[20]. Zhou et al. [29] improved DSTA for solving TSPs. DSTA uses
four state transformation techniques as swap, shift, symmetry,
and substitute for creating candidate solutions. In this work,
KROA100, KROB100, KROC100, KROD100 and KROE100 problems
are used for performance testing and obtained results are com-
pared with SA. Gulcu et al. propose a parallel cooperative hybrid
algorithm (PACO-30pt) based on ant colony optimization for solv-
ing TSPs [21]. PACO-30pt uses 3-opt local search algorithm and
this is a very time-consuming process. Therefore parallelization
is used to accelerate the algorithm. The authors claimed that their
approach overcomes the premature convergence of ACO. Hussain
et al. [39] proposed a new crossover operator (CX2) which is based
CX operator. This operator is compared with PMX, OX and CX oper-
ators. Experiments showed that CX2 is better than PMX and OX
operators on some TSPs. Jubeir et al. [40] investigated GA’s selec-
tion method’s effect on TSPs. Stochastic Universal Selection (SUS),
Rank Selection (RS), Tournament Selection and Roulette Wheel
Selection (RWS) are generally used for parental selection in GA.
In this work, authors proposed a new enhanced parent selection
method for GA. This selection method uses minimum distance
knowledge and similar to RS but without sorting. Proposed selec-
tion method outperformed SUS on GR24, BRAZIL58, SIL75, and
PA561 problems of TSPs. Fruit fly optimization algorithm is modi-
fied for solving TSPs in another study [31]. In this work, a real-
world problem is solved by the proposed approach. Hatamlou
solves TSPs with black hole (BH) algorithm in [28]. Yildirim and
Karci [55] redesign artificial atom algorithm for small-scale TSPs.
In this work, candidate solutions are created by 2-opt local search
method. The performance of this method is examined on WI29,
ATT48, EIL51, BERLIN52, ST70, PR76 problems. Chen et al. [32]
merged the ICA with a policy-learning function for solving the

TSPs. Feng et al. proposed the Physarum-energy optimization
(PEO) algorithm for solving TSPs [33].

Generally speaking, metaheuristic algorithms produce candi-
date solutions in three main stages: Initialization, Crossover, and
Mutation. According to the literature review, we collected strate-
gies for producing candidate individuals for permutation-coded
path representation. In the initialization phase, the population is
created with random permutation or nearest neighbor tour con-
struction heuristic. In the crossover phase, more than one individ-
uals are used for creating new individuals. Some crossover
techniques found in literature are PMX [52], OX [56], CX [45],
OBX [57], PBX [57], HX [58], sorted match crossover (SMX) [59],
ERX [48,49], maximal preservative crossover (MPX) [60], VRX
[44], APX [61], and SCX [42]. In the mutation phase, only one indi-
vidual is used for creating a new individual. Some mutation tech-
niques found in literature are EM [62], DM [63], IVM [64], ISM
[53], SIM [38], SM [57], GSTM [43], neighborhood operators (RS,
RI, RSS, RIS, RRS, RRSS, RRIS) [9], and transformation operators
[29,30]. After termination criterion is met, obtained best result
can be improved by local search techniques. The widely used local
edge exchange heuristics are 2-opt [51], Or-opt [65], double bridge
[54] and Lin and Kernighan neighborhoods [66].

Tree-Seed Algorithm (TSA) [67] is proposed by Kiran for solving
continuous optimization problems. The parallel version of TSA
[68,69] is presented in order to accelerate the algorithm. Kiran
[70] investigated the performance of TSA for constrained optimiza-
tion. In another study [71], search space limitation techniques are
analyzed on TSA. Optimal Power Flow Problem in Large-Scale
Power Systems is solved by TSA in [72]. TSA based image filter is
proposed in [73] by Muneeswaran and Rajasekaran. Kiran [74]
modified TSA with the withering process for overcoming stagna-
tion behavior of the algorithm. Parameter identification of equiva-
lent circuit models for Li-ion batteries based on TSA is proposed in
[75]. TSA is modified for constrained optimization in [76] and also
is modified for solving binary optimization problems in [77-79].
Muneeswaran and Rajasekaran [80] used TSA for performance
evaluation of radial basis function neural network (RBFNN). In this
work, the values of clustering centers, width and weights of the
RBFNN are optimized by TSA. Zheng et al. [81] optimized the
parameters of a system related with hydroelectric generating unit
by TSA. TSA helped to solve gallbladder shape estimation problem
in [82]. Zhou et al. [83] presented a novel variable-length tree-seed
algorithm based competitive agglomeration (VTSA-CA) algorithm
to determine the optimal number of clusters automatically and
improve the clustering performances. Ding et al. [84] solved the
structural damage identification problem with clustering based
TSA. An improved version of TSA which named as EST-TSA (effec-
tive search tendency based to tree seed algorithm) proposed in
[85] by Jiang et al.

