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Abstract
Population-based optimization methods are frequently used in solving real-world problems because they can solve complex

problems in a reasonable time and at an acceptable level of accuracy. Many optimization methods in the literature are

either directly used or their binary versions are adapted to solve binary optimization problems. One of the biggest

challenges faced by both binary and continuous optimization methods is the balance of exploration and exploitation. This

balance should be well established to reach the optimum solution. At this point, the galactic swarm optimization (GSO)

framework, which uses traditional optimization methods, stands out. In this study, the binary galactic swarm optimization

(BinGSO) approach using binary artificial algae algorithm as the main search algorithm in GSO is proposed. The per-

formance of the proposed binary approach has been performed on uncapacitated facility location problems (UFLPs), which

is a complex problem due to its NP-hard structure. The parameter analysis of the BinGSO method was performed using the

15 Cap problems. Then, the BinGSO method was compared with both traditional binary optimization methods and the

state-of-the-art methods which are used on Cap problems. Finally, the performance of the BinGSO method on the M*

problems was examined. The results of the proposed approach on theM* problem set were compared with the results of the

state-of-the-art methods. The results of the evaluation process showed that the BinGSO method is more successful than

other methods through its ability to establish the balance between exploration and exploitation in UFLPs.

Keywords Galactic swarm optimization � Binary optimization � Uncapacitated facility location problems �
Binary artificial algae algorithm

1 Introduction

‘‘Optimization is the art of making good decisions’’ [1].

Optimization methods realize the process of searching for

the optimal solution in the defined solution space of opti-

mization problems. These problems have different char-

acteristics, such as constrained [2], discrete [3], and

continuous [4]. Optimization problems can be expensive in

terms of computation or hard to solve with classical

methods due to the numerous possible solutions. At this

point, evolutionary-based or swarm-based methods emerge

to obtain an acceptable solution in a reasonable time with

limited resources. Binary optimization methods are kinds

of discrete optimization in which possible solutions are

expressed by 0 and 1 elements. Many binary optimization

methods have been introduced that are used to solve real-

world problems, such as bin packing [5], feature selection,

knapsack [6] and facility location problems [7].

Various modifications have been made to existing

optimization methods for solving binary optimization

problems. Simplified Binary Harmony Search Algorithm

(SBHS) [8], Binary Whale Optimization Algorithm

(bWOA) [9], Binary Learning Differential Evolution

Algorithm (BLDE) [10], Binary Hybrid Topology Particle

Swarm Optimization Algorithm (BHTPSO-QI) [11], Bin-

ary Emperor Penguin Optimizer (BEPO) [12], Binary

Hybrid Particle Swarm Optimization with Wavelet Muta-

tion (HPSOWM) [13], Binary Fruit Fly Optimization

Algorithm (bFOA) [14], Genetic Operators Based Artificial

Bee Colony Algorithm (GBABC) [15], Binary Gray Wolf
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Optimization (bGWO) [16, 17], Binary Artificial Bee

Colony [15, 18, 19], Binary Social Spider Algorithm

(BinSSA) [20], Improved Scatter Search algorithm (ISS)

[21] and Binary Quantum-Inspired Gravitational Search

Algorithm (BQIGSA) [22] are well known modified

methods to solve binary optimization problems in the

literature.

Location problems are one of the most frequently

encountered problems in the field of operational research.

The basic components of the location problems are the

areas where facilities can be established and the customers

whose requirements must be satisfied by these facilities.

Location problems in which facility capacities are con-

sidered unlimited are called uncapacitated facility location

problem (UFLP). There are two types of costs in UFLPs;

the cost of establishing a facility and the cost of trans-

portation of the customer requirement. The main aim of

UFLPs is to determine the facility areas to satisfy customer

requirements with minimum cost [23]. Since UFLPs are

NP-Hard problems and the opening and non-opening states

of the facility can be expressed as 1 and 0, respectively,

many population-based binary optimization methods can

be easily applied for solving the UFLPs, and so presented

in the literature. There are 2n possible solutions for n

facility. The increase on the number of areas causes an

exponential increase on the number of possible solutions.

There are problem-dependent classical methods for

solving binary optimization problems in the literature

(Enumeration Scheme [24], Enumeration methods [25] and

Branch and Bound method [26]). In addition, the increase

in the dimension of the problem exponentially increases the

calculation and memory costs of the methods. Researchers

have trended toward population-based methods in recent

years to get rid of these disadvantages. Genetic algorithms

are frequently used for binary optimization problems due to

the compatibility of both representations of candidate

solutions and the generation of new candidate solutions by

their operators [27]. Particle Swarm Optimization (PSO)

method is designed to solve continuous optimization

problems. However, the ability to solve binary problems

has been gained by using transfer functions [28]. Greis-

torfer et al. proposed a method to solve the facility location

problems with the filter-and-fan approach [29]. The Scatter

Search algorithm, modified with different crossover

methods, presents effective results in the UFLPs [21].

Cinar and Kiran proposed an approach for solving binary

optimization problems using logic gates and various simi-

larity techniques in the TSA algorithm, which they pro-

posed for continuous problems [30]. Gunduz and Kiran

proposed a binary version of the Artificial Bee Colony

(ABC) Optimization method [19]. Korkmaz et al. proposed

a method that can solve binary optimization problems, and

the proposed method has been evaluated on facility

location problems [31]. Artificial Algae Algorithm with

stigmergic behavior (binAAA) has been successfully

implemented to the UFLPs [32]. Genetic algorithms have

also been used for solving UFLPs [33]. Binary Social

Spider Algorithm (BinSSA), a binary version of the Social

Spider Algorithm (SSA), has been proposed by Bas et al.

[20], and the algorithm was evaluated for solving binary

problems.

There are various algorithms in different disciplines

inspired by the biological behavior of living things, called

bio-inspired (Bio-inspired P2P Information Systems

[34, 35], Bio-inspired networking [36], and Bio-inspired

materials chemistry [37]). Bio-inspired methods are also

widely used in solving optimization problems such as

Particle Swarm Optimization [38], Ant Colony Optimiza-

tion [39], Artificial Bee Colony [40], and Firefly Algorithm

[41]. Artificial Algae Algorithm (AAA) inspired by the

behavior of the algae is a promising optimization method

introduced in recent years. In particular, AAA performs an

effective search in the solution space through its Helical

Movement, Reproduction, and Adaptation phases [42].

Due to the success of AAA in continuous optimization

problems, several binary AAA versions have been intro-

duced in literature (Artificial Algae Algorithm [31], Arti-

ficial Algae Algorithm with stigmergic behavior [32], and

binary artificial algae algorithm [43]), and these studies

demonstrate successful results.

One of the main challenges in optimization methods is

the balance between exploration and exploitation. While

exploration refers to the capability of the optimization

method on investigating the solution space, exploitation

refers to the capability of the optimization method on

improving the best available solution [44]. Galactic swarm

optimization (GSO) is a framework that successfully per-

forms exploration at the first phase and exploitation at the

second phase. GSO is a framework that solves optimization

problems using basic optimization algorithms (GA, ABC,

PSO, etc.). In the base GSO version, PSO is used as the

basic optimization algorithm [45]. In the literature, there

are some studies in which different basic optimization

algorithms are used in the GSO framework [46, 47]. In

these studies, the GSO framework achieves successful

results in optimization problems thanks to its exploration

and exploitation balance.

