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ABSTRACT: Titanium (Ti)-Niobium (Nb) alloys are generally produced by casting methods. Since the 

melting temperatures of pure Ti and Nb are quite high, their fabrication by casting techniques is costly. 

On the other hand, it is possible to produce these alloys economically at much lower temperatures (less 

than melting temperature of Ti), completely in solid state using powder metallurgy. In the present study, 

Ti74Nb26 alloys were produced using pure Ti and pure Nb powders by combination of hot pressing and 

high temperature sintering for the first time. The influences of processing temperature and time on 

density, microstructure, and mechanical behavior were investigated. Density measurements showed that 

hot pressing at 800 °C provided full density. XRD and SEM investigations revealed that amount of β phase 

formed increased with increasing sintering time. In addition to main phase β, little amount of α phase and 

a very small amount of pure Nb were observed in the microstructure. Mechanical properties were 

measured by means of uniaxial compression and micro Vickers indentation tests. The results indicated 

that 4 h of sintering at 1200 °C exhibited the highest value of hardness (336 HV), elastic modulus (44 GPa), 

yield strength (894 MPa), and compressive strength (1178 MPa). 

 

Key Words: Titanium-Niobium alloys, Powder metallurgy, Hot pressing, Sintering, Microstructure, Mechanical 

properties. 

 

Sıcak Presleme Ve Yüksek Sıcaklık Sinterleme Kombinasyonu İle Β Tipi Biyomedikal Ti74Nb26 

Alaşımının Üretimi 

 

ÖZ: Ti-Nb alaşımları genellikle döküm yöntemi ile üretilirler. Saf Ti ve Nb’un erime sıcaklıkları oldukça 

yüksek olduğundan döküm yoluyla Ti-Nb alaşımlarını üretmek maliyetlidir. Toz metalurjisi yöntemi ile 

bu alaşımları çok daha düşük sıcaklıklarda (Ti erime sıcaklığından daha az) ve tamamen katı halde 

ekonomik olarak üretmek mümkündür. Bu çalışmada Ti74Nb26 alaşımları saf Ti ve saf Nb tozları 

kullanılarak, sıcak presleme ve yüksek sıcaklık sinterlemesinin ilk kez birlikte uygulanması ile 

üretilmiştir. Üretim sürecinde uygulanan işlem sıcaklığı ve zamanının yoğunluk, mikroyapı ve mekanik 

davranış üzerindeki etkileri araştırılmıştır. Yoğunluk ölçümleri, 800 °C'de yapılan sıcak presleme 

işleminin tam yoğunluğu sağladığını göstermiştir. XRD ve SEM incelemeleri, sinterleme süresinin 

artmasıyla birlikte β fazı oluşumunun arttığını ortaya koymuştur. Ana faz β'ya ilaveten, mikroyapıda az 

miktarda α fazı ve çok az miktarda saf Nb gözlenmiştir. Mekanik özellikler tek eksenli basma ve mikro 

Vickers sertlik testleri ile belirlenmiştir. Mekanik test sonuçları, 1200 °C'de 4 saatlik sinterlemenin en 

yüksek sertlik (336 HV), elastik modül (44 GPa), akma mukavemeti (894 MPa) ve basma mukavemeti (1178 

MPa) değerlerini sağladığını göstermiştir. 
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1. INTRODUCTION  

Stainless steels, cobalt based alloys and Ti alloys are the most widely used metallic biomaterials. 

Among them Ti alloys show the highest biocompatibility, specific strength and corrosion resistance. The 

use of Ti alloys is not limited only to the biomaterials industry they are also used in aerospace applications 

since they have numerous favorable mechanical properties, such as good fatigue strength, high wear 

resistance, excellent fracture toughness and high strength to weight ratio compared to other materials or 

alloys (Elias et al., 2006; Niinomi et al., 2012; Zhuravleva et al., 2013; Cremasco et al., 2013; Sharma et al., 

2016).  

Inadequate wear resistance, high oxidation at elevated temperatures, low hardness and low yield 

strength of pure Ti reduce the lifetime of parts and limit fields of its application (Shymanski et al., 2015). 