1.2. Main contribution of the study

The main differences in our study from the studies in the liter-
ature and the main contributions to the literature are listed below.

e DTSA is a novel and alternative discrete optimization method
for permutation-coded optimization problems.

e Experimental results show that DTSA produces adequate and
comparable solutions for symmetric TSPs.

o This study presents the first version of TSA on the permutation-
coded discrete form.

In this work, the peculiar parameters of TSA (search tendency,
number of seeds, number of trees) have been analyzed for the first
time for discrete optimization problems.
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2. The basic Tree-Seed algorithm

TSA is proposed by Kiran in 2015 [67] for solving continuous
optimization problems. The main idea of the algorithm is the rela-
tionship between trees and seeds. In the TSA, trees and seeds rep-
resent the possible solutions for the optimization problems. At
initialization phase, trees are created randomly in search space.
The number of trees is named as “stand size” in TSA. The number
of seeds is analyzed in [67] and is suggested as between 10% and
25% of stand size. Seeds are created using Eqgs. 1 or (2) for each tree
at every iteration.

S(k) =T(i) + a(B—T(r)) (1)

S(k) =T(i) + a(T(i) — T(r)) (2)

where, T(i) is ith tree, S(k) is kth seed of T(i), & is a uniformly dis-
tributed random number between —1 and 1, B is the best tree
obtained so far, T(r) is a random tree which is different from the T
(i). Two seed creation equations (Eqs. 1 or 2) are controlled by
Search Tendency (ST) parameter has a value between 0 and 1. Dur-
ing the search process, a uniformly distributed random number in
range of [0, 1] is generated and compared with ST parameter. If
ST smaller than this random number, Eq. (1) is used for seed cre-
ation, otherwise Eq. (2) is used for seed creation. Eq.1 provides

intensification and Eq. (2) provides diversification in TSA. The flow-
chart of TSA is given in Fig. 1.

3. The discrete tree-seed algorithm (DTSA)

For solving discrete optimization problems, TSA is modified as
follows:

In the initialization phase, trees are created as random permu-
tations and a nearest neighbor tour assigned to one of the trees,

Transformation operators are described in Section 3.1, used for
seed creation instead of Eqs. 1 and 2.

After the termination criterion is satisfied, obtained solution is
given to 2-opt [51] algorithm in order to improve the solution.

3.1. Transformation operators

In this study, transformation operators such as swap, shift and
symmetry [29,30] are used for creating seeds. Any repairing mech-
anism is not used because the seeds are created in feasible search
space. These operators are briefly described below and some exam-
ples are given to illustrate the working mechanismes.

Swap transformation: Two different random numbers are cre-
ated between 1 and N, where N is the total number of cities in

Set initialization parameters
Population Size (N), Search Tendency (ST), Termination Condition (maxFEs)

v

| Generate population randomly (according to the problem search space)

.

FEs=N

v

[ Calculate the fitness function values of the population (Trees) I

[
oy

I Identify the best tree and keep its parameters

v

[ Set the number of seeds (ns) (randomly generated for each tree) I

v

If the randomly (range 0-1) generated number is smaller than ST, then seeds
produced using the best tree otherwise using current tree

v

Calculate the fitness function values of the produced seeds

v

Compare the current tree and its seeds fitness function values.
If any seed fitness value better than its tree value, replace them.

v

FEs=FEs+ns

Yes

No

Print the best solution

v

Fig. 1. The flowchart of TSA.
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the problem. These two positions in the tree is swapped for creat-
ing new seed. The swap transformation makes small changes on
the tree. The illustration of swap transformation operation is given
in Fig. 2.

Shift transformation: Two different random numbers named as x
and y are created between 1 and N, where N is the total number of
cities in the problem. Decision variable in the position of X, is mem-
orized and other decision variables are shifted to the left in the
range of [xy]. After then the memorized decision variable is
assigned to the position of y. The shift transformation makes med-
ium changes on the tree. The illustration of shift transformation
operation is shown in Fig. 3.

Symmetry transformation: Two random positions for blocks
which their block size is same random number of elements are
determined. Each elements of blocks are inversed in their block
and after then determined blocks are swapped. The symmetry
transformation makes big changes on the tree. The illustration of
symmetry transformation operation is shown in Fig. 4.