This study presents the proposed method using binary

AAA on both phases of the GSO framework (BinGSO).

The proposed BinGSO method has been evaluated by using

two different UFLP sets. These sets include Cap problems

consisting of 15 problems and M* problems consisting of

20 problems. A parameter analysis was performed on the

evaluation process to determine the optimal parameters of

the BinGSO method, which is utilized for solving UFLPs.

Afterward, the results obtained from the evaluations of
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both Cap and M* problems were compared with the results

of the state-of-the-art methods used in solving UFL Prob-

lems in the literature. When the results were analyzed by

employing statistical tests, it was observed that the

BinGSO method achieved more successful results than the

results of the state-of-the-art and traditional binary methods

in both Cap and M* problems.

The rest of this paper is organized as follows: Sect. 2

briefly introduces the AAA algorithm, GSO framework,

and UFLPs. Section 3 provides details of the proposed

approach. Experimental results are presented and analyzed

in Sect. 4. The study is finalized in Sect. 5 by providing

results and future work.

1.1 Main contribution of the study

As in continuous optimization problems, the major chal-

lenge in binary optimization problems is to balance

exploration and exploitation. At this point, the GSO

method is presented as a two-phase framework by pro-

viding a better balance of the exploration and exploitation

in its phases. It has been shown in studies [46, 47] that the

GSO framework improves the performance of traditional

optimization algorithms that solve continuous optimization

problems when used as search algorithms in the GSO

framework. When the literature was reviewed in detail, it

has been determined that the GSO framework was not used

in the solution of binary optimization problems. The main

motivation of the study is to transfer the advantages of the

GSO framework in continuous optimization problems to

binary optimization problems. In this context, an approach

that effectively solves binary optimization problems by

hybridizing the GSO framework and binary AAA algo-

rithm is presented. The proposed method has the ability to

search and improve solutions thanks to its effective

exploration and exploitation balance. The performance of

the proposed binary optimization approach was analyzed

using 35 different UFL problems (15 Cap and 20M*).

2 Preliminaries

2.1 Artificial algae algorithm

Artificial Algae Algorithm (AAA) is a bio-inspired opti-

mization method inspired by the living behaviors of

microalgae proposed by Uymaz et al. [42] in 2015. Algae’s

basic behavioral patterns are the movement toward the

light source for photosynthesis, adaptation to the environ-

ment, and multiply mitosis. In the basic AAA, artificial

algae emulate these behaviors in helical movement, adap-

tation, and evolutionary processes. In the solution space, a

possible solution is represented by the corresponding algae

colony. The population is composed of many algal colo-

nies. A population of D-dimensional N algal colony is

given in Eq. 1, and the initial population of AAA is cal-

culated by using Eq. 2.

Population ¼
x11 . . . xD1
..
. . .

. ..
.

x1N . . . xDN

2
64

3
75 ð1Þ

Population
j
i ¼ x j

min þ r ji x j
max � x j

min

� �
i ¼ 1; 2; . . .;N and j

¼ 1; 2; . . .;D

ð2Þ

where x j
i is the algal cell in the jth dimension of the ith

algal colony. x j
max and x j

min denotes the upper and lower

bounds of the jth dimension, respectively.

The algal colony grows under suitable conditions in the

evolutionary process. The colonies which are not found in

proper conditions cannot survive. The growth of an algal

colony is calculated by the Monod model given in Eq. 3.

l ¼ lmaxS

Ks þ S
ð3Þ

where lmax is the maximum specific growth rate and

assumed as 1, l is the specific growth rate, S is the nutrient

concentration, and its value is taken as the fitness value. K

is computed as being the growth rate at half nutrient con-

ditions of the algal colony in time t (Gt
i=2Þ. The size of the

algal colony in time t ? 1 is calculated using Eq. 4.

Gtþ1
i ¼ Gt

i þ ltiG
t
i ð4Þ

where Gt
i is the size of the ith algal colony at time step t.

Algal colonies are sorted from large to small sizes

according to their size in the last evolutionary process

stage. The evolutionary process is completed by copying a

randomly selected algal cell of the largest algal colony to

the smallest algal colony. This phase is performed using

Eqs. 5–7, respectively.

biggestt ¼ maxGt
i; i ¼ 1; 2; . . .;N ð5Þ

smallestt ¼ minGt
i; i ¼ 1; 2; . . .;N ð6Þ

smallesttm ¼ biggesttm m ¼ 1; 2; . . .;D ð7Þ

where m is a randomly selected algal cell (dimension of the

problem), biggest and smallest represents the biggest algal

colony and the smallest one, respectively.

The basic idea of the adaptation process is that the algal

colony that does not grow sufficiently can adapt to the

circumference. The algal colony that is not adequately

developed tries to resemble itself to the largest algal col-

ony. The adaptation process is applied to the starving

(highest starvation valued) algae colony. The starvation

value is taken as zero for all algal colonies at the initial

Neural Computing and Applications (2022) 34:11063–11082 11065

123



stage. The starvation value is increased if algal colony

movements cannot reach a better position. The adaptation

parameter (Ap) determines whether the algal colony with

the highest starvation will undergo adaptation or not. The

adaptation parameter takes a value between 0 and 1. The

algal colony with the highest starvation undergoes adap-

tation if the generated random number is smaller than the

adaptation parameter. The adaptation process is realized

using Eqs. 8, 9.

starvingt ¼ maxAt
i; i ¼ 1; 2; . . .;N ð8Þ

starvingtþ1 ¼ starvingt þ biggestt � starvingtð Þ � rand

ð9Þ

where starvingt is the algal colony with the highest star-

vation value in time t and At
i is the starvation value of ith

algal colony in time t. biggestt is the biggest colony in

population in time t. rand is a random number in the range

(0, 1).

Algal colony moves helically in the living space to

achieve better conditions. Each algal colony moves

depending on the energy it has. The algal colony loses

some energy due to the loss of energy (e) parameter in each

movement. If the algal colony cannot move in a better

position, it is again subject to energy loss due to its

metabolism. The motion frequencies of the algal colonies,

which are more energetic, are more significant. This pro-

cess increases the local search capability of the method.

Besides, friction is another factor that affects movement.

The smaller algal colonies have a lower friction surface so

that the motion distances are more considerable. This

process also increases the global search capability of the

method. The friction surface of an algal colony is calcu-

lated using Eq. 10.

s xið Þ ¼ 2p

ffiffiffiffiffiffiffiffi
3Gi

4p
3

r !
ð10Þ

where s xið Þ is the friction surface.

