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ABSTRACT: Loose sands are susceptible to the earthquake due to lack of strength and even saturated 

sands may experience liquefaction. To address problems in loose fine sands, in this article, hydrated lime 

and zeolite as one of the pozzolanic methods for soil improvement are instrumented together to improve 

fine sandy soils’ compaction properties. To provide aid for practical compaction of fine sandy soils, 

physical properties of treated soils with 3, 4 and 5 percent of lime and 8, 10 and 12 percent of zeolite are 

investigated. A series of Proctor tests, Specific Gravity of soil’s solids and Minimum Index Density was 

performed to obtain maximum dry density and index void ratios. Additionally, the hydration rate of 

zeolite is modeled by Arrhenius method to quantify the effective duration of hydration process. Results 

showed that application of zeolite led to a better compaction property while treated soils only with lime 

did not show any improvement.  
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İnce Kumlu Mühendislik Dolgularının Fiziksel Özellikleri Üzerine Pozzolan-Kireç 

Stabilizasyonunun Değerlendirilmesi 

 

ÖZ: Gevşemiş kumlar, mukavemet eksikliğinden dolayı depreme karşı hassastır ve doymuş kumlar bile 

sıvılaştırılabilir. Gevşek ince kumlardaki sorunları ele almak için, bu makalede, zemin iyileştirme için 

pozzolanik yöntemlerden biri olan hidratlı kireç ve zeolit, ince kumlu zeminlerin sıkıştırma özelliklerini 

geliştirmek için birlikte kullanılmıştır. İnce kumlu zeminlerin pratik olarak sıkıştırılmasına yardımcı 

olmak için, işlenmiş zeminin yüzde 3,4 ve 5 oranında kireç ve yüzde 8,10 ve 12 oranında zeolitle birlikte 

fiziksel özellikleri incelenmiştir. Maksimum kuru yoğunluğu ve indeks boşluk oranlarını elde etmek için 

bir seri Proctor testi, zeminin Özgül ağırlığı ve asgari endeksi yoğunluk yapılmıştır. Ek olarak, 

zeolitinhidrasyon hızı, hidrasyon işleminin etkin süresini ölçmek için modellenmiştir. Sonuçlar, zeolit 

uygulamasının daha iyi bir sıkıştırma özelliğine yol açtığını, ancak yalnızca kireçle muamele edilmiş 

topraklarda herhangi bir gelişme olmadığını göstermiştir. 

 

Anahtar Kelimeler: Zemin iyileştirme, Zeolit, Hidrasyon modeli, Arrhenius denklemi 

 

INTRODUCTION 

Application of natural pozzolans with lime to improve weak soils, dates back to thousands of years. 

Today zeolites as an eco-friendly pozzolan with alumina-silicate structure is being used in many 

environmental and industrial processes such as a cement replacement pozzolan in concrete technology. 

A zeolite-cement mixture generates less heat of hydration compared to other commonly used 
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supplementary cementitious materials (SCM) such as silica fume and metakaolin, which are extremely 

expensive or not fully investigated in terms of their suitability; this is likely due to the removal of cement 

from the system and shorter initial and final setting times than that of the plain mixture (Ahmadi and 

Shekarchi 2010; Najimi et al. 2012). Additionally, durability properties of concrete containing zeolite 

proved to have a considerable effect on water penetration, chloride ion penetration, corrosion rate and 

drying shrinkage of concrete. Furthermore, cements containing natural zeolite exhibit improved 

resistance to sulfate attack and reduced the ettringite formation (Karakurt and Topcu 2009; Valipour et 

al. 2013). 

Snellings et al. (2009) studied early pozzolanic reactions in pastes of lime and natural zeolites; for 

pastes containing chabazite and Na-, K-, and Ca-exchanged clinoptilolite tuffs, they showed that alkali-

exchanged clinoptilolites produced a higher pozzolanic reactivity, a more permeable reaction product 

layer and longer silicate chains in the calcium silicate hydrate phase compared to their Ca-exchanged 

counterpart. Additionally, they concluded that the exchangeable cation content of clinoptilolite 

influences the duration of the initial setting time and the beginning of hardening and hydration rate of 

zeolite lime blend. Varela et al. (2006) compared the pozzolanic activity of two zeolitic rocks from two 

Cuban deposits and found that Carolinas rocks containing sub automorphic and automorphic 

heulandite or clinoptilolite crystals had a lower reaction rate with portlandite (Ca(OH)2). This result was 

related not to the particle size distribution of the materials but to their soluble SiO2 content and 

mineralogy. Numerous studies on zeolite practical applications in concrete technology are indicating 

that use of zeolite in soil stabilization which follows a similar pattern could be a beneficial practice for 

soil and road practitioners specially due to quick initial hydration and setting time of pozzolanic 

reaction which will expedite compaction of fine to clean sandy soils. 