3.2. Proposed method

The comprehensive model of the proposed method is shown in
Fig. 5. The algorithm initializes with the nearest neighbor tour and
N-1 numbers of random permutation tours. Where N is the stand
size of the TSA. The TSA algorithm integrated with swap, shift

Tree=| 1 |2 |3 |4|5|6
swap(2,5)
Seed=|1|5(3|4]2|6

Fig. 2. An illustration of swap transformation operation.

Tree=| 1|2 (314 |5 |6
shift(3,5)
Seed=| 1|24 |5 3|6

Fig. 3. An illustration of shift transformation operation.

Tree=| 12131456
symmetry((2,3),(4,5))

Seed=| 1 |5(4|3 /2|6

Fig. 4. An illustration of symmetry transformation operation.

Random Permutation Solutions (N-1) q
Tree-Seed Algorithm vith

a ‘ 2-opt algorithm ‘ The best solution
state transformation operators
The nearest neighbor tour (1) -

Fig. 5. The comprehensive model of the proposed method.

and symmetry transformation operators, starts with iterations
with the aim of improving the quality of the initial solutions. After
the termination criterion is met, obtained solution is given to 2-opt
algorithm. 2-opt algorithm is a local solver and is used only once in
the proposed approach. After then the final solution is reported as
the best solution of DTSA.

The detailed algorithmic framework (pseudo code of DTSA) is
given in Fig. 6.

4. Traveling salesman problem

In TSP, a salesman starts his tour from any city and finished his
tour in this city. A tour must include all of the cities which given for
sale. The main purpose is to complete this tour on the shortest
route. The main difficulty is the numerous number of possible
tours: (n-1)!/2 for n cities. In this work, we use Euclidean distance
for calculating distance between city i and city j as follows:

=/ -3) + (0-3)°) o

where d;; is the distance between city i and city j, X; is X cartesian
coordinate for city i, X; is x Cartesian coordinate for city j, y; is y
Cartesian coordinate for city i, y; is y Cartesian coordinate for city
J. For calculating total tour length we use f function as follows:

n-1
f = dn,] + Z dc,c+1 (4)
c=1

where n is the total number of cities. If d;; equal to d;; these type
problems named as symmetric TSPs. The main objective is finding
a Hamiltonian path with minimum cost on a weighted graph.

5. Experimental results and discussions

The problems which are used for experimental results can be
found in TSPLIB [86]. Most of the problems in TSPLIB are solved
and the optimum values are presented. The numbers in the prob-
lem names indicate the city numbers. Used problems and their
optimum values are OLIVER30 (423.74), EIL51 (428.87), BERLIN52
(7542[7544.37), ST70 (677.11), PR76 (108159.44), KROA100
(21282/21285.44), KROB100 (22141), KROC100 (20749), KROD100
(21294), KROE100 (22068), EIL101 (642.31), KROB150 (26130),
TSP225 (3859), and A280 (2586.77). Comparisons are made with
these optimum values. Coordinate types of these problems are
Euclidean (EUC). In literature, in some works [28,30] different type
problems (for example, geographical-GEO) calculated as EUC and
this is causing the fault in the comparisons. Such situations have
been identified and specified in the subsections. The relative error
(RE) is calculated using Eq. (5) as follows.

_ Optimum — Result

RE = == timam X100 (5)

Here, Result is the obtained solution (mean of 30 different runs),
Optimum is the optimum value of problem. The comparisons were
made using RE values and the best results were marked in bold-
face font type to ease the comparison. The experiment set was
run 30 times during performance measurements. All experiments
are run on a Windows 10 Professional OS laptop using Intel(R)
Core(TM) i7-4510U 2.0 GHz CPU, 8 GB of RAM and the codes were
implemented in MATLAB. The working conditions of each experi-
mental work are given in the relevant section.

5.1. Experiment 1: Comparisons of transformation operators for TSP

The first experiment is done for determining the best transfor-
mation operator for TSP. For this experiment, three transformation
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Determine the maximum function evaluation number (maxfes)
D is the total number of city in the problem

Determine the number of trees (N)

Determine ST number between 0 and 1

Determine the first tree as nearest neighbor tour

Create all trees (except the first one) with random permutations
between 1 and D

Calculate the objective functions of all trees
Set function evaluation number (fes) as N
Determine the best tree via using the objective function values (best)
While fes is smaller than maxfes
For all trees (Tree(1) to Tree (N) )
Determine the number of seed (ns) as 6

Determine a random tree (except the current tree) from the stand
(Tree(k))

Create a random number between 0 and 1 (rand)
If rand is smaller than ST

Create a seed with swap operator with using the best tree (s1)

Create a seed with shift operator with using the best tree (s2)

Create a seed with symmetry operator with using the best tree (s3)