In AAA, each algal colony performs a 3-dimensional

helical movement. The helical movement is realized using

Eqs. 11–13.

xtþ1
im ¼ xtim þ xtjm � xtim

� �
D� st xið Þð Þ � p ð11Þ

xtþ1
ik ¼ xtik þ xtjk � xtik

� �
D� st xið Þð Þ � cos a ð12Þ

xtþ1
il ¼ xtil þ xtjl � xtil

� �
D� st xið Þð Þ � sin b ð13Þ

where a and b are randomly generated angle values in the

range (0, 2p), p is randomly generated value in the range

(- 1, 1), D is shear force parameter, st xið Þ is the friction

surface area of the ith algal cell at time step t, m, k and l are

randomly determined dimension indexes different from

each other, and j represents the index of randomly selected

neighbor different from i. xj is randomly selected by the

tournament method and candidate solution xtþ1
i makes a

helical movement toward xj.

In the AAA, initial algal colonies are randomly gener-

ated, and adaptation parameter (Ap), shear force (D), and
loss of energy (e) are defined. Each algal colony performs

helical movement until its energy is exhausted. Then, the

size of algal colonies is calculated, and the evolution pro-

cess is carried out. Finally, the adaptation process is real-

ized using the adaptation parameter, and a new population

is obtained. These steps are repeated depending on the

specified stopping criterion. The best solution is stored by

comparing the solutions obtained in each step with the best

solution.

2.2 Galactic swarm optimization

The GSO algorithm was introduced by Muthiah-Nakarajan

and Noel in 2016 [45]. The GSO algorithm searches for the

optimum solution by simulating the movements of the

stars, galaxies, and super galaxy clusters in space. GSO is a

two-phase optimization method. In the first phase, inde-

pendent sub-population groups try to improve their own

best solutions using the determined search method. Each

independent sub-population is run by the number of itera-

tions determined using the search algorithm. After that, a

new population called a super-population is formed by

obtaining the best individual of each sub-population. In the

second phase, an optimal solution is searched by using the

determined search method. The first and second phases are

repeated with the number of epoch parameters (EPmax) and

try to find the best solution. The PSO algorithm is used as a

search method in both the first and second phases of the

base GSO algorithm.

PSO is an optimization method inspired by the social

behavior of bird flocks and fish schools. The best results are

obtained by moving the randomly generated initial popu-

lation in the search space [38, 48]. For a d-dimensional

optimization problem Xi ¼ xi1; xi2; . . .; xid½ � is the position

vector, Vi ¼ vi1; vi2; . . .; vid½ � is the velocity vector, Pi ¼
pi1; pi2; . . .; pid½ � is the best position vector of the ith particle
and is called pbest. The motion of the particles in the

solution space is done according to Eqs. 14, 15.

vi t þ 1ð Þ ¼ wvi tð Þ þ c1r1 pi � xið Þ þ c2r2 gi � xið Þ ð14Þ
xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ ð15Þ

where w called inertia weight and used to control global

and local searchability. r1 and r2 are the random numbers

in the range of (0,1). c1 and c2 are the acceleration coef-

ficients. gi is the best solution found so far.
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The two-phase structure of the GSO algorithm is

expressed in Eq. 16:

x1ij 2 X1i : j ¼ 1; 2; . . .;N; i ¼ 1; 2; . . .;M

g1i 2 X1i : g1i ¼ best X1ið Þ

X2 ¼
[M
i¼1

g1i ð16Þ

In the original GSO algorithm, the initial M sub-popu-

lations (X1) are randomly generated. Each sub-population

contains N solutions. x1ij expresses the jth solution of the

ith sub-population. X1i states the ith sub-population. x2i
(best X1ið Þ) represents the best solution of the sub-popula-

tion X1i. X2 states the super-population that involves the

best solutions of the sub-populations. The pseudo-code of

the original GSO is given in Fig. 1.

2.3 Uncapacitated facility location problem

UFLP is a frequently encountered location problem in the

field of operational research. The main objective of UFLP

is to find a subset of potential active facilities, ensuring the

cost of this subset at minimal. There are two different costs

in this problem; one of them is the facility establishment

cost which is a fixed cost, and the other is the transship-

ment cost between the customer and the facility. While the

facility establishment fixed costs and transshipment costs

are known in the problem, the number of facilities that

should be opened is not known where the primary aim is

obtaining minimum total cost. Additionally, all demands of

the customers should be corresponded by the facilities with

the lowest transshipment cost. Let J, I, and C be the set of

customers, the set of potential active facilities, and the

transshipment cost matrix, respectively. The mathematical

objective function of UFLP is given as follows:

Fig. 1 The pseudo-code of the

base GSO
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F Sð Þ ¼
X
i2S

fi þ
X
j2J

minfCi;jji 2 Sg ð17Þ

where fi is the opening cost of the ith facility and S is a

nonempty subset of I. The main goal of UFLP is to obtain

the S set that meets the minimum cost requirement.

The proposed method in this study was evaluated on

Cap and M* problems, which are frequently used problems

among the UFL problems in the literature. The names, size,

and optimum cost of the 15 problems within the scope of

the Cap problems are given in Table 1. These problems are

divided into 4 groups in terms of size as small (Cap71,

Cap72, Cap73, and Cap74), medium (Cap101, Cap102,

Cap103, and Cap104), large (Cap131, Cap132, Cap133,

and Cap134), and huge (CapA, CapB, and CapC,). Small-

size problems (16 9 50) include 16 facilities and 50 cus-

tomers. Medium-size problems (25 9 50) include 25

facilities and 50 customers. Large-size problems (50 9 50)

include 50 facilities and 50 customers. Huge-size problems

(100 9 1000) also include 100 facilities and 1000 cus-

tomers. Small-size and medium-size problems are easy

problems to solve. Large-size problems are relatively more

difficult to solve. Huge-size problems are the most difficult

problems to solve within the scope of Cap problems due to

a large number of possible solutions.

The other set of UFL problems used in this study are M*

problems. There are 20 different problems in this set, and

the properties of the problems are presented in Table 2. M*

problems are divided into 3 groups according to their sizes

[low-scaled (MO1–MO5), middle-scaled (MP1–MP5 and

MQ1–MQ5) and large-scaled (MR1–MR5)] [20].

3 Binary galactic swarm optimization
(BinGSO)

Korkmaz and Kiran presented a binary version of the AAA

algorithm (binAAA) for solving binary optimization

problems in 2018 [32]. In the presented binAAA method,

two update mechanisms are used to perform an effective

search in the solution space. These mechanisms are called

XOR and Stigmergic mechanisms. In the presented

method, the selection of a mechanism among two to update

the position of the candidate solution is determined by

Eq. 18.

Update mechanism

¼
UM� 1; f r\UMSPð Þ and C01 tð Þ 6¼ 0 and C10 tð Þ 6¼ 0

UM� 2; otherwise

�

ð18Þ

where UM–1 (XOR) and UM–2 (stigmergic) are stand for

the update mechanism 1 and the update mechanism 2,

respectively. UMSP is the method-specific parameter

called update mechanism selection probability. r is a ran-

dom number composed in the range of (0,1). C10 and C01

parameters state the count of changed values 1–0 and 0–1,

respectively.