Varying physical, chemical and mechanical properties for Ti alloys can be achieved by alloying Ti with 

several metallic elements, such as aluminum (Al), vanadium (V), iron (Fe), tin (Sn), molybdenum (Mo), 

chromium (Cr), zirconium (Zr), tantalum (Ta) and Nb. In order to solve the toxicity problems of some 

alloying elements, such as nickel (Ni), Al and V new Ti alloys were suggested (Niinomi et al., 2012). These 

new metastable β-Ti alloys, such as Ti-Nb, Ti-Ta and Ti-Zr show considerable promise due to their 

superior properties including lower elastic moduli, higher strength, good ductility and compositions 

absent of potentially cytotoxic elements. Among them Ti-Nb based alloys display the lowest elastic moduli 

and better shape memory effect (Kim et al., 2006; Niinomi et al., 2012; Kent et al., 2013). Pure Nb is a 

completely biocompatible material and doesn’t cause any tissue reaction. Young’s modulus of Ti alloys 

can be reduced by adding Nb acting as a β-phase stabilizing element in Ti alloys (Wang and Zheng., 2009; 

Niinomi et al., 2012; Zhao et al., 2013; Zhao et al., 2015). Nb also increase the resistance of Ti to oxidation 

and contributes to decrease of oxygen solubility and further oxygen diffusion into the alloy (Han et al., 

2015). These properties make Ti-Nb alloys faithful and possible candidate biomedical materials for 

replacing frequently used commercial Ti6Al4V and TiNi alloys (Kim et al., 2006; Wang and Zheng 2009; 

McMahon et al., 2012; Kent et al., 2013; Andrade et al., 2015; Bönisch et al., 2015; Prokoshkin et al., 2016). 

Ti-Nb alloys are generally produced by casting techniques (Hon et al., 2003; Ozaki et al., 2004; Kim et 

al., 2006; Chai et al., 2008; Chai et al., 2009; Ma et al., 2010; Cremasco et al., 2013; Han et al., 2015; Bönisch et 

al., 2015; Prokoshkin et al., 2016). Porosity, rough microstructure, and composition segregation are the 

main defects normally present by casting and greatly worsen the mechanical properties. Also, melting 

points of Ti and Nb, 1668 and 2477 °C, respectively, are extremely high that special furnaces (vacuum arc 

melting, VAM and vacuum induction melting, VIM), too much energy and expensive equipments such as 

vacuum are needed to produce Ti-Nb alloys via casting methods. Expensive machining operations and 

high cost of raw materials are other cost-increasing factors. Significant cost reductions can be achieved by 

using powder metallurgy techniques to get near net shapes while reducing processing temperature and 

machining time and material waste. Ti-Nb based alloys can be manufactured by powder metallurgical 

processing techniques using elemental powders, since they require relatively low temperatures (less than 

melting point of Ti) for sintering compared to higher casting temperatures needed for VAM or VIM. 

The objective of the present study is to fabricate and characterize bulk Ti74Nb26 alloy which is a 

promising candidate material for metallic implant applications. The reason for choosing this composition 

is that it has the lowest elastic modulus value, 60 GPa, (Ozaki et al., 2004) among Ti-Nb binary alloys very 

important to prevent or minimize stress shielding effect occurring as a result of the mismatch between 

elastic modulus of the implant material and that of bone (less than 30 GPa, Li et al., 2014) and may results 

in loosening of the implant. The alloy has been produced combining hot pressing (for full densification) 

and high temperature sintering (for Nb dissolution in Ti and accordingly to obtain β phase) for the first 

time since the previous studies such as carried out by Santos et al., 2005 reported that conventional or 

pressureless powder metallurgy methods could not achieve full density and could not get rid of the 

porosity completely even for sintering temperatures as high as 1600 °C.  
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2. MATERIALS and METHODS 

In the present study, elemental pure Ti (99.5%) and pure Nb (99.8 %) powders (both of them smaller 

than 45 µm and supplied by Alfa Aesar, Germany) were used to fabricate Ti-40Nb (wt. %) corresponding 

to Ti74Nb26 alloy by at. %. Scanning electron microscope (SEM) images given in Figure 11 show the 

morphological properties of as-received powders. The shapes of Ti and Nb powder particles were 

irregular since they were produced hydride dehydride conversion technique.  

 

  
(a)                                                                        (b) 

Figure 1. SEM micrographs of pure (a) Ti and (b) Nb powders. 