Create a seed with swap operator with using the Tree(k) (s4)
Create a seed with shift operator with using the Tree(k) (s5)
Create a seed with symmetry operator with using the Tree(k) (s6)
end if
If rand is bigger than ST
Create a seed with swap operator with using the current tree (s1)
Create a seed with shift operator with using the current tree (s2)

Create a seed with symmetry operator with using the current tree
(s3)

Create a seed with swap operator with using the Tree(k) (s4)

Create a seed with shift operator with using the Tree(k) (s5)

Create a seed with symmetry operator with using the Tree(k) (s6)
end if

Calculate the objective function of seeds of current tree and increase
the fes value with adding 6

Determine the best seed from 6 seeds (s1, s2, s3, s4, s5, s6)
(bestseed)

If the bestseed is smaller than current tree, replace the current tree
with best seed

end for

Determine the best tree via using the objective function values
(tempbest)

If the tempbest is smaller than best, replace the best with the
tempbest

end while
Apply the 2-opt algorithm using the best individual.

Report the best as the obtained best solution by DTSA.

Fig. 6. The pseudo code of DTSA.

operators which have three different situations analyzed on BER-
LIN52 TSP. Stand size is 52, the maximum number of evaluation
is set at 104000 (Dx2000) and results are shown in Table 1.
According to the Table 1, the best transformation operator is the
symmetry operator because it was produced more diversified
solutions.

5.2. Experiment 2: determining the N and ST parameters for DTSA

For determining the optimum parameters for DTSA, the number
of trees (N), the number of seeds (NS) and the search tendency (ST)
parameters are analyzed. In the base versions of TSA, a random
number of seed production mechanisms used in each iteration.
But in DTSA we used fixed number of seeds as 6. For the number
of trees (N), we proposed the total number of cities of problem.
To prove that this suggestion is true, we use N as by increasing
10-300 by 10. Moreover NS, ST and maxfes parameters are used
as 6, 0.5 and 800000 respectively. As seen from Table 2, N param-
eter does not seem to have a significant effect on the results.

For analyzing ST parameter, we use ST as by increasing 0.1 to
0.9 by 0.1. The obtained results are presented in Table 3. As seen
from the Table 3, the mean errors are very close together. There-
fore, we use ST as 0.5 for giving equal chances to best and random
trees. In the light of the obtained information, in subsequent exper-
iments, N, ST and NS parameters will be used as number of cities in
the problem, 0.5 and 6 respectively.

5.3. Experiment 3: comparisons with SA, ACO and STA

DTSA is compared with STA firstly because STA used transfor-
mation operators for improving solutions. STA compared with SA
and ACO in [30]. Comparison results directly taken from [30] and
compared with DTSA algorithm under the conditions mentioned
before in this work. All algorithm’s maximum function evaluation
is set at 4000 for a fair comparison as in [30]. The algorithmic
parameters of SA are initial temperature and cooling rate and these
are set at 5000 and 0.97 respectively. The values of specific param-
eters of ACO are oo = 1, B = 5, p = 0.9. The number of ants is set at 20
and total maximum of iterations is set at 200 for ACO. For STA,
search enforcement is set at 20 and maximum iteration number
is set at 200.

According to the Table 4, DTSA has performed well on BERLIN52
instance. In [30] work, results of ATT48 and ULYSSES16 problems
are faulty because of coordinate system issue and these results
were not included.