Table 1 The properties of Cap problems

Problem name Problem size Optimal cost

Cap71 16 9 50 932615.75

Cap72 16 9 50 977799.40

Cap73 16 9 50 1010641.45

Cap74 16 9 50 1034976.98

Cap101 25 9 50 796648.44

Cap102 25 9 50 854704.20

Cap103 25 9 50 893782.11

Cap104 25 9 50 928941.75

Cap131 50 9 50 793439.56

Cap132 50 9 50 851495.33

Cap133 50 9 50 893076.71

Cap134 50 9 50 928941.75

CapA 100 9 1000 17156454.48

CapB 100 9 1000 12979071.58

CapC 100 9 1000 11505594.33

Table 2 The properties of M* problems

Problem name Problem size Optimal cost

MO1 100 9 100 1305.95

MO2 100 9 100 1432.36

MO3 100 9 100 1516.77

MO4 100 9 100 1442.24

MO5 100 9 100 1408.77

MP1 200 9 200 2686.48

MP2 200 9 200 2904.86

MP3 200 9 200 2623.71

MP4 200 9 200 2938.75

MP5 200 9 200 2932.33

MQ1 300 9 300 4091.01

MQ2 300 9 300 4028.33

MQ3 300 9 300 4275.43

MQ4 300 9 300 4235.15

MQ5 300 9 300 4080.74

MR1 500 9 500 2608.15

MR2 500 9 500 2654.73

MR3 500 9 500 2788.25

MR4 500 9 500 2756.04

MR5 500 9 500 2505.05
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In the original AAA method, the candidate solution

makes a helical movement in the solution space. This

means a 3-dimensional change of the position of the can-

didate solution. The XOR update mechanism also updates

the position of the candidate solution by making 3-di-

mensional updates like helical movement. The XOR update

mechanism performs the position upte process according to

Eqs. 19–21.

LetV ¼ Xi

Vj ¼ Xi;j � u Xi;j � Xn;j

� �� 	
ð19Þ

Vk ¼ Xi;k � u Xi;k � Xn;k

� �� 	
ð20Þ

Vl ¼ Xi;l � u Xi;l � Xn;l

� �� 	
ð21Þ

i; n 2 1; 2; . . .;Nf g; i 6¼ n; j; k; l 2 1; 2; . . .;Df g; j 6¼ k 6
¼ l

where V is the candidate solution, X is the solution in the

population, � defines the logical XOR operator, u defines

the logic NOT operator with 50% probability, N is the

number of solutions in the population and D is the

dimension of the problem. Vj, Vk, and Vl state the jth, the

kth, and the lth dimensions of the candidate solution,

respectively. n is the index of the neighbor randomly

selected from the population using the tournament selec-

tion method, different from the i index.

C10 and C01 values used in the Stigmergic update

mechanism are updated after generating the candidate

solution using the XOR operator. These parameters are

updated by using Eqs. 22, 23.

C01 t þ 1ð Þ

¼
C01 tð Þ þ 1; Obj Vð Þ\Obj Xið Þ and Xi;d ¼ 0 and Vd ¼ 1;

C01 tð Þ; otherwise

�
8d 2 P

ð22Þ
C10 t þ 1ð Þ

¼
C10 tð Þ þ 1; Obj Vð Þ\Obj Xið Þ and Xi;d ¼ 0 and Vd ¼ 1;

C10 tð Þ; otherwise
8d 2 P

�

ð23Þ
P ¼ j; k; lgf

where V is the candidate solution, X is the solution in the

population and Obj is the objective function of the prob-

lem. The adaptation process for binary problems is pre-

sented in Eq. 24. Equations 22 and 23 are applied

separately for each of the 3 randomly selected dimensions

in the P set.

Xs;z ¼
Xb;z; if ðrz\ApÞ
Xs;z; otherwise

z 2 D; z ¼ 1; 2; . . .;D

�
ð24Þ

where Xs;z states the cell of the most starveling algal colony

s, Xb;z states the zth cell of the biggest algal colony b, rz
states a random number produced for dimension z and Ap is

the adaptation parameter. The pseudo-code of the XOR

update mechanism is given in Fig. 2.

The Stigmergic update mechanism uses C10 and C01

parameters that are updated thanks to the XOR update

mechanism. p01 and p10 values are calculated using C10 and

C01 parameters (Eqs. 25, 26).

p01 t þ 1ð Þ ¼ C01 tð Þ
C01 tð Þ þ C10 tð Þ ð25Þ

p10 t þ 1ð Þ ¼ C10 tð Þ
C01 tð Þ þ C10 tð Þ ð26Þ

where p01 t þ 1ð Þ is the probability rate of C01 in time t ? 1

and p10 t þ 1ð Þ is the probability rate of C10 in time t ? 1.

Let A and B be vectors of the index of ones and zeros in

V, respectively. Let a and b be random integers in the range

(1, size of A) and (1, size of B), respectively. VA að Þ and

VB bð Þ define random dimensions that have a value of 1 and

0, respectively. The candidate solution V is calculated by

using Eqs. 27, 28.

VA að Þ ¼
0; r1\p10

VA að Þ; otherwise

�
ð27Þ

VB bð Þ ¼
1; r1 � p10

VB bð Þ; otherwise

�
ð28Þ

where r1 is a random number in the range of (0,1). If the

value of r1 is less than the probability value of p10, random

decision variable with a value of 1 VA að Þ
� �

is set to 0.

Otherwise, the decision variable with a value of 0 VB bð Þ
� �

is

set to 1. The working structure of the stigmergic update

mechanism is given as pseudo-code in Fig. 3.

After the update mechanism is applied to the candidate

solution, the fitness value of the new candidate solution

obtained is calculated and compared with the fitness value

of the existing solution. If the fitness value of the new

candidate solution is better, the position of the existing

solution is updated. Otherwise, the position update is not

performed. This process is expressed in Eq. 29.

Xi t þ 1ð Þ ¼ V tð Þ; Obj V tð Þð Þ\Obj Xi tð Þð Þ
Xi tð Þ; otherwise

�
ð29Þ

There are several studies in the literature in which the

GSO framework improves the problem-solving perfor-

mance of traditional metaheuristic methods [45–47]. The

main reason for this is that the framework effectively

manages the exploration and exploitation balance. In this

study, a binary GSO method using binAAA method as the

search algorithm due to its effectiveness in solving binary

problems is proposed. The flowchart of the suggested

BinGSO method is given in Fig. 4.
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4 Experimental results and discussion

The experimental study consists of three stages. In the first

stage, the BinGSO method was used in solving Cap

problems taken from OR-Lib [49] with different parame-

ters (EPmax, M, N). The parameter analysis was made, and

the results were analyzed at this stage. In the second stage,

results of the BinGSO method were compared with results

of the state-of-the-art studies in the literature using Cap

problems. In the third stage, M* problems, which are dif-

ferent UFL Problems taken from OR-Lib [49], were solved

by the BinGSO method, and the results obtained were

compared with the results of the state-of-the-art methods.

The best results obtained in the comparison tables (Table 3,

5, 6, 7, 8, and 10) are highlighted in bold style.

