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Abstract

The Tribonacci-Lucas sequence {S,,} is defined by the recurrence relation S,+3 = Sp4+2 +
Sp+1 + Sp with S = 3, S1 =1, Sy = 3. In this note, we show that 1 is the only perfect
square in Tribonacci-Lucas sequence for n # 1 (mod 32) and n # 17 (mod 96).
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1. Introduction

For n > 1, the Fibonacci sequence {F,},~, is given by F,,1 = F,, + F,,_1 with Fy =
0, Fi = 1. The Lucas sequence {L,}, -, satisfies the same recursive relation with the
initials Lo =2, L; = 1.

Tribonacci sequence {1}, },,~ is defined by T;, = T5,—1+Tp—2+T5—3 with Ty = 0, T3 =0
and T5 = 1. The associated sequence of Tribonacci numbers is known Tribonacci-Lucas
sequence {Sy},~, which satisfies the same relation with Sop =3, S; =1 and S3 = 3. The
Binet formulas of Tribonacci and Tribonacci-Lucas sequences are

n+1 Bn—i—l BnJrl

@-f)a-5) B-a)B-5) G-a)-5

and
Sn=a"+ 5"+ 5"

3 2

where «, B and 3 are the roots of the equation 23 — 22 —x — 1 = 0. A few terms of these

sequences are given by the following table.

n JO]1]2]|3[4 ][5 ]6 [7[8 |9 |...]
Fpo|0|1|1(2]3 |5 |8 |13|21 |34
L, |2 3147 | 1118|2947 |76

1
To (OO0 |1 |12 |4 |7 |13]23 |36
Sp |31 (3|7 |11(21|39|71|131|241

To find perfect powers in recursive sequences is very popular and historical topic in
number theory. Firstly, the well-known result was given by Cohn [2] and Wylie [8], inde-
pently. The authors proved that 0, 1 and 144 are only perfect Fibonacci squares. Alfred
[1] showed that 1 and 4 are two squares in Lucas sequences. Other known results for
second order linear recursive sequences can be found in the papers [4,7].
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In 1996, Pethé [5] proposed the following problem at 7! International Research Con-
ference on Fibonacci numbers and Their Applications.

Problem 1.1. Are the only squares 7o =11 =0, To =13 =1, T5 =4, Tyo =81, Ti1g =
3136 = 562 and T} = 10609 = 1032 among the number 7T,,7

This problem is still unsolved. By the motivation of this problem and the paper of
Alfred [1], it is natural to ask that what are the squares in Tribonacci-Lucas sequences
if they exist? In this paper, we answer this question under some weak conditions. Our
result is following:

Theorem 1.2. Let n be nonnegative integer with n Z 1 (mod 32) and n #Z 17 (mod 96).
Then S1 =1 is only square in Tribonacci-Lucas sequence.

This theorem gives a motivation to proposed the following conjecture

2

Conjecture 1.3. The solution of the equation S, = x* is only (n,z) = (1,1).

Our proof depends on 2—adic order of the terms S,, F+ 1 and congruence identities.
Before going further, we present several lemmas for the proof of theorem.

2. Auxiliary results

The p-adic order of r, v,(r), is the exponent of the highest power of a prime p which
divides 7.

Lemma 2.1. Let t be integer with t #0 (mod 8). Then
vy (4t + 32) = vy (4t)
follows.

Proof. We will follow the method of Theorem 1 in [3]. Assume that ¢ is an odd integer.
Since t + 8 and ¢ are odd integers, then we have

1) (4(t + 8)) =19 (4t) = 2.
If ¢ is even integer, then it has the form ¢ = 2%s where s is odd and a € {1,2}. Then
vy (4(t+8)) =2+ a = vy (4t)

follows as claimed. OJ

The following lemma gives the recursive relation with arithmetic progressions for Tribonacci-
Lucas numbers.