5.4. Experiment 4: Comparisons with SA and DSTA variants

In [29] work, KROA100, KROB100, KROC100, KROD100 and
KROE100 problems are used for performance testing to DSTA vari-
ants and obtained results are compared with SA. DTSA was imple-
mented with the same parameters in [29] for a fair comparison.
DTSA results are compared with directly taken results of SA and
DSTA variants from [29]. All algorithm’s maximum function evalu-
ation is set at 90000. The algorithmic parameters of SA are initial
temperature and cooling rate and these are set at 2000 and 0.97
respectively. For DSTA variants, search enforcement is set at 100
and maximum iteration number is set at 900. Comparison of DTSA
with SA and DSTA variants are presented in Table 5. When this
information is examined, DTSA is the best solver for KROA100
and KROE100 problems, DTSA is the second best solver for other
three problems among the other solvers.
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Table 1
Transformation operators performance analyze on BERLIN52 TSP.
Method Detail TSA Mean TSA + 20pt Mean Std.Dev. RE(%)
swap(current tree) 8133.00 7863.00 0.00 4,08
swap(random tree) 8059.17 7858.00 3.22 4.02
swap(best tree) 8133.00 7863.00 0.00 4.08
shift(current tree) 7816.73 7678.57 83.39 1.78
shift(random tree) 7903.13 7740.23 74.13 2.56
shift(best tree) 7891.37 7758.43 65.71 2.79
symmetry(current tree) 7683.73 7542.00 0.00 0.00
symmetry(random tree) 7697.00 7542.00 0.00 0.00
symmetry(best tree) 7737.90 7551.03 49.48 0.12
5.5. Experiment 5: comparisons with ABC variants
Table 2
N analyses of DTSA on KROB150 TSP. . X X
In [9] work, ABC integrated with neighborhood operators for
N Mean Std.Dev. Mean Error solving TSPs. Neighborhood operators are similar to transforma-
10 27011.31 385.22 3.37 tion operators. RS, RSS, and RRSS are similar to swap transforma-
20 26981.58 324.98 3.26 tion operator, RI and RIS are similar to shift transformation
4318 ;éggg:ii 5312:(7;2) ;32 operator. RRS and RRIS operators are similar to symmetry transfor-
50 26879.64 256.89 2.87 mation operator. Also, these operators grouped and named as
60 26835.50 205.93 2.70 Combined 1 (RS, RSS, and RRSS) and Combined 2 (R, RIS, and RRIS)
70 26776.81 233.30 2.48 in [9]. OLIVER30, EIL51, BERLIN52, ST70, PR76, KROA100, EIL101,
gg ;ggi?'g ;égég ;gg TSP225, A280 are used as the benchmark functions for experimen-
100 2680149 19721 257 tal results in [9] work. For a fair comparison, termination criterion
110 26825.27 241.02 2.66 (the maximum function evaluation number) is set at
120 26714.21 125.24 224 (D x 100,000). D is the number of cities of the test problem. The
130 26725.14 162.88 2.28 algorithmic parameters of ABC and its variants are population size
1‘518 32;22:?2 }g;g; 5:; and limit and these are set at D and DxDx100 respectively. The
160 26817.75 199.53 2.63 obtained results are shown in Tables 6-14. In these tables, 2-OPT
170 26853.57 190.64 2.77 means ABC with 2-opt and 3-OPT means ABC with 3-opt. If we
180 26804.85 175.04 2.58 make an overall analysis, DTSA produces more successful results
;gg ;gg;zgg ;gg'% g'gg when dimension of the problems increases. For BERLIN52,
210 26845.76 146.88 274 KROA100, TSP225 and A280 problems, DTSA has produced better
220 26880.65 134.48 2.87 results than the other compared algorithms. For the other six prob-
230 26881.87 190.82 2.88 lems, DTSA produced competitive solutions.
240 26913.85 161.44 3.00
250 26846.96 129.83 2.74
260 26971.07 183.25 322 ; . ; ;