Thus, as available data in literature regarding compacting soils with zeolite and lime as engineering 

fills for embankments or road paving material are deficient, and as fine saturated sands are prone to 

major disasters such as liquefaction (Jamhiri and Parsaeimaram 2019; Jamhiri et al. 2020), in this study to 

provide a practical knowledge of compaction properties of zeolite-lime stabilized fine sandy soils as a 

method of soil stabilization , a series of Standard Proctor tests, Specific Gravity of soil’s solids and 

Maximum and Minimum Index Density was performed on treated soils to demonstrate the effect of 

zeolite and lime with or without each other when using them in soil stabilization. To extend the 

comprehension of the data reported in this paper, different percentage amount of zeolite and lime were 

used and significant physical soil parameters such as maximum dry density, optimum moisture content, 

maximum and minimum-index void ratio were identified. In reference to the fact that practical 

compaction of soils with lime and pozzolan depends mainly on hydration rate rather than pozzolanic 

reaction at early ages of application, in this study an analytical simulation is performed on zeolite and 

lime hydration rate and X-ray Diffraction Analysis is utilized to trace the produced hydration products.   

MATERIALS 

The results of the parent soil characterization tests including Direct Shear (DS) test and soil 

gradation using sieve analysis are shown in Table 1. Grain-size distribution curve of soil and laser 

particle analysis of zeolite are shown in Figure 1 (a and b), respectively. This soil is classified as poorly 

graded sand (SP) according to the Unified Soil Classification System and micronized zeolite is of 

clinoptilolite kind. Dry hydrated lime was used as the co-binding agent. The specific gravity of the lime 

grains is 2.49. For the characterization tests, distilled water was used, but for molding specimens the 

other tests, tap water was used. To establish logical conclusions, soil specimens were prepared in 

different percentages as shown in Table 2. 

 

 

 

 

 



B. JAMHIRI 82 

 

Table 1. Physical and mechanical characteristics of studied fine sand 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Specimen preparation dosage for 

each type of mixture (L stands for lime and Z is 

zeolite) 
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+10Z 
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+12Z 

5
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5

L+8Z 

5L

+10Z 

5L

+12Z 

 

 
 (a)  (b) 

Figure 1. (a) Laser Particle Size Analysis distribution curve obtained by Malvern Mastesizer 

Instrument 

(b) Grain size distribution and unified classification of plain sand 
 

EXPERIMENTAL PROGRAM 

To reach a uniform mixture, all additives including 3,4 and 5 percent of lime and 8, 10 and 12 

percent of zeolite were properly mixed with the oven dried sandy soil for half an hour according to the 

preparation dosage shown in Table 2. Afterwards, compaction characteristics of the stabilized soil have 

been achieved by using standard proctor test according to ASTM D698. Additionally, specific gravity of 

soil’s solid is separately identified for each mixture as the ratio of dried mass of stabilized soil to the 

mass of water of the equal volume. Specific gravity of soil’ solid in this article is defined in accordance 

with ASTM D854. To investigate physical changes in the mixtures and to quantify the amount of void 

pore space, maximum and minimum index void ratios also were determined by replacing each 

Soil Property Am

ount 

Cu 2.22 

Cc 1.42 

D10 0.09 

D60 0.2 

Specific Gravity 2.65 

Optimum  Moisture 

Content (%) 

15.6 

Maximum Dry Density 

(KN/m3) 

15.7

7 

Cohesion Intercept (kPa) 0.2 

Internal Friction Angle 

(Degree) 

30 
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corresponding maximum and minimum dry densities according to D 4254 – 00. Considering that during 

field compaction relative density of subjected soil (Dr %) should meet at least 90 percent of its 

counterpart in laboratory compaction, all remolded specimens were made to reach required relative 

density. With the aim of getting high accuracy of the results, each test was performed twice, and the 

average results were reported for further analysis. 