 
Figure 2 presents the X-Ray Diffraction (XRD) results of starting raw powders. The phases existing in 

the microstructure of Ti and Nb powders were pure α-Ti with a hexagonal close packed (HCP) crystal 

structure and pure Nb with a body centered cubic (BCC) structure. None of the powders contained oxide 

or carbide phases so that they were free from any type of contamination. 

 
(a)                                                                          (b) 

Figure 2. XRD patterns of as-received (a) Ti powders and (b) Nb powders 

 
Composition of the Ti-Nb alloy is selected to be Ti74Nb26 because this composition has the lowest elastic 

modulus value as stated before. Weights of raw powders were calculated considering the selected 

composition and final dimensions of the cylindrical samples (15 mm in diameter and 10 mm in height). It 

was assumed that hot pressed samples would attain full density (zero porosity) in order to get the 

predetermined height or thickness of 10 mm. Powders were weighted using an electronic balance and 

mixed manually with the help of a binder, ethylene, for 15 minutes to obtain a homogeneous mixture. 

Afterwards, the mixture was charged into a hollow cylindrical graphite die with inner diameter of 15 mm. 
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The graphite die tool filled with Ti and Nb powder mixture was put into the pressing chamber. Then the 

door of hot pressing chamber was closed and the chamber was vacuumed. Following vacuuming the 

chamber was filled with pure argon gas. This procedure was repeated 3 times and all the residual air was 

swept away from the chamber. Specimens were heated to the hot pressing temperatures predetermined, 

pressed and sintered at those temperatures simultaneously for 1 h of constant time. The pressure applied 

during heating, pressing and cooling steps kept constant as 50 MPa. An MSE_ M_HP_1300 model hot 

press was employed to produce samples and hot pressing operation was carried out at 600 °C, 650 °C and 

800 °C. All the hot pressing experiments were done under flowing argon gas atmosphere to prevent 

oxidation of samples. Finally, hot pressed samples were left to cooling inside the chamber and taken from 

the chamber when the temperature decreased to 150 °C. The graphite deposited as a thin layer on the hot 

pressed sample surfaces were removed applying grinding for which a wheel rotating type machine 

(Struers Labo Pol 5) and 240 and 320 grit SiC papers were used. After grinding, samples were cleaned in 

an ultrasonic cleaner for 10 minutes to remove possible residues and left drying. Next, samples put in an 

alumina (Al2O3) crucible were further sintered at 1200 °C in a vertical tube furnace (Protherm PTF 

14/50/450) for 1, 2, 3 and 4 h under flowing argon gas to obtain desired β phase providing Nb dissolution 

in Ti. Sintering temperature (1200 °C) was kept constant for all the specimens. After sintering, the samples 

were furnace cooled and removed from the furnace at 200 °C. Heating, sintering and cooling curves are 

given in Figure 3. Temperature-time curve of hot pressing has also been added into that figure for 

comparison. Initial linear region in the curves represents heating step where the heating rates were kept 

constant as 10 and 8 °C/min for hot pressing and sintering, respectively. Horizontal second region 

corresponds to hot pressing or sintering time and finally the third region shows the cooling step where 

the slopes of the curves at different points are variable, not constant. This means that cooling rate is not 

constant during cooling; it is maximum just after sintering completed (at the beginning of the cooling 

stage) and decreases with time. 

 
Figure 3. Temperature-time curves of hot pressing (HP) for 1h and following sintering (HP+S) processes 

for different times. 

 
Density and the porosity of the samples in hot pressed and sintered conditions were measured using 

Archimedes’ principle employing an electronic precision balance (X Precisa 321) equipped with a density 

determination kit by using the water replacement (suspension) method. 

The samples for microstructural and mechanical characterization were cut in the dimensions of 5x5x10 

mm using electrical discharge machine systems (EDM), Charmilles Robofil 290 and 310. Samples in 
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compression tests were used as they were cut. For XRD studies surface of the samples were grinded with 

320 SiC papers to remove contamination residues left after cutting operation. For micro hardness and SEM 

investigations specimens were subjected to full metallographic preparation steps in which grinding (240-

1200 grinding papers), polishing (diamond suspension, 3 µm) and finally etching was applied, 

respectively. Kroll’s reagent (3 ml HF + 6 ml HNO3 + 100 ml H2O) was used to etch the samples for about 

15 seconds.  