570 2692855 14385 306 5.6. Experiment 6: comparisons with ACO, ABC, HA
280 26974.95 194.46 323
290 27027.08 228.64 343 Hierarchic approach (HA) is an algorithm which consists of both
300 26986.31 191.51 3.28 ABC and ACO proposed by Giindiiz et al.[11].We compared DTSA
with the HA, ACO, ABC. For a fair comparison, termination criterion
(the maximum function evaluation number) is set at (D x 500). D
is the number of cities of the test problem. The algorithmic param-
eters of ABC are population size and limit and these are set at D and
DxDx500 respectively. The values of specific parameters of ACO are
Table 3 a=1,B=5, p=0.65. The number of ants is set at D and total max-
ST analyses of DTSA on KROB150 TSP. imum of iterations is set at 500 for ACO. HA means 50% ABC and
ST Mean Std.Dev. Mean Error 50% ACO so the parameter settings are same, only the population
0.1 26865.36 194.90 2.81 sizes are half of D. The results of ABC, ACO and HA are directly
0.2 26854.99 208.38 2.77 taken from [11]. The results reported in Table 15.As seen from
0.3 26830.46 161.16 2.68 the Fig. 7, DTSA is a yet another good solver for these ten TSPs.
0.4 26794.43 174.89 254 HA is the leader because HA was used problem and population
05 26792.15 21849 253 knowledge together but DTSA do not use problem knowledge so
0.6 26719.09 134.27 2.25
0.7 26795.28 160.74 255 DTSA creates competitive solutions but not creates the best solu-
0.8 26760.29 184.34 241 tion for all problems. According to the Table 15 and Fig. 7, DTSA
0.9 26717.41 151.97 2.25 is better than ACO, ABC but worse than HA. Using the problem
Table 4
Comparison of DTSA with SA, ACO and STA.
Problem Performance SA ACO STA DTSA
BERLIN52 Best 8,186.40 8,240.40 7,544.40 7,542.00
Mean 8,983.80 8,777.60 8,247.20 7,689.17
Worse 9,585.80 9,151.30 8,630.50 7,929.00
Std.Dev. 380.10 267.11 273.45 108.40
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Table 5
Comparison of DTSA with SA and DSTA variants.
Problem Optimum Algorithm Mean Std.Dev. Mean Error
KROA100 21,282 SA 22635.00 778.72 6.36
DSTAO 23213.00 906.11 9.07
DSTAI 22835.00 715.85 7.30
DSTAII 21767.00 221.64 2.28
DTSA 21506.78 260.55 1.06
KROB100 22,141 SA 23657.00 445.78 6.85
DSTAO 23794.00 517.05 7.47
DSTAI 23734.00 507.38 7.19
DSTAII 22880.00 302.14 3.34
DTSA 23139.26 181.74 4,51
KROC100 20,749 SA 22223.00 522.20 7.10
DSTAO 22877.00 709.87 10.26
DSTAI 21891.00 536.88 5.50
DSTAII 21378.00 246.34 3.03
DTSA 21817.08 217.77 5.15
KROD100 21,294 SA 22911.00 483.01 7.59
DSTAO 23043.00 565.80 8.21
DSTAI 22665.00 592.53 6.44
DSTAII 21991.00 315.32 3.27
DTSA 22972.26 390.50 7.88
KROE100 22,068 SA 23125.00 389.42 4.44
DSTAO 23738.00 450.82 7.21
DSTAI 23371.00 678.69 5.56
DSTAII 22637.00 166.82 2.24
DTSA 22547.00 121.96 1.83
Table 6
Comparison of DTSA with ABC variants for OLIVER30 TSP.
Average
ABC 2-0OPT 3-OPT DTSA
RS 477.86 477.86 476.37 426.74
RSS 423.74 423.74 423.74 426.74
RI 447.36 44443 444.58 426.74
RIS 423.88 423.88 423.88 426.74
RR 425.16 425.16 42491 426.74
RRIS 423.74 423.74 423.74 426.74
RRSS 423.74 423.74 423.74 426.74
Combined 1 423.74 423.74 423.74 426.74
Combined 2 423.74 423.74 423.74 426.74
Table 7
Comparison of DTSA with ABC variants for EIL51 TSP.
Average
ABC 2-0OPT 3-OPT DTSA
RS 506.32 506.32 504.45 438.25
RSS 431.11 431.03 431.11 438.25
RI 467.62 463.28 465.03 438.25
RIS 435.78 435.77 435.78 438.25
RR 440.00 440.00 439.92 438.25
RRIS 430.41 430.37 430.41 438.25
RRSS 430.25 430.25 430.25 438.25
Combined 1 430.08 430.08 430.08 438.25
Combined 2 430.55 430.55 430.55 438.25