Lemma 2.2. Let n, r, s nonnegative integers with 0 < s <r —1. We get

Sr(nt3)rs = (Oér + 8"+ (B)T) Sr(n+2)+s

- ((aﬁ)r + (BB)T + (Oéﬁ)r> Sr(n+1)+s
+Srn+s

where a, 3, B are the roots of the equation x3 — 2> —x — 1 = 0.
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Proof. By using the Binet formula for the Tribonacci-Lucas sequence with the fact o33 =
1,

(ar + 8" + (B)T) Sr(nt+2)+s — ((aﬂ)r + (BB)T + (aﬁ)r) Spnt1)+s + Srnts

= (Of + 6"+ (6)r> (a7 (+D+s | grint2)+s | Frint2ts)
- <(045)T + (5B)r + (aB)T) (@ D+s 4 grinti)+s +Br(n+1)+s)

+ (ar(n)+s+ﬂr(n)+s+ﬁr(n)+s)

r(n s r(n s Sr(n+3)+s
= (a7 grlies O gy

follows as claimed. O

Now, we present the characterization of the term v5 (S, £1).

Lemma 2.3. Let n #1 (mod 32). We have that

(S —1) = 1 ifn=0,2,3 (mod 4)

2o = U7y (n+31) (n—=1))—2 ifn=1 (mod 4)

Proof. Assume that n = 2 (mod 4). We use the induction method on n. It is obvious
that 1%} (52 — 1) = 9 (2) = 1, 120) (56 — 1) = 9 (38) =1 and 1) (510 — 1) = 9 (442) = 1.
Assume that v (S4n+2 - 1) = 9 (S4(n+1)+2 - 1) = <S4(n+2)+2 - 1) = 1. SO, there
exist the odd integers ki, ko and ks such that Sy,40 — 1 = 2k, 54(n+1)+2 — 1 = 2ky and
Si(nt2)+2 — 1 = 2ks3 follow. Our aim to show that vy (54(n+3)+2 — 1) = 1. By Lemma 2.2,

Sitnrzyre —1 = 118419 12 + 9S4(mr1)+2 + Sant2 — 1
= 11(2]{21+1)+5(2k2—|—1)+(2k‘3+1)—1
= 2(11k1 + 5ko + k3 + 8)
Since ki, ko and k3 are odd integers, then 11k; 4+ 5ko + k3 + 8 is odd integer. This yields
Vo (5’4(n+3)+2 - 1) = 1 as claimed. The other cases n = j (mod 4), j € {0,3} can be
proven similarly. Therefore, we omit these cases.

Now, assume that n = 1 (mod 4). Since n # 1 (mod 32), then we have that n =
5,9,13,17,21,25,29 (mod 32). Then

2, ifn="5,13,21,29 (mod 32)
va((n+31)(n—1))—2=< 4, ifn=259 (mod 32) : (2.1)
6, ifn=17 (mod 32)

Let n = 5 (mod 32). One can see that v (S5 — 1)= 12 (S37 — 1) = 15 (Seg — 1) = 2. By
the induction hypothesis, assume that Szpn,i5 — 1 = 22Iy, S3otnt1)45 — 1 = 22l and
S3o(nt2)+5 — 1= 2213 where [y, 2, 3 are odd integers. Together with Lemma 2.2,
Szan+3)+s — 1 = 294294531539(512)+5 — 29699532(41)+5 + S32n45 — 1
= 294294531 (2% + 1) — 29699 (2%, + 1)
+ (2% -1) +1
= 22(2942945311; — 296991y + I3)

holds. Since 2942945311y — 2969915 + I3 is odd integer, then this gives our aim, namely
V2 (5’32(n+3)+5 — 1) = 2 follows. The other cases can be proven similarly. To cut unneces-
sary repetation, we do not give the proof of other cases. ]
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Lemma 2.4. Ifn =1 (mod 4), then v2 (S, + 1) = 1 holds. Otherwise, va (S, +1) > 2
follows.

Proof. Assume that n =1 (mod 4). It is clear that v5(S14+1) = 15(S5+1) = 1o(Sg+1) =
1. By Lemma 2.2 and assuming Syn41 = 2w1, Sypi1)41 = 2wz, and Sypq0)41 = 2ws3
(w1, we,ws are odd integers), we obtain the claimed result. Assume that n =2 (mod 4).
It is obvious that v (S2+1) > 2, v5(Se+1) > 2 and v (S10o+1) > 2. By induction
method, we suppose that the congruences holds for n =2 (mod 4). Namely, assume that
Sant2 = 2"'q1, Sny1)r2 = 22q2 and Syny2)42 = 2%g3 where g1, g2, g3 are odd integers
and min {a1, az,as} > 2. Let min {ay, as,as} = as. By the using Lemma 2.2, we get that

Sin3yr2 = 11S4my2)12 +5S4mny1)+2 + Sant2
= 11-2%¢g +5-2%gy +2%¢3
23 (11217 %y + 5277 gy + g3) .