XRD analysis were carried out using a PANalytical Empyrean model X-ray diffractometer with CuKα 

radiation (λ=1.540598 Å) at 45 kV, 40 mA within a range of diffraction angles 2θ from 20° to 90° at a scan 

speed of 2 degree/min. Microscopic investigation was performed by a Zeiss Sigma 300 SEM equipped with 

an energy dispersive spectroscopy (EDS) detector. Both secondary electron (SE) and backscattered electron 

(BSE) modes were applied to identify the different phases in the microstructure. Compositional analysis 

was done employing EDS point analysis technique. 

Vickers hardness was measured on the polished specimens using a digital micro hardness tester 

(HVD-1000AP) with a load of 100 g force (981 mN) and 20 second dwell time. Uniaxial compression tests 

at ambient temperature (25 ± 5 °C) were conducted using a universal Raagen tension-compression testing 

device. Elastic modules were determined by applying least squares curve fitting to the linear portion of 

the stress-strain diagram while yield strengths of the sintered samples were determined using the 0.2%-

offset method. Compression strengths were the maximum stresses achieved and as a measure of ductility 

fracture strains were used. Both surfaces of the compression test specimens were mechanically ground to 

render them parallel. Graphite was used to reduce friction between the samples and the compression 

plates and also to prevent or minimize barreling during uniaxial compression testing. 

3. RESULTS and DISCUSSION   

Theoretical density of Ti74Nb26 alloy is calculated as 5.578 g/cm3. Measured density and calculated 

porosity of the samples in hot pressed and sintered conditions are shown in Table 1. The density of the 

sample hot pressed at 600 °C was only 4.52 g/cm3 and its porosity was close to 17%. 50 °C increment in hot 

pressing temperature decreased the porosity to 12.5% so that hot pressing temperature was increased to 

800 °C providing almost full density. Hot pressing at 800 °C resulted in a porosity of only 0.85%. This little 

amount of porosity would be eliminated during following high temperature sintering. Consequently, hot 

pressing temperature was optimized to be 800 °C and all the samples were pressed at that temperature 

prior to sintering. Actually, this was the idea behind combining hot pressing with high temperature 

sintering. Previous studies (Santos et al., 2005) present in the literature showed that, conventional cold 

pressing and sintering could not eliminate all the porosity. On the other hand, only hot pressing is not 

sufficient for complete dissolution of Nb in Ti and accordingly getting β phase desired due to its limited 

temperature. As expected sintering carried out for different times eliminated the porosity remained from 

hot pressing and full density was achieved for all the sintering durations of 1 to 4 h.  

 

Table 1. Density and porosity of the samples produced in different conditions 

Specimen Density (g/cm3) Porosity (%) 

600 °C 1h         (HP) 4.52 16.89 

650 °C 1h         (HP) 4.88 12.53 

800 °C 1h         (HP) 5.53 0.85 

1200 °C 1h     (HP+S) 5.58 0 

1200 °C 2h     (HP+S) 5.59 0 

1200 °C 3h     (HP+S) 5.59 0 

1200 °C 4h     (HP+S) 5.60 0 

 
XRD patterns of the sintered samples revealed that β phase formed as a result of Nb dissolution in Ti 

as it can be seen from Figure 4 4. In addition to main phase β (BCC) little amount of α phase (HCP) were 
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also detected in the microstructure. Longer sintering times increased the intensity of β peaks while those 

of α phases decreased. Even 4 h of sintering at 1200 °C was not enough to eliminate all the α phase and to 

get single β phase. Nevertheless, amount of α phase was very low which can be seen comparing main 

peak intensities of two phases. 

 

 
Figure 4. XRD patterns of specimens hot pressed at 800 °C for 1h and then sintered at 1200 °C for 

different times 

 

The morphological characteristics of the sintered samples at 1200 °C for different times after hot 

pressing at 800 °C for 1h were examined with the SEM and the microstructures are presented in Figure 5. 

SEM micrographs revealed that with increasing sintering time from 1h to 4h amount of α phase decreased 

and the amount of β phase increased. The results were in good agreement with those obtained from XRD. 

