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ABSTRACT Deep learning (DL) based localization and Simultaneous Localization and Mapping (SLAM)
has recently gained considerable attention demonstrating remarkable results. Instead of constructing
hand-crafted algorithms through geometric theories, DL based solutions provide a data-driven solution to the
problem. Taking advantage of large amounts of training data and computing capacity, these approaches are
increasingly developing into a new field that offers accurate and robust localization systems. In this work, the
problem of global localization for unmanned aerial vehicles (UAVs) is analyzed by proposing a sequential,
end-to-end, and multimodal deep neural network based monocular visual-inertial localization framework.
More specifically, the proposed neural network architecture is three-fold; a visual feature extractor convNet
network, a small IMU integrator bi-directional long short-termmemory (LSTM), and a global pose regressor
bi-directional LSTM network for pose estimation. In addition, by fusing the traditional IMU filtering
methods instead of LSTM with the convNet, a more time-efficient deep pose estimation framework is
presented. It is worth pointing out that the focus in this study is to evaluate the precision and efficiency
of visual-inertial (VI) based localization approaches concerning indoor scenarios. The proposed deep global
localization is compared with the various state-of-the-art algorithms on indoor UAV datasets, simulation
environments and real-world drone experiments in terms of accuracy and time-efficiency. In addition, the
comparison of IMU-LSTM and IMU-Filter based pose estimators is also provided by a detailed analysis.
Experimental results show that the proposed filter-based approach combined with a DL approach has
promising performance in terms of accuracy and time efficiency in indoor localization of UAVs.

INDEX TERMS Global localization, pose estimation, recurrent convolutional neural networks,
bi-directional LSTM, VIO.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are capable of complet-
ing a wide range of applications, such as tracking, facility
inspection, supply distribution, mapping, etc. At the same
time, a precise estimation of the UAVs pose is essential to
ensure a high level of safety in autonomous operations. The
capability of an autonomous agent to accurately estimate its
pose is known as Localization in mobile robotics [1], [2] and
global localization is its ability to retrieve its global pose in a
known scene with prior knowledge [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

Among several localization methods available, the com-
munity has drawn considerable attention to camera-based
solutions [4] due to their low-cost, portability, simple hard-
ware set-up and ability to give rich information about the
scene. The technique is called Visual Odometry (VO) [5],
[6] when cameras are used to calculate odometry. With
the advances in computer vision, VO has been studied in
recent years with excellent results [5], [7]–[10]. For instance,
the ORB-SLAM [11] and the DSO [9], two members of
feature-based [11]–[13] and direct-based VO [9], [14], [15]
methods, respectively, achieve real-time output on CPUs
and are both extremely accurate in the normal large-scale
environment.
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A typical VO approach generally includes acquisition of
images, calibrating camera and correcting image, detecting
features, tracking features for optical flow, removing out-
lines and estimating motion by using obtained optical flow.
More advanced methods for VO and SLAM might include
some optimizing, bundle adjustment and loop closure. Even
though some advanced methods which utilize this workflow
demonstrate outstanding results with regard to robustness and
precision, they are typically hand-engineered, and for the
best performance, have to be manually fine tuned carefully
for every module in the pipeline. In addition, a full scale
needs to be approximated for the monocular camera based
localization by using additional or previous sensor informa-
tion, which makes it more susceptible to drift and complex
situations. Furthermore,monocular VO suffers from the diffi-
culty in initialization for slow motions [11], and the tracking
tends to fail miserably in unconstrained environments with
featureless places, low-light conditions, fast motions, pres-
ence of dynamic objects in the scene or other adverse factor
[16] such as the rolling shutter effect [17], [18] and camera
occlusion [19], [20].

Deep learning (DL) has recently dominated several visual
related areas with significant improvements, including clas-
sification [22], object detection [21], semantic segmentation
[23] and more. Following DL, the emergence of convo-
lutional neural networks (CNN) created alternate solutions
to VO which demonstrated both precise and robust com-
petitive performance [24]–[26]. The advent of CNN’s have
made VO issues more appealing by training DL networks
to learn feature extraction from data instead of using fea-
tures extracted by hand-engineered algorithms and descrip-
tors [24], [25]. However, depending only on the learned
visual features restricts the pose estimation to best operate
in the learned environment causing overfitting and seriously
prevents it from generalization to unseen or new environ-
ments. Therefore, the use of CNNs only are not adequate for
DL-based localization and It is important for the deep neural
networks to carry out sequential learning. The comparison
of the pipeline for VO based on features, density and DL is
shown in Figure 1.