The gap value was used to evaluate the performance of

the methods in the evaluation process. The gap value is

calculated as in Eq. 30 depending on the optimum value of

the problem and the mean value obtained by the method.

gap ¼ mean� optimum

optimum
� 100 ð30Þ

The experimental studies were accomplished with 30

runs of different seeds and a total of 80,000 fitness calcu-

lation parameters. The energy loss, the adaptation rate, the

update mechanism selection probability (UMSP), and the

dimension selection probability (DSP) parameters of the

binAAA method were directly taken from [32] as 0.3, 0.5,

0.5 and 0.66, respectively.

4.1 The parameter analysis of BinGSO

GSO parameters (EPmax, M, N) were analyzed in 15 UFL

Problems (Cap problems) taken from OR-Lib in the

parameter analysis process. The experimental study was

carried out for a total of 12 different parameter sets with 3,

5 and 8 values for the EPmax parameter and 5 and 10 values

for M and N parameters. The gap and rank values obtained

from the evaluation process performed for parameter

analysis are presented in Table 3. The count of best results

and mean rank values obtained by utilizing the methods are

given in the last row of the table.

The parameter analysis stage aims to determine the most

suitable EPmax, M and N parameter values for the BinGSO

method in Cap problems. When Table 3 is examined, 3

parameter sets ({EPmax = 3, M = 10, N = 5}, {EPmax

= 5, M = 10, N = 10}, {EPmax = 8, M = 10, N = 10})

Fig. 2 The pseudo-code of the

XOR update mechanism

Fig. 3 The pseudo-code of the Update Mechanism 2
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achieved the best score on 13 problems in terms of the

count of best results obtained. These three sets of param-

eters have reached the optimum solution for small-size,

medium-size, large-size, and CapA problems. Therefore,

the performances in CapB and CapC problems are decisive

in determining which parameter is more appropriate. When

the CapB and CapC performances of these 3 parameter sets

are examined, it is clearly seen that by using the parameter

set {EPmax = 3, M = 10, N = 5}, the method achieved the

best results. Although, by using {EPmax = 3, M = 10,

N = 5} parameter set, the method does not get the best

result in CapB and CapC problems, it turns out to be the

most successful parameter set when the mean rank value is

taken into account. As a result, the optimal parameter

values for Cap problems in BinGSO method are 3, 10, and

5 for EPmax, M, and N, respectively. The detailed results of

Fig. 4 The flowchart of BinGSO
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Table 3 The experimental results of the analysis of the parameters on BinGSO

EPmax = 3 EPmax = 5 EPmax = 8

M = 5 M = 5 M = 10 M = 10 M = 5 M = 5 M = 10 M = 10 M = 5 M = 5 M = 10 M = 10

N = 5 N = 10 N = 10 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10

Cap71

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap72

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap73

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap74

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap101

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap102

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap103

Gap 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1 1 1

Cap104

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap131

Gap 0.0108 0.0108 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0072 0.0000 0.0000 0.0000

Rank 3 3 1 1 1 1 2 1 2 1 1 1

Cap132

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

Cap133

Gap 0.0053 0.0026 0.0000 0.0000 0.0053 0.0026 0.0007 0.0000 0.0132 0.0026 0.0079 0.0000

Rank 4 3 1 1 4 3 2 1 6 3 5 1

Cap134

Gap 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1

CapA

Gap 0.0000 0.0000 0.0000 0.0187 0.0000 0.0000 0.0499 0.0000 0.0047 0.0000 0.0140 0.0000

Rank 1 1 1 3 1 1 4 1 2 1 2 1

CapB

Gap 0.1980 0.2664 0.2384 0.3095 0.2518 0.3785 0.3390 0.3902 0.4499 0.2823 0.4443 0.3902

Rank 1 4 2 6 3 8 7 9 11 5 10 9

CapC

Gap 0.1845 0.1600 0.2095 0.3162 0.2799 0.1928 0.4138 0.3147 0.2072 0.2016 0.4491 0.3147

Rank 2 1 6 9 7 3 10 8 5 4 11 8

Winner/total 11/15 12/15 13/15 12/15 12/15 12/15 10/15 13/15 10/15 12/15 11/15 13/15
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the BinGSO method with the optimum parameter set are

given in Table 4.

4.2 Comparisons on cap problems

In this stage, the BinGSO method is compared with 7

traditional binary optimization algorithms. Three of these

algorithms are GA-based [50] [GA-SP (Genetic Algorithm

with Single Point crossover), GA-TP (Genetic Algorithm

with Two-Point crossover), and GA-UP (Genetic Algo-

rithm with Uniform crossover)], three are AAA-based

[32, 43] [BAAA-Tanh (Binary AAA with Tangent hyper-

bolic logistic function), BAAA-Sig (Binary AAA with

Sigmoid logistic function), binAAA (binary AAA with

Stigmergic Behavior)] and one is PSO-based [28] [BPSO

(Binary Particle Swarm Optimization)]. These algorithms

were conducted with 30 runs and 80,000 maxFES, and the

results obtained are presented in Tables 5, 6.

Mean, Gap, Hit, Standard Deviation, and statistical sign

test results of 7 traditional binary optimization and

BinGSO algorithms are given in these two tables. The hit

value indicates how many times the algorithm reaches the

optimum value within 30 independent runs. Sign value

stands for the results of the Wilcoxon signed-rank test [51]

with 0.05 level of p. If the value is ? , it can be said that

there is a statistically significant difference between the

results of the relevant algorithm and the results of BinGSO.

Otherwise, there is no statistically significant difference

between the results.

When the results in Tables 5 and 6 are examined, it can

be seen that AAA-based methods (BAAA-Tanh, BAAA-

Sig, and binAAA) and BinGSO method have obtained the

optimum solution for all small-size and medium-size

problems. BAAA-Sig, binAAA, and BinGSO achieved

optimum values in all 30 runs. GA-based methods and the

BPSO method have achieved a partial success. When large-

size and huge-size problems were analyzed, BAAA-Sig,

binAAA, and BinGSO methods achieved optimum value in

all 30 runs in Cap131, Cap132, Cap133, Cap134 problems.

In CapA, CapB, and CapC problems, which are the most

difficult problem groups of the UFLP set, the binAAA, and

BinGSO methods showed superior success in the CapA

problem. The BinGSO method obtained the optimum value

in 17 and 4 of 30 runs, respectively, in CapB and CapC

problems, and the proposed method obtained more

Table 3 (continued)

EPmax = 3 EPmax = 5 EPmax = 8

M = 5 M = 5 M = 10 M = 10 M = 5 M = 5 M = 10 M = 10 M = 5 M = 5 M = 10 M = 10

N = 5 N = 10 N = 10 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10

Mean rank 1.4667 1.4667 1.4000 2.0000 1.7333 1.7333 2.3333 2.0000 2.4000 1.6000 2.6000 2.0000

Table 4 The detailed results of

the BinGSO with {EPmax = 3,

M = 10, N = 5} parameters set

on Cap problems

Best Worst Mean Gap Std. Dev.