EDS point analysis revealed that Nb contents of the α (Figure 5e) and β phase (Figure 5f) were 4.3 ± 0.5 

(at. %) and 26.1 ± 3 (at. %), respectively.  
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(a)                                                                          (b) 

  
(c)                                                                          (d) 

  
(e)                                                                          (f) 

Figure 5. SEM images of Ti74Nb26 alloy sintered for (a) 1h, (b) 2h, (c) 3h and (d) 4h at 1200 °C and EDS 

point analysis results of (e) α phase and (f) β phase both shown in (d) 

 
BSE mode was used in order to ensure whether undissolved pure Nb existed or not in the 

microstructure of the samples since it was quite difficult to differentiate in SE mode. BSE micrographs of 

bulk Ti74Nb26 alloys are given in Figure 6. The micrographs are similar and the microstructure consists of 

the same phases. The amount of α phase is very small as detected by XRD and SE mode in SEM, β is the 

main phase and a little undissolved pure Nb in white color was also observed. EDS point analysis given 

in Figure 6e proves that all the white regions in BSE images correspond to pure Nb. Although amount of 
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pure Nb decreased with increasing sintering time its complete elimination was not possible by sintering 

at 1200 °C even for the longest sintering time of 4h used in the present study. 

 

  
(a)                                                                          (b) 

  
(c)                                                                          (d) 

 
(e) 

Figure 6. BSE micrographs of bulk Ti74Nb26 sintered at 1200 °C for (a) 1h, (b) 2h, (c) 3h and (d) 4h. (e) 

EDS point analysis result of white region shown in (b). 

 

The micro hardness values presented a clear relation with sintering duration. Longer sintering times 

resulted in higher hardness as observed in Table 2. As expected, 4h of sintering at 1200 °C exhibited the 
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highest hardness value of 332 HV. The lowest hardness measured was 309 HV of 1h sintered sample at 

the same temperature. Increase in sintering time increased the amount of β phase which is harder than α 

phase (Lee et al., 2002) and consequently, hardness value also increased. 

 

Table 2. Vickers micro hardness tests results 

Sintering time (h) 1 2 3 4 

Mean 

Hardness (HV) 
308.8 ± 21.1 315 ± 20.8 330.8 ± 29.2 332 ± 3.1 

 

Figure 7 presents the stress-strain curves of sintered samples at 1200 °C for different times. Mechanical 

properties obtained from these curves are summarized in Table 3. Young’s modulus of the samples 

sintered for 1, 2, 3 and 4h were 40, 41, 41.4 and 44 GPa, respectively as shown in Table 3. The lowest yield 

strength was measured to be 789 MPa for 1h sintered sample and increased with increasing sintering time 

up to 894 MPa for the sample sintered for 4h. Compressive strength values were also increased from 1020 

(1h) to a maximum of 1178 MPa (4h). Fracture strains as a measure of ductility were very similar for all 

the sintering times and changing in the range of 18-21%. The value of elastic modulus (44 GPa), yield 

strength (894 MPa) and compression strength (1178 MPa) were the highest mechanical properties all 

obtained for 4 hours of sintering.  

 
Figure 7. Stress-strain curves of sintered samples at 1200 °C for different times 

 

Table 3. Mechanical properties of Ti74Nb26 alloys sintered at 1200 °C for variable times 

Sintering time 

(h) 

Elastic modulus 

(GPa) 

Yield strength 

(MPa) 

Compression 

strength (MPa) 

Fracture strain 

(%) 

1 40.1 789 1020 19.4 

2 41 803 1038 18.1 

3 41.4 856 1118 21.3 

4 44 894 1178 19.9 
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The relations between mechanical properties and sintering time are plotted in Figure 8. Elastic 

modulus increases as the sintering time gets longer since the extended sintering times provides better 

bonding between the initial powders. However, in the present study increase of Young’s modulus was 

only 4 GPa with the increment of sintering time from 1h to 4h. This is due to low elastic modulus of β 

phase. α has a higher elastic modulus and longer sintering times decreased the α phase amount. As a 

result, the increase in elasticity modulus was limited just too a few GPas. Yield and compressive strengths 

enhanced especially after 2h of sintering. This can be understood comparing the slope of the linear curves 

between 1 and 2h, and after 2h up to 4h. As it can be seen from Figure 8b the slope of the both curves 

increase after 2h. In addition to higher amount of β phase (Figure 5 and Figure 6), longer sintering times 

promote additional particle-to-particle bonding. Therefore, yield and compression strength of the samples 

increase with increasing sintering time.  