knowledge slows down the algorithm, but increase the solution
quality. It is a tradeoff between quality and time. Thus, we do
not prefer the usage of problem knowledge so DTSA is the second
best solver in this experiment.

5.7. Experiment 7: comparisons with ACO, PSO, GA, BH

In 2017, BH is proposed for solving TSPs in [28] work and com-
pared with ACO, PSO, and GA. In [28], ULYSSES22, BAYS29,

BAYG29, ATT48, EIL51, BERLIN52, ST70, EIL76, GR96, and EIL101
problems are solved but when we examined the results, a mistake
appears in the obtained results. The optimum of ULYSSES22 is
7013 but in this work, Hatamlou found it about 75 because of
the false calculation of objective function. Coordinate of the
ULYSSES22 problem is GEO type but in this work, it calculated as
EUC type as in BAYS29 (2020), BAYG29 (1610), ATT48 (10628),
and GR96 (55209) problems. Therefore, only EIL51, BERLIN52,
ST70, EIL76, and EIL101 problems used for comparison as seen in
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Table 8 Table 12
Comparison of DTSA with ABC variants for BERLIN52 TSP. Comparison of DTSA with ABC variants for EIL101 TSP.
Average Average
ABC 2-0OPT 3-OPT DTSA ABC 2-OPT 3-0OPT DTSA
RS 9,177.02 9,177.02 9,117.92 7,544.37 RS 837.37 837.37 829.74 670.51
RSS 7,562.80 7,562.80 7,562.80 7,544.37 RSS 683.64 675.86 681.99 670.51
RI 8,470.14 8,395.98 8,401.40 7,544.37 RI 730.02 724.38 726.53 670.51
RIS 7.591.43 7,591.43 7,591.43 7,544.37 RIS 681.49 674.82 679.90 670.51
RR 7,774.77 7,774.77 7,763.02 7,544.37 RR 676.34 676.34 674.95 670.51
RRIS 7,544.37 7,544.37 7,544.37 7,544.37 RRIS 670.82 664.86 669.15 670.51
RRSS 7,544.37 7,544.37 7,544.37 7,544.37 RRSS 668.05 665.35 666.96 670.51
Combined 1 7,548.47 7,547.07 7,548.47 7,544.37 Combined 1 667.80 667.58 667.27 670.51
Combined 2 7,544.37 7,544.37 7,544.37 7,544.37 Combined 2 661.25 660.96 660.92 670.51
Table 9 Table 13
Comparison of DTSA with ABC variants for ST70 TSP. Comparison of DTSA with ABC variants for TSP225 TSP.
Average Average
ABC 2-OPT 3-OPT DTSA ABC 2-OPT 3-OPT DTSA
RS 927.69 927.69 922.84 688.77 RS 7264.12 7219.30 7142.35 3974.49
RSS 688.59 687.15 688.46 688.77 RSS 5578.45 4866.89 5069.09 3974.49
RI 785.14 773.34 777.03 688.77 RI 5030.64 4916.51 4952.39 3974.49
RIS 690.04 687.87 690.03 688.77 RIS 5273.92 4720.48 4903.77 3974.49
RR 695.17 695.17 693.84 688.77 RR 4183.45 417036 4177.70 3974.49
RRIS 681.52 680.85 681.32 688.77 RRIS 5242.72 4693.40 4875.97 3974.49
RRSS 683.18 682.55 683.18 688.77 RRSS 5165.84 4666.68 4835.13 3974.49
Combined 1 684.17 684.17 684.05 688.77 Combined 1 4741.70 4624.32 4672.41 3974.49
Combined 2 681.60 680.88 681.56 688.77 Combined 2 4439.00 4337.75 4404.18 3974.49
Table 10
Comparison of DTSA with ABC variants for PR76 TSP. Table 14
Average Comparison of DTSA with ABC variants for A280 TSP.
ABC 2-0OPT 3-OPT DTSA Average
RS 147206.79 147206.79 146809.12 112747.33 ABC 2-OPT 3-OPT DTSA
RSS 110106.91 109871.01 110106.91 112747.33
RS 5759.04 5642.34 5611.08 2686.87
N pma s mman o mmn
RR 109817.41 109817.41 109787.82 112747.33 RI 3674.23 3570.72 3574.11 2686.87
3 . - - RIS 4136.35 3538.74 3714.04 2686.87
WS mmm o e oems 2w
Combined 1 109164.47 109164.47 109164.13 112747.33 RRIS 4082.35 345281 3642.13 2686.87
. : : ) - RRSS 4156.83 3570.00 3707.45 2686.87
Combined 2 108668.29 108642.94 108624.77 112747.33 Combined 1 3584.49 3407.18 3497.76 2686.87
Combined 2 332247 3205.48 3267.81 2686.87
Table 11
Comparison of DTSA with ABC variants for KROA100 TSP. mutation percentage and mutation rate are set at 0.8, 0.3, and 0.02
Average respectively. The population size is set at 100 and total maximum
ABC 2-OPT 3-OPT DTSA of iterations is set at 200 for BH. The comparisons show that, DTSA
RS 33761.06 33761.06 33437.72 21386.20 had the best performance in 4 of 5 problems.
RSS 22663.10 22081.42 22560.99 21386.20
RI 26204.50 25856.45 25959.69 21386.20 6. Conclusions
RIS 22490.43 21997.55 22331.84 21386.20
RR 21845.07 21845.07 21834.45 21386.20 L . . .
RRIS 22080.16 21688.40 22013.77 21386.20 Optlleathﬂ problems are divided into two main groups
RRSS 21825.11 21687.13 21800.82 21386.20 according to the decision variable types. These are continuous
Combined 1 2175941 21747.45 21749.99 21386.20 and discrete optimization. TSA is a newly proposed metaheuristic
Combined 2 21521.00 21506.96 21493.58 21386.20

Table 16. DTSA has executed 5 different runs with 20,000 function
evaluations as in related work. The stand size is taken as 100 and
ST is taken as 0.5. The values of specific parameters of ACO are
o = 1.5, B =2, p=0.7. The number of ants is set at 100 and total
maximum of iterations is set at 200 for ACO. For PSO algorithm
social and cognitive constants c1 and c2 are set at 2. The inertia
weight is taken as 0.9, the maximum of velocity is taken as 100
and dimension of space as taken as 10. In GA, crossover percentage,