Cap71 932615.750 932615.750 932615.750 0.0000 0.000

Cap72 977799.400 977799.400 977799.400 0.0000 0.000

Cap73 1010641.450 1010641.450 1010641.450 0.0000 0.000

Cap74 1034976.975 1034976.975 1034976.975 0.0000 0.000

Cap101 796648.438 796648.438 796648.438 0.0000 0.000

Cap102 854704.200 854704.200 854704.200 0.0000 0.000

Cap103 893782.113 893782.113 893782.113 0.0000 0.000

Cap104 928941.750 928941.750 928941.750 0.0000 0.000

Cap131 793439.563 793439.563 793439.563 0.0000 0.000

Cap132 851495.325 851495.325 851495.325 0.0000 0.000

Cap133 893076.713 893076.713 893076.713 0.0000 0.000

Cap134 928941.750 928941.750 928941.750 0.0000 0.000

CapA 17156454.478 17156454.478 17156454.478 0.0000 0.000

CapB 12979071.581 13070745.086 13010017.344 0.2384 39900.115

CapC 11505594.329 11577131.301 11529702.002 0.2095 22224.898
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successful results than traditional binary optimization

methods.

As a nonparametric statistical test, The Friedman test

[52] is generally used to evaluate the experimental results.

In this study, Gap values of 7 traditional binary optimiza-

tion methods and the BinGSO method were analyzed using

the Friedman test. The level of significance for the

Friedman test was set as 0.05. The statistical analysis

results made based on Gap values are given in Table 7.

When Table 7 is evaluated, it can be said that the obtained

p-Value is lower than the level of significance (0.05). This

situation indicates that the results obtained in the experi-

mental study have a statistically significant difference.

Considering the Final Ranking values, the performance of

Table 5 Experimental results of BinGSO with the binary optimization algorithms on the small-size and medium-size Cap problems

Methods Metric Cap71 Cap72 Cap73 Cap74 Cap101 Cap102 Cap103 Cap104

GA-SP Mean 932615.750 977799.400 1011314.476 1034976.975 797193.286 854704.200 894351.782 928941.750

Gap 0.00000 0.00000 0.06659 0.00000 0.06839 0.00000 0.06374 0.00000

Hit 30 30 19 30 11 30 6 30

Std. Dev. 0.000 0.000 899.650 0.000 421.655 0.000 505.036 0.000

Sign 2 2 ? 2 ? 2 ? 2

GA-TP Mean 932615.750 977799.400 1,011,130.923 1034976.975 797164.610 854704.200 894329.179 928941.750

Gap 0.00000 0.00000 0.04843 0.00000 0.06479 0.00000 0.06121 0.00000

Hit 30 30 22 30 12 30 10 30

Std. Dev. 0.000 0.000 825.576 0.000 428.658 0.000 540.160 0.000

Sign 2 2 ? 2 ? 2 ? 2

GA-UP Mean 932615.750 977799.400 1011069.739 1034976.975 797107.258 854704.200 894,427.382 928941.750

Gap 0.00000 0.00000 0.04238 0.00000 0.05759 0.00000 0.07220 0.00000

Hit 30 30 23 30 14 30 9 30

Std. Dev. 0.000 0.000 789.612 0.000 436.524 0.000 522.784 0.000

Sign 2 2 ? 2 ? 2 ? 2

BAAA-Tanh Mean 932615.750 977799.400 1010641.450 1034976.975 796677.114 854704.200 893782.113 928941.750

Gap 0.00000 0.00000 0.00000 0.00000 0.00360 0.00000 0.00000 0.00000

Hit 30 30 30 30 29 30 30 30

Std. Dev. 0.000 0.000 0.000 0.000 157.066 0.000 0.000 0.000

Sign 2 2 2 2 2 2 2 2

BAAA-Sig Mean 932615.750 977799.400 1010641.450 1034976.975 796648.438 854704.200 893782.113 928941.750

Gap 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Hit 30 30 30 30 30 30 30 30

Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sign 2 2 2 2 2 2 2 2

BPSO Mean 932615.750 977799.400 1010886.187 1035068.312 796992.553 854788.703 894223.572 929318.098

Gap 0.00000 0.00000 0.02422 0.00882 0.04320 0.00989 0.04939 0.04051

Hit 30 30 26 29 18 28 14 28

Std. Dev. 0.000 0.000 634.625 500.272 428.658 321.588 521.237 1432.239

Sign 2 2 2 2 ? 2 ? 2

binAAA Mean 932615.750 977799.400 1010641.450 1034976.975 793439.563 851495.325 893076.713 928941.750

Gap 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Hit 30 30 30 30 30 30 30 30

Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sign 2 2 2 2 2 2 2 2

BinGSO Mean 932615.750 977799.400 1010641.450 1034976.975 793439.563 851495.325 893076.713 928941.750

Gap 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Hit 30 30 30 30 30 30 30 30

Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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the BinGSO method employed for solving Cap problems is

better than the performance of other methods.

Convergence curves of the algorithms are given in

Figs. 5 and 6. The graphs show that the BinGSO method

converged to the optimum solution in small-size problems

in the early stages. Except for Cap103, the BinGSO method

also reaches the optimum solution in the early stages of

medium-size problems. In large-size and huge-size prob-

lems, the convergence of the BinGSO method to the

optimum solution is generally better than other methods.

The results of the state-of-the-art algorithms studied for

solving Cap problems in the literature are compared with

the results of the BinGSO algorithm as well as the imple-

mented 7 traditional binary optimization algorithm. These

Table 6 Experimental results of BinGSO with the binary optimization algorithms on the large-size and huge-size Cap problems

Methods Metric Cap131 Cap132 Cap133 Cap134 CapA CapB CapC

GA-SP Mean 793980.104 851495.325 893891.911 928941.750 17164354.456 13054858.045 11586692.969

Gap 0.06813 0.00000 0.09128 0.00000 0.04605 0.58391 0.70486

Hit 16 30 10 30 24 9 2

Std.Dev 720.877 0.000 685.076 0.000 22,451.206 66,658.649 51,848.248

Sign ? 2 ? 2 ? ? ?

GA-TP Mean 794012.905 851495.325 893740.954 928941.750 17205089.145 13063527.186 11577797.524

Gap 0.07226 0.00000 0.07438 0.00000 0.28348 0.65071 0.62755

Hit 14 30 12 30 24 11 0

Std.Dev 690.560 0.000 655.920 0.000 139,690.216 89,122.485 46,346.052

Sign ? 2 ? 2 ? ? ?

GA-UP Mean 793865.023 851517.200 893808.891 928941.750 17166811.915 13107633.077 11578600.532

Gap 0.05362 0.00257 0.08198 0.00000 0.06037 0.99053 0.63453

Hit 15 29 9 30 24 3 0

Std.Dev 433.467 119.817 628.654 0.000 35181.974 79714.021 57031.219

Sign ? 2 ? 2 ? ? ?

BAAA-Tanh Mean 793525.591 851495.325 893333.515 928941.750 17471223.794 13153617.764 11676427.752

Gap 0.01084 0.00000 0.02875 0.00000 1.83470 1.34483 1.48479

Hit 27 30 16 30 3 0 0

Std.Dev 262.498 0.000 324.451 0.000 225123.921 73978.543 101438.607

Sign 2 2 ? 2 ? ? ?