RESULTS AND DISCUSSION 

Maximum Dry Density and Zeolite Content 

The results of standard proctor tests on mixed samples are shown in Figure 2. The aim of the test is 

to establish a graph including maximum dry density that may be obtained for a given soil with standard 

attempts of compaction effort. When a series of compaction efforts is gradually performing at different 

water contents resulted plot of compaction usually shows a distinct peak. Accordingly, the curve is 

drawn with axes of dry density and moisture content with the peak representing the maximum dry 

density at optimized moisture content. Figure 2, indicates that with the increase of zeolite content, 

maximum dry density increases. One of the reasons could be that as parent soil is a poorly granular soil, 

in general, addition of micronized zeolite will lead to a change in soil’s gradation and an increase of the 

fine fraction and consequently production of a well graded soil. Insertion of lime in conjunction with 

zeolite in the soil also showed a similar trend which is due to the fact that as zeolite carries a negative 

anion charge it tends to absorb positive cations in a mixture of water solution and this leads to the 

creation of diffused double layer water.  

 
Figure 2. Variations of maximum dry density with variations of zeolite content 

 

Double layer water predominantly is absorbed to the surface of clayey soils because clays are 

charged particles. While in the case of fine granular soils such a complex layer does not exist. But with 

the presence of solved zeolite in water and co-absorption of lime; hydration and pozzolanic reactions 

begin.  Mertens et al. (2009) who investigated the pozzolanic reactions among different types of natural 

rich pozzolans, indicated that finer grain sizes or higher surface areas of pozzolans generally lead to a 

higher short-term pozzolanic activity, whereas hydration rate influences only the short-term reactivity, 

while pozzolanic reaction had an effect on both the long- and short-term reactivity. So as field 

compaction of soils is significantly dependent on early stages of mixing and a reliable design procedure 

is not accountable until it gets confirmation both in practice and also in simulated analysis and as it was 

addressed by Mertens et al. (2009) short-term reactivity of mixed soil is mainly controlled by degree of 

hydration. Thus, to certify the spread of hydration process with the implementation of the affinity 
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hydration model (Jendele et al. 2013; da Silva et al. 2015) the rate and extent of hydration is modeled to 

weight the share of influence of binder hydration on compaction parameters. 

Simulation of Zeolite and Lime Hydration Process 

It is believed that at early stages of zeolite lime reaction, pozzolanic reaction is prevailed 

considerably by hydration of calcium hydroxide with alkali exchanged clinoptilolite (Mertens et al. 

2009). The first consequence of hydration is the presence of a new phase belonging to the AFm group 

(namely calcium carbolaluminate hydrate such as C3S) – which is based on pozzolanic reaction between 

calcium hydroxide and aluminates in the zeolite. The consumption of the C3S phase and crystallization 

of the CH phase and deceleration of the hydration rate is generally considered to be caused by the 

dormant inducing period of zeolite and thickening of following calcium silicate hydrate chains (C–S–H) 

barrier layer on the C3S surface. However, compare to cement systems, the mineral phases C3A, C3S will 

be lower than the detection limit in tested samples in regular detecting analyses; implying that these 

types of phases became fully hydrated during the early stage of curing and do not contribute to future 

strength developments. This observation was also simulated by affinity hydration model proposed by 

da Silva et al. 2013 and Jendele et al. 2013 with some minor adjustments, owing to the different nature of 

the binding agent in those studies. The affinity hydration model adjusts all stages of cement blends 

hydration under isothermal temperature. The used methods for simulating hydration progress mainly 

are based on amount of consumed Ca(OH)2, released heat of hydration, chemically bound water content 

and loss of volume due to drying shrinkage. The affinity hydration model incorporates chemical affinity, 

at any specific degree of hydration (DoH), but under varying temperature via Arrhenius equation as 

follows: 
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 (1)  

where R [Jmol−1K−1] is the universal gas constant and Ea [Jmol−1] is the apparent activation energy 

dependent of assumed binder fineness (da Silva et al. 2013 and Jendele et al. 2013). DoH is assumed as a 

function of Water-binder ratio and T is the average temperature of sealed samples which is scaled down 

to the correspond original chemical affinity assumption of isothermal curing temperature of 25°C in the 

model and 20°C in this study.  

Table 3 represents adjusted parameters in simulation of degree of hydration in which all mineral 

phases such as C3A, C3S (3CaΟ.SiΟ2) and C4AF were set both to those reported in the literature 

(Vogiatzis et al. 2012) and XRF (X-ray fluorescence) of the binder in accordance with the minimum range 

of detection limit of XRD apparatus so that degree of hydration can be computed with higher precision. 