 
(a)                                                                          (b) 

Figure 8. (a) Elastic modulus, (b) yield and compressive strength as a function of sintering time 

 
In Table 4 mechanical properties of the samples produced in the present study has been compared to 

the results published already. The sample hot pressed at 800 °C for 1h and sintered at 1200 °C for 4h 

exhibited the lowest Young’s modulus (44 GPa) and highest yield strength (894 MPa). It is clear from the 

table that, similar compositions (highlighted with bold style in the table) produced with casting methods 

resulted in elastic modulus values of 45-95 GPa. Yield strength values (250-722 MPa) on the other hand 

were quite low compared to the results of the present study. Hardness values were also in the range of 

(188-323 HV) comparable to our result of 332 HV. As a result, it can be concluded that hot pressing 

following high temperature sintering is a quite efficient method to produce bulk Ti-Nb alloys with 

superior mechanical properties. The mechanical properties of Ti-Nb alloys produced by other powder 

metallurgy techniques, although in different compositions, are also shown in the table to give an idea. 
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Table 4. Comparison of mechanical properties with the ones existing in the literature 

Composition 

Elastic 

Modulus 

(GPa) 

Yield 

strength 

(MPa) 

Hardness 

(HV) 

Fabrication 

method and 

condition 

Reference 

Ti–35Nb (wt. %) 

94.9 ± 5.7 722 ± 21 323 ± 15 
VAM, HT 

@ 1000 °C, 

24h 

 Furnace 

Cooled  
Cremasco 

et al., 2010 
75.2 ± 15.7 343 ± 1 188 ± 4 

Water 

Quenche

d 

Ti–10Nb (wt. %) 85.2±9.0 552±19 ……… 

MIM, 1500 °C, 4h 

Zhao et al., 

2013 

Ti–16Nb (wt. %) 78.4±5.6 589±20 ……… 

Ti–22Nb (wt. %) 70.9±7.2 649±31 ……… 

Ti–10Nb (wt. %) 90.1±6.1 612±3.6 ……… MIM, 1500 °C, 4h 

+ 

HIP, 915 °C, 2h 

Ti–16Nb (wt. %) 82.2±5.0 661±14 ……… 

Ti–22Nb (wt. %) 75.6±7.6 687±34 ……… 

Ti-24Nb (at. %) 50 250 …….. CCIM + HT @ 950 °C, 

20h + CW 95% 

reduction in thickness 

+ ST @ 900 °C, 1h 

Elmay et 

al., 2014 Ti-26Nb (at. %) 45 300 …….. 

Ti-26Nb (at. %) 44 894 332 
HP @ 800 °C, 1h + S @ 

1200 °C, 4h 

Present 

study 
VAM: Vacuum Induction Melting, HT: Homogenization Treatment, MIM: Metal Injection Molding, HIP: Hot Isostatic Pressing 

CCIM: Cold Crucible Induction Melting or Cold Crucible Levitation Melting, CW: Cold work, ST: Solutionizing Treatment 

4. CONCLUSIONS  

In this study, binary Ti74Nb26 alloys were produced combining, for the first time, hot pressing with 

high temperature sintering. General conclusions obtained from the study are as follows:  

 Density measurements (Archimedes’ technique) showed that optimum hot pressing temperature 

of Ti-Nb alloys for 1h is 800 °C. Almost full density (over 99%) was achieved at 800 °C. 

 The microstructures of Ti74Nb26 alloys sintered at 1200 °C for different times consist of small 

amount of α and very little undissolved pure Nb in addition to the main phase β and amount of β 

increases with increasing sintering time according to XRD and SEM investigations. 

 Even 4 h of sintering at 1200 °C was not sufficient to obtain single β phase. Therefore, sintering 

temperature should be higher than 1200 °C to get only β phase free from α and pure Nb. 

 Mechanical properties enhanced by increasing sintering time. 4h of sintering exhibited the highest 

mechanical properties including elastic modulus (44 GPa), yield strength (894 MPa), compression 

strength (1178 MPa) and microhardness (332 HV). Ductility (18-21%) on the other hand was almost 

the same for all the sintering temperatures. 

 Samples produced combining hot pressing and high temperature sintering were found to be 

suitable in terms of mechanical properties for bone replacement applications although they have 

higher elastic modulus (40-44 GPa) compared to that of bone (Ebone < 30 GPa). 
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