This gives that 1o (54(n+3)+2> > a3 > 2 as desired. The cases n = 0,3 (mod 4) can be
proven similarly. Therefore, we omit them. O
Lemma 2.5. Forn € ZT U {0}, the followings hold:

(i) Sgn+1 =3,5,6 (mod 7), if n odd integer

(i) S32(3n+1)417 =10 (mod 17)

(iii) Ss2(3n+2)+17 = 14 (mod 17)

(iv) 8nF1)%=0,1,2,4 (mod 7), if n odd integer

(v) (32nF1)*=1,8,13,16,0,13,8,1,9,15,2,4,4,2,15,9 (mod 17) if n odd integer

Proof. The items (i), (ii) and (iii) can be proven by using the Lemma 2.2. The period of
(iv) and (v) can be seen easily. O

3. Proof of the theorem

Proof. Assume that n # 1 (mod 32) and n # 17 (mod 96). The terms of the Tribonacci-
Lucas sequence are odd integers by the recurrence relation of the sequence. So, we are
looking for the solution of the equation S, = (2k + 1)2. From now on, assume that £ is
even integer. If k = 0, then it gives the solution S; = 12. Now, assume that k& > 1. This
yields that n > 4. Assume that the pair (n, k) is the solution of S, = (2k + 1)?. Then we
obtain that

S, +1=(2k+1)%+1.
After taking 2—adic order of both sides,
v (Snt+1) = w((2k+1)°+1)
= vy (4R +4k+2) =1

follows. This gives that n =1 (mod 4) by using Lemma 2.4. Now, subtract 1 from both
side of the equation S, = (2k + 1)?. Then we have the followings

va(Sn—1) = w((2k+1)°-1)
= vy (487 + 4k)
= 2+ wm(k). (3.1)
Together with (3.1) and Lemma 2.3, we deduce that
va((n+31)(n—1)) =4+ (k). (3.2)
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The equation (3.2) gives that
24H28) | (n 4+31)(n—1).
The Lemma 2.1 yields that

v (k) va(k)

22V%7 | (n+31) and 2°T2 | (n—1). (3.3)

By (3.3), we have
2+ va(k)
2772 | ged(n+31,n—1). (3.4)

By (2.1), it is obvious that v, (k) is even nonnegative integer. So, VQT(]C) € Z* u{0}. Since
n =1 (mod 4) and n # 1 (mod 32), there exists an integer ¢ such that n = 4¢ + 1 with
t#0 (mod 8).
Ift=1,3,5,7 (mod 8), then we obtain that ged (n + 31,n — 1) = ged (4t + 32, 4¢) = 4.
By (3.4),
22+ | 4
follows. It gives that v, (k) = 0. Since we assume k even integer with k£ > 1, we arrive at
a contradiction.
If t =2,6 (mod 8), then ged (n+ 31,7 — 1) = 8. It gives that
92+ | 8
yielding v5 (k) = 0,2. If 5 (k) = 2, then k = 4b; where w; is odd integer. The equation (1)
gives that vo (n — 1) = vo (n + 31) = 3. So, we have n = 8bs + 1 where ws is odd integer.
Then we obtain the following equation

Sgb2+1 = (851 + 1)2.

This is impossible together with Lemma 2.5 (i) and (iv).
If t =4 (mod 8), then we have

va(k)

2 | 16
since ged (n + 31,n — 1) = 16. So, we have 15 (k) = 0,2,4. If v5 (k) = 4, then there exist
the integers c1, ca such that (2k + 1) = (32¢1 + 1) (c; odd) and n =4t +1=4(8c2 +4) =
32¢o 4+ 17. So the equation turns to

S32e, 117 = (32c1 + 1)

Since we assume n #Z 17 (mod 96), then we arrive at a contradiction by using Lemma 2.5

(i), (iii) and (v).

If k is odd, we get the similar calculations. Therefore, the proof is completed. O
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