Some modification must be taken into account in model properties such as replacing cement to water 

ratio to cement to binder (zeolite-lime) ratio and real field condition equalized to isothermal curing in 

20°C. Additionally, it is assumed logically that as samples were prepared using optimum moisture 

content varying about 12 to 14 percent, in simulated model the minimum value was used to account for 

worth case scenario where in reality samples lose water during preparation.    
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Table 3. XRF experimental binder properties and estimated parameters by simulated affinity model  

setting parameter 

0.08 C3S [-] 

0.02 C2S [-] 

0.03 C3A [-] 

0.03 C4AF [-] 

7800 BLAINE [m2/kg] 

0.12 Water to binder ratio [C] 

1.165 B1 [1/h] 

0.308 B2 [-] 

0.086 ETA [-] 

0.3 DoH_inf [-] 

73967.

7 

Activation Energy [J/mol] 

83.78 Potential Heat [J/g] 

0.1 Step size [days] 

1 Sealed & Isothermal Curing 20°C 

 

 
Figure 2. Simulated degree of hydration (DoH) of plain lime and zeolite binder in the extension of 

time 

 

The simulated evolution of DoH is shown in Figure 2 and it can be seen as XRD analysis in Figure 3 

also confirms that phases such as C3A, C3S (3CaΟ.SiΟ2) and C4AF were not even in the range of detection 

and did not influence the pace of hydration of zeolite and lime. Considering the fact that zeolite 

hydration occurs at early ages of curing, as shown in Figure 2, it only continues to develop up to roughly 

10 days but after that it does not last longer and contributes to the final strength as a constant factor and 

the overall performance of stabilized soil will only lean on pozzolanic reactions. 

As already mentioned, simulated hydration process in Figure 2 was confirmed by an XRD analysis 

of mixture containing zeolite and lime at early ages of setting. The result of X-ray analysis serves 

simultaneously as chemical identification (compare to recognized patterns) of the reaction products by 
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measuring the mass dimension of different elements participating in the process in the scanned array; 

while confirming the presence of dehydrated zeolite (clinoptilolite) content. This is the way that 

hydration process and its pozzolanic products (C-S-H) were identified as well as the hydrated lime 

particles (portlandite) of the stabilized soil. 

 

 
Figure 3. X-ray diffraction analysis of samples containing zeolite and lime 

 

It should be emphasized that, appropriate mixing in the laboratory causes less infiltration of air 

voids into mixture while later on during filed compaction or backfilling, insufficient compaction of 

mixed soil will lead to appearance of large pores especially after consumption of free water in the soil 

during hydration and also due to surface evaporation. Consequently, any simulated modeling 

confirmed by experimental results before employment in practice still should be accompanied by in field 

test subjects. 

Specific Gravity Variations 

The values of specific gravity of dry mixed samples by instrumentation of pycnometer procedure are 

summarized in table 4. It can be seen in Table 4 that in samples without zeolite as lime content increased 

specific gravity was also increased, but there is no such a trend in samples containing zeolite. 

Meanwhile, in sample with a constant lime content as zeolite content increased specific gravity is also 

increased which is expected to be due to more absorbed volume of water to the charged surface of 

zeolite.  

 

Table 4. Variations of specific gravity of solid particle (Gs) With variation of lime and zeolite content 

5% Lime 4% Lime 3% Lime Zeolite 

content 

2.86 2.85 2.84 0% zeoite 

2.72 2.793 2.832 8% zeoite 

2.733 2.813 2.844 10% zeoite 

2.752 2.822 2.861 12% zeoite 
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Index Density Dependent Void Ratios 

The minimum index density represents the loosest condition of a granular soil which prevents 

dispersion and minimizes particle segregation. Any particular procedure opted to determine the relative 

density for a given compaction procedure should comprise determining the minimum and maximum 

void ratios correspond to the states when soil is absolutely cohesionless with no considerable strength. 

Also, when soil is properly compacted with acceptable bearing capacity in such a condition that 

prevents particle segregation and minimizes compaction efforts of the soil, its state is definable as 

maximum index density. According to ASTM D 4254 maximum and minimum-index void ratios can be 

calculated by substituting maximum and minimum (loose state) index dry densities in the following 

equation:   

 1w s

d

G
e






   (2) 

where e is driven void ratio by substituting equivalent index dry densities, d  is maximum or 

minimum dry density of the specimen and w  is density of water at 20°C and Gs is specific gravity of 

soil. Incorporating the data provided in Figure 2 and Table 4 enables equation 2 to compute maximum 

and minimum void ratios in accordance with minimum and maximum dry densities as shown in Figure 

4.  