BAAA-Sig Mean 793439.563 851495.325 893076.713 928941.750 17210900.533 13093705.559 11583462.068

Gap 0.00000 0.00000 0.00000 0.00000 0.31735 0.88322 0.67678

Hit 30 30 30 30 16 1 1

Std.Dev 0.000 0.000 0.000 0.000 90743.456 62168.803 45788.678

Sign 2 2 2 2 ? ? ?

BPSO Mean 794797.761 851991.551 893816.653 930756.565 17,446,511,870 13,161,205,473 11,692,212,797

Gap 0.17118 0.05828 0.08285 0.19536 1,69,066 1,40,329 1,62,198

Hit 10 21 10 18 8 5 1

Std. Dev. 1505.749 1055.238 690.192 2594.211 319,855,431 135,326,728 115,156,444

Sign ? ? ? ? ? ? ?

binAAA Mean 793439.563 851495.325 893076.713 928941.750 17156454.478 13011234.616 11539496.443

Gap 0.00000 0.00000 0.00000 0.00000 0.00000 0.24781 0.29466

Hit 30 30 30 30 30 15 1

Std. Dev. 0.000 0.000 0.000 0.000 0.000 39224.744 29766.311

Sign 2 2 2 2 2 ? ?

BinGSO Mean 793439.563 851495.325 893076.713 928941.750 17156454.478 13010017.344 11529702.002

Gap 0.00000 0.00000 0.00000 0.00000 0.00000 0.23843 0.20953

Hit 30 30 30 30 30 17 4

Std .Dev. 0.000 0.000 0.000 0.000 0.000 39900.115 22224.898
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algorithms are Improved Binary Particle Swarm Opti-

mization (IBPSO) [53], Dissimilarity Artificial Bee Colony

algorithm (DisABC) [54], XOR-based artificial bee colony

algorithm for binary optimization (binABC) [19], the

continuous artificial bee colony algorithm for binary opti-

mization (ABCbin) [55], differential evolution algorithm

for binary optimization (DisDE) [56], Binary Differential

Evolution strategies. (binDE) [57], Similarity and Logic

Gate-based Tree-Seed Algorithm (SimlogicTSA) [30],

Improved Scatter Search algorithm (ISS) [21], and Binary

Social Spider Algorithm (BinSSA) [20]. The gap and rank

values obtained by the state-of-the-art methods and

BinGSO method in 15 Cap problems are given in Table 8.

The gap values which are given in the table are taken

directly from the related studies. In the last two rows of the

table, the results are summarized by giving the best gap

number (Winner/Total) and the average rank (Mean Rank)

obtained by the methods.

According to Table 8, the IBPSO method could not

achieve the best gap value in any Cap Problems. Methods

other than IBPSO have reached the optimum solution in

small-size problems, which are the easiest group to solve.

SimlogicTSA, ISS, BinSSA, and BinGSO methods

achieved optimum value in medium-size and large-size

problems. When the results of the huge-size problem group

in Table 8 are examined, SimlogicTSA, it can be seen that

ISS, BinSSA, and BinGSO methods have obtained the

optimum solutions for the CapA problem. In the CapB and

CapC problems, none of the methods could obtain the

average optimum value. Although the DisDE method is

more successful in CapB and CapC problems than other

methods, it has not been successful in problems that are

easier to solve than huge-size problems, such as medium-

size and large-size problems. This means that the DisDE

method is not stable and robust when using problems of

different sizes and types. SimlogicTSA, ISS, BinSSA, and

BinGSO methods are more successful than other methods

by obtaining the best solution in 13 problems. BinGSO

method obtained the best mean rank value when evaluated

in terms of mean rank.

Considering the overall performance of the BinGSO

method used for solving Cap problems is examined, it is

clear that the proposed method presents more successful

results than the results of the other methods in terms of the

number of best solutions and the average rank value

obtained with both traditional binary optimization methods

and state-of-the-art methods.

4.3 Comparisons on M* problems

Although not as widely used as UFLP in the literature, M*

problems are used as benchmark problems in comparing

algorithms in the area of uncapacitated facility location.

M* problems consist of a total of 20 problems in 3 groups

(low-scaled, middle-scaled, and large-scaled) according to

their sizes. Details of the problems are given in Table 2 in

Sect. 2.3, and the performance of the BinGSO method on

M* problems is presented in Table 9. The table shows the

best, worst, mean, gap, and standard deviation values

obtained by the BinGSO method.

The results obtained by the BinGSO method on M*

problems have been compared with the state-of-the-art

methods that have worked on these problems in the liter-

ature. These algorithms are the Binary Social Spider

Algorithm (BinSSA) [20], Local Search (LS) [58], and

Improved Scatter Search (ISS) [21]. For a fair comparison,

the BinGSO method was carried out 100 runs on M*

problems as the other compared methods do. The mean and

gap values obtained by the BinSSA, LS, and ISS methods

inM* problems were taken directly from [20, 58], and [21],

respectively, and the results of these methods are presented

with the results of the BinGSO method.

When Table 10 is analyzed, it is clearly seen that the

BinGSO method provides the best solution for low-scaled

and middle-scaled problems. LS method is superior in

large-scale problems. In summary, the BinGSO method

achieved the best solution in 13 out of 20 problems and was

more successful than other methods. Considering rank

values, BinGSO method obtained the best mean rank value.

Table 7 The overall results of BinGSO with the binary optimization algorithms on the Cap problems

GA-SP GA-TP GA-UP BAAA-Tanh BAAA-Sig BPSO binAAA BinGSO

Average 0.1129 0.1255 0.1331 0.3138 0.1252 0.3600 0.0362 0.0299

Winner/total 7/15 7/15 6/15 9/15 12/15 2/15 13/15 15/15

Friedman’s test

Mean rank 5.1667 4.8333 5.1333 4.5000 3.7000 6.8000 3.0000 2.8667

Final rank 7 5 6 4 3 8 2 1

p-Value 7.05E 2 08
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Table 8 Experimental results of BinGSO with the state-of-the-art optimization algorithms on the Cap problems

IBPSO DisABC binABC ABCbin DisDE binDE SimlogicTSA ISS BinSSA BinGSO

Cap71

Gap 0.0370 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1

Cap72

Gap 0.2750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1

Cap73

Gap 0.1980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1

Cap74

Gap 0.4030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1

Cap101

Gap 0.5970 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 3 1 1 1 2 1 1 1 1 1

Cap102

Gap 0.7320 0.0000 0.0000 0.0000 0.0049 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 3 1 1 1 2 1 1 1 1 1

Cap103

Gap 0.6410 0.0000 0.0000 0.0050 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 4 1 1 2 3 1 1 1 1 1

Cap104

Gap 0.9960 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1

Cap131

Gap 2.4240 0.6200 0.0000 0.1970 0.0036 0.0036 0.0000 0.0000 0.0000 0.0000

Rank 5 4 1 3 2 2 1 1 1 1

Cap132

Gap 3.6010 0.0950 0.0000 0.0200 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000