optimization algorithm for solving continuous optimization prob-
lems. In the literature, there is no discrete version of TSA, so in this
study, we developed a discrete version of TSA and named as DTSA.
This discretization process is made with transformation operators.
Swap, shift and symmetry transformation operators are used for
creating new solutions. Additionally, for improving the solution,
the 2-opt local search algorithm is used. For analyzing the success
of this approach, we used symmetric traveling salesman problems.
These problems names are ULYSSESS16, OLIVER30, EIL51, BER-
LIN52, ST70, PR76, KROA100, KROB100, KROC100, KROD100,
KROE100, EIL101, KROB150, TSP225, and A280. The results of our
algorithm are compared with ACO, SA, BH, GA, STA, ABC, PSO and
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Table 15
Comparison of DTSA with ACO, ABC, HA.
Problem Method Mean Std.Dev. RE maxfes Rank
OLIVER30 ACO 424.68 1.41 0.22 15,000 3
ABC 462.55 12.47 9.16 15,000 4
HA 423.74 0.00 0.00 15,000 1
DTSA 428.50 4.21 1.12 15,000 2
EIL51 ACO 457.86 4.07 6.76 25,500 3
ABC 590.49 15.79 37.69 25,500 4
HA 443.39 5.25 3.39 25,500 1
DTSA 443.93 4.04 3.51 25,500 2
BERLIN52 ACO 7659.31 38.70 1.52 26,000 3
ABC 10390.26 439.69 37.72 26,000 4
HA 7544.37 0.00 0.00 26,000 1
DTSA 7545.83 21.00 0.02 26,000 2
ST70 ACO 709.16 8.27 4.73 35,000 3
ABC 1230.49 41.79 81.73 35,000 4
HA 700.58 7.51 3.47 35,000 1
DTSA 708.65 6.77 4.66 35,000 2
EIL76 ACO 561.98 3.50 3.04 38,000 2
ABC 931.44 24.86 70.78 38,000 4
HA 557.98 4.10 231 38,000 1
DTSA 578.58 3.93 6.09 38,000 3
PR76 ACO 116321.22 885.79 7.55 38,000 3
ABC 205119.61 7379.16 89.65 38,000 4
HA 115072.29 742.90 6.39 38,000 2
DTSA 114930.03 1545.64 6.26 38,000 1
KROA100 ACO 22880.12 235.18 7.49 50,000 3
ABC 53840.03 2198.36 152.94 50,000 4
HA 22435.31 231.34 5.40 50,000 2
DTSA 21728.40 358.13 2.08 50,000 1
EIL101 ACO 693.42 6.80 7.96 50,500 3
ABC 1315.95 35.28 104.88 50,500 4
HA 683.39 6.56 6.40 50,500 1
DTSA 689.91 4.47 741 50,500 2
CH150 ACO 6702.87 20.73 2.61 75,000 2
ABC 21617.48 453.71 230.93 75,000 4
HA 6677.12 19.30 222 75,000 1
DTSA 6748.99 32.63 3.32 75,000 3
TSP225 ACO 4176.08 28.34 8.22 112,500 2
ABC 17955.12 387.35 365.28 112,500 4
HA 4157.85 26.27 7.74 112,500 1
DTSA 4230.45 58.76 9.63 112,500 3

Comparisons of rank values for ACO, ABC, HA, DTSA

Rank

HACO WABC mHA mOTSA

w

=]

Fig. 7. Comparisons of mean rank values for ACO, ABC, HA and DTSA.

some of their variants. Experimental results confirmed that our In the future, this approach may be used for solving asymmetric
approach is another qualified and competitor solver for symmetric and generalized traveling salesman problems. Also, discrete real-
traveling salesman problems. world problems may be solved with this approach. In the near
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Table 16
Comparison of DTSA with ACO, PSO, GA, BH.

Method Mean Std.Dev.

eil51 ACO 461.0175 6.2974
PSO 574.8022 107.2371
GA 453.4773 9.4157
BH 458.9252 38.6365
DTSA 456.5184 8.9247

berlin52 ACO 8522.9017 1152.2000
PSO 11089.5286 2067.9323
GA 9288.4483 1301.2108
BH 8455.8304 508.9871
DTSA 7761.6000 62.8594

st70 ACO 757.7540 59.6079
PSO 1321.8137 269.2793
GA 1158.8458 52.1734
BH 797.5745 125.2272
DTSA 710.4037 2.7956

eil76 ACO 594.1442 40.2152
PSO 975.6397 152.4061
GA 652.0593 122.0972
BH 659.1021 152.1754
DTSA 588.0623 5.7296

eil101 ACO 763.9207 59.9684
PSO 1499.9911 319.7468
GA 838.8307 9.9642
BH 897.3813 210.1446
DTSA 689.8384 7.2994

future, we are thinking about to apply this approach to the job
shop scheduling problems.
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