 

 
Figure 4. Variations of maximum index void ratios for each mixture of tested specimens 

 

Figure 4, depicts the variation of minimum index void ratio of each mixture after specified 

terminology in Table 2. Accordingly, as can be seen in figure 4, In samples without zeolite (red columns) 

with the increase of lime content, minimum index void ratio is increasing and this trend only is 

prevailing in samples without zeolite. The reason for such a behavior is that adding lime separately 

without an adequate pozzolan in the mixture in the presence of water leads to flocculation of lime 

particles adjacent to water without proper adhering bonds and this consequently will influence the 

gradation and particle size distribution of parent soil. Whereas, lime in conjunction with zeolite shows 

promising performance as long as zeolite content is increasing minimum index void ratio decreases 

(blue columns) which it then leads to a higher maximum dry density while required moisture content 

for a better compaction is reduced because of concurrent less heat of hydration of zeolite and its 

subsequent constant rate of influence in extension of curing periods. 

Mixture Type
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The results of maximum index void ratios of each mixture after specified terminology in Table 2 are 

shown in Figure 5, as it is demonstrated in Figure 5 in samples containing only lime with the increase of 

lime content, maximum index void ratio increases and minimum dry density decreases. But as the 

amount of zeolite content increases while lime content was kept constant, maximum index void ratio 

decreases and minimum dry density increases. The reason for this behavior is that without mature 

pozzolanic reactions and during early ages of mixing when the hydration process is predominantly 

undergone (Figure 2) zeolite particles do not participate in reactions as pozzolanic reactions are mainly 

time dependent reactions and they require a certain period of curing or setting time. Instead, zeolite acts 

as a fine filler and fills the void spaces among larger size aggregates during the early stages of backfilling 

and contributes to the artificial cementation due to pozzolanic reactions which occur in the following 

days of setting.  

 
Figure 5. Variations of maximum index void ratios for each type of mixture of tested specimens 

 

CONCLUSIONS  

Addition of zeolite combined with lime to the engineering fills comprising of fine sands provides a 

unique means of modifying poorly graded soils’ grain size distribution by providing fine filler content, 

while zeolite as a natural pozzolan in conjunction with calcium hydroxide has the ability to induce 

artificial cementation too. In reference to the results obtained in this study, the following conclusions can 

be made on zeolite-lime stabilized fine sands: 

1. Increase of zeolite content while lime content was kept constant led to increase by specific 

gravity of soil’s solid and consequently during proctor compaction, maximum dry density of each 

mixture increased. But with the increase of lime percentage, while zeolite content was kept constant, 

specific gravity of soil’s solid related to each mixture decreased. Which this is due to absorption of free 

water and subsequent flocculation of lime particles and creation of larger pores in the extent of mixing 

procedure and also setting period. 

 

2. Simulation of hydration process indicated that at early stages of interaction between zeolite and 

lime particles, pozzolanic reaction was prevailed considerably by hydration of calcium hydroxide with 

alkali exchanged clinoptilolite and preliminary product of hydration is presence of new phases such as 

carbolaluminate hydrate groups. 

 

3. When lime content was kept content while zeolite content increased, compacted soil showed 

higher maximum dry density while required compaction water decreased. In other words, zeolite has 

Mixture Type
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the most influence deciding the compaction performance where addition of more zeolite is equal to a 

better compaction effort.  

 

4. Result obtained in this study have shown that appropriate percentage of zeolite content is 

fixated at 12 percent and optimum lime content is 5 percent. Furthermore, with the increase of zeolite 

and lime content, maximum index void ratio decreased while minimum dry density decreased. 

Additionally, maximum dry density increases in result of reduction of minimum index void ratio. 

 

5. In addition, Increase of lime content in mixtures containing lime only led to decrease of 

maximum dry density following by an increase in maximum and minimum index void ratios. The 

reason lies in flocculation of lime particles in contact with water which this then will create large pore 

voids. Results demonstrated that samples containing lime without zeolite showed higher maximum dry 

density while being mixed with 3 percent of lime. 
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