Rank 5 4 1 3 1 2 1 1 1 1

Cap133

Gap 5.2630 0.0310 0.1220 0.0750 0.0138 0.0138 0.0000 0.0000 0.0000 0.0000

Rank 6 3 5 4 2 2 1 1 1 1

Cap134

Gap 7.6340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rank 2 1 1 1 1 1 1 1 1 1

CapA

Gap 137.8860 0.1520 2.5090 3.1720 0.0370 1.3000 0.0000 0.0000 0.0000 0.0000

Rank 7 3 5 6 2 4 1 1 1 1

CapB

Gap 55.2700 3.3030 2.5080 2.8150 0.1890 1.5200 0.3176 0.2550 0.2547 0.2384

Rank 10 9 7 8 1 6 5 4 3 2

CapC

Gap 45.5560 4.6970 2.5800 2.0370 0.0909 1.5500 0.4120 0.1990 0.4337 0.2095

Rank 10 9 8 7 1 6 4 2 5 3

Winner/total 0/15 9/15 11/15 7/15 6/15 9/15 13/15 13/15 13/15 13/15

Mean rank 4.3333 2.7333 2.4000 2.7333 1.4667 2.0667 1.4667 1.2667 1.4000 1.2000
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Fig. 5 Convergence curves of the methods on the small-size and medium-size Cap problems
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Fig. 6 Convergence curves of the methods on the large-size and huge-size Cap problems
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5 Conclusion and future works

Galactic swarm optimization is a framework inspired by

the behavior of stars and galaxies. This framework has a

two-phase structure that uses traditional optimization

methods as search algorithms. The first stage aims at

exploration and the second stage aims at exploitation. GSO

increases the performance of existing optimization meth-

ods by balancing the exploration and exploitation capa-

bility of the search algorithms. PSO was used as the search

algorithm in the original GSO method, and continuous

optimization problems were tried to be solved. In this

effective framework, no binary optimization method has

been used as a search algorithm. In this study, the binary

GSO method that solves binary location problems for the

first time using the Binary Artificial Alge Algorithm as a

search algorithm is presented. The proposed binary GSO

method has been tested in widely used two different

uncapacitated facility location problem sets. The results of

BinGSO were compared with both traditional and state-of-

the-art binary methods. The proposed BinGSO method has

performed more successful results than both traditional and

state-of-the-art methods.

Table 9 The detailed results of the BinGSO method on M* problems

Best Worst Mean Gap Std. Dev.

MO1 1305.95 1305.95 1305.95 0.0000 0.0000

MO2 1432.36 1432.36 1432.36 0.0000 0.0000

MO3 1516.77 1516.77 1516.77 0.0000 0.0000

MO4 1442.24 1442.24 1442.24 0.0000 0.0000

MO5 1408.77 1408.77 1408.77 0.0000 0.0000

MP1 2686.48 2695.72 2687.40 0.0344 2.8202

MP2 2904.86 2904.86 2904.86 0.0000 0.0000

MP3 2623.71 2623.71 2623.71 0.0000 0.0000

MP4 2938.75 2943.82 2939.44 0.0132 1.5724

MP5 2932.33 2932.33 2932.33 0.0000 0.0000

MQ1 4091.01 4091.01 4091.01 0.0000 0.0000

MQ2 4028.33 4028.33 4028.33 0.0000 0.0000

MQ3 4275.43 4275.43 4275.43 0.0000 0.0000

MQ4 4235.15 4239.23 4235.42 0.0064 1.0371

MQ5 4080.74 4104.57 4086.62 0.1439 9.0583

MR1 2608.15 2612.79 2609.30 0.0440 1.3900

MR2 2654.73 2686.83 2661.15 0.2418 13.0563

MR3 2788.25 2807.55 2793.47 0.1871 4.6992

MR4 2756.04 2783.95 2768.34 0.4463 9.6870

MR5 2505.05 2520.20 2510.25 0.2076 4.7972

Table 10 Experimental results of the BinSSA, LS, ISS, and BinGSO method on the M* Problems

BinSSA LS ISS BinGSO

Mean Gap Rank Mean Gap Rank Mean Gap Rank Mean Gap Rank

MO1 1305.95 0.0000 1 1305.95 0.0000 1 1305.95 0.0000 1 1305.95 0.0000 1

MO2 1432.36 0.0000 1 1432.70 0.0090 2 1432.36 0.0000 1 1432.36 0.0000 1

MO3 1516.77 0.0000 1 1520.27 0.2300 2 1516.77 0.0000 1 1516.77 0.0000 1

MO4 1442.24 0.0000 1 1442.24 0.0000 1 1442.24 0.0000 1 1442.24 0.0000 1

MO5 1408.77 0.0000 1 1409.17 0.0290 2 1408.77 0.0000 1 1408.77 0.0000 1

MP1 2687.66 0.0440 4 2688.50 0.0750 3 2686.66 0.0060 1 2687.40 0.0344 2

MP2 2904.86 0.0000 1 2904.86 0.0000 1 2904.85 0.0000 1 2904.86 0.0000 1

MP3 2624.00 0.0111 2 2624.77 0.0400 4 2624.34 0.0240 3 2623.71 0.0000 1

MP4 2940.50 0.0600 3 2939.53 0.0260 2 2940.80 0.0690 4 2939.44 0.0132 1

MP5 2932.50 0.0058 2 2933.46 0.0380 4 2932.60 0.0090 3 2932.33 0.0000 1

MQ1 4091.01 0.0000 1 4091.01 0.0000 1 4091.01 0.0000 1 4091.01 0.0000 1

MQ2 4028.33 0.0000 1 4028.33 0.0000 1 4030.08 0.0430 2 4028.33 0.0000 1

MQ3 4275.43 0.0000 1 4275.43 0.0000 1 4275.43 0.0000 1 4275.43 0.0000 1

MQ4 4236.46 0.0310 3 4235.47 0.0070 2 4236.46 0.0310 3 4235.42 0.0064 1

MQ5 4086.45 0.1400 1 4086.53 0.1410 2 4095.46 0.3600 4 4086.62 0.1439 3

MR1 2610.24 0.0800 3 2608.24 0.0030 1 2647.03 1.4900 4 2609.30 0.0440 2

MR2 2655.73 0.0380 2 2654.73 0.0030 1 2691.54 1.3860 4 2661.15 0.2418 3

MR3 2790.14 0.0680 2 2789.04 0.0280 1 2832.33 1.5810 4 2793.47 0.1871 3

MR4 2756.04 0.0000 1 2756.04 0.0000 1 2807.90 1.8810 3 2768.34 0.4463 2

MR5 2505.40 0.0140 1 2505.48 0.0170 2 2549.97 1.7930 4 2510.25 0.2076 3

Winner/total 12/20 10/20 9/20 13/20

Mean rank 1.6500 1.7500 2.3500 1.5500
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In future studies, the performance of the proposed

method can be tested in different binary problems such as

knapsack problems, unit commitment problems, and fea-

ture selection. In addition, the performance of different

binary optimization methods in the GSO framework can

also be analyzed. The performance of the GSO framework

can be increased by developing different interaction

strategies, such as implementing the local search phase or

feedback mechanism from the second phase to the first

phase in each epoch.
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