In this work, the problem of global localization is dis-
cussed by proposing a sequential, end-to-end and multi-
modal deep neural network based monocular visual-inertial
global localization framework. In addition, this formulation
is more extended by providing additional benchmark infor-
mation by further comparison with traditional filter based
inertial measurement unit (IMU) data versus DL based long
short-term memory (LSTM). It is worth pointing out that
the focus in this study is to evaluate the precision and effi-
ciency of visual-inertial (VI) based localization approaches
with respect to indoor scenarios, by comparing visual iner-
tial odometry (VIO) algorithms, including direct-based and
feature-based and, in particular, data-driven-based algo-
rithms (DL approaches). The major contribution in particular
are:

• We demonstrate that using DL, it is possible to tackle
the monocular VIO problem by a novel framework that
can directly estimate the position of the camera with-
out having to know the absolute scale and parameters
beforehand.

• We propose a multimodal RNN architecture that allows
the DL-based global localization to be generalized to
unseen and new environments via the visual and tem-
poral feature extraction trained on CNN and LSTM.
It consists of one CNN model and two bidirectional
LSTM models for extracting visual features from raw
camera frames. The first model is used by the IMU
sensor to synchronize the arrays of acceleration and
angular velocity with camera frame sequences. The sec-
ond LSTM is used to derive the temporal characteristics
derived from features fusion of the previous two models.

• As an alternative to the smaller LSTM model, we will
then incorporate filter-based IMU processing methods
(Mahony, Madgwick, Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF)) and compare their
performances on our data-driven VIO.

• Finally, using the publicly available EuRoC MAV
dataset and simulation environment, we evaluate the
efficiency of our VIO system and compare it to
VIO baseline algorithms. The findings show that our
approach is significantly superior compared to the state-
of-the-art localization of UAVs, enhancing the accuracy.

The remainder of this paper is structured as follows:
Section 2 includes a summary of literature on motion esti-
mation, beginning with traditional methods, discussing visual
based SLAM and eventually highlighting some latest stud-
ies on DL. In Section 3, followed by experimental results
in Section 4, the end-to-end monocular VIO algorithm and
its baseline methods for processing IMU measurements are
described. Finally, the discussion, conclusion and poten-
tial directions for future investigations are provided in sec-
tions 5 and 6.

II. RELATED WORKS
Numerous methods have been suggested for pose estima-
tion in the literature. Early work on the monocular VO/VIO
is reviewed in this section, discussing some of the tech-
niques and frameworks developed to date to tackle this issue.
In terms of the methodology and system implemented, there
are primarily two types of VO/VIOs: traditional methods
which are based on geometry and data-driven methods which
are based on learning.

A. TRADITIONAL METHODS
VO is performed by evaluating instant camera motions over
consecutive frames, and accumulating them to obtain the
relative trajectory on a global reference frame. Generally, tra-
ditional VO/VIOmethods are divided into three distinct types
in the literature: direct-based, feature-based and hybrid-based
approaches.
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FIGURE 1. Feature-based, Direct-based and DL-based VO workflow.

Feature-based methods use a range of feature detectors
such as SURF (Speeded Up Robust Features) [27], FAST
(Features from Accelerated Segment Test) [28], SIFT (Scale-
Invariant Feature Transform) [29], ORB (Oriented FAST
and Rotated BRIEF) [30] and Harris and Stephens [31] to
detect key points. These features are then tracked in the next
sequential frame using a key point tracker resulting in optical
flow, the most common of which is the KLT tracker [32],
[33]. As suggested by Nister [34], the camera-parameters can
then be used to estimate the ego-motion. A broad variety of
work has been carried out on various techniques of VO/VIO,
including different camera setups [35], [36], configuration
of camera parameters and bundle adjustment methods to
optimize the pose [37]. In addition, Study in [38] pro-
posed a 1-point motion evaluation algorithm in 2011 that
leveraged the physical limitations to reduce the complexity
of the model. Kitt el al.’s other popular work, LIBVISO,
an open source VO evaluation library, has been published,
capable of estimating 6-DoF poses both in mono and stereo
camera configurations [39]. It is also an invaluable technique
to combine visual information with other complementary
sensorization [40], such as GPS or IMU data, as estimated
computation generally becomesmore robust. Kasik et al. sug-
gested another interesting method by using non-overlapping
cameras to mimic a stereo camera system [41]. Here, the
assumption is the monocular VO is estimated from each
camera and the stereo restriction is later enforced.

Direct-based methods rely heavily on the intensity of all
or parts of image pixels. For estimating the motion between
two images they utilize the photometric error optimization.
Such methods, however, include the assumption of flatness
(e.g. homography). Early direct SLAM approaches such
as [42] and [43] use filtering algorithms for SFM, while
non-linear minimum square estimates have been used for [44]
and [45]. Other methods, such as DTAM [46], evaluate the
dense depth map of each keyframe to align the entire image
to locate the camera pose. This is done by optimizing the
global energy function. Since this approach is computation-
intensive, a strong parallelization of the GPU is required. The
method referred to in [15] is proposed to alleviate this high
computational requirement. The LSD-SLAM algorithm has
also recently been introduced in order to achieve fast direct
monocular SLAM [14].More recently, the photometric defect
is optimized in the form of a sparse bundle modification in
a direct approach proposed in [9]. It removes the need for
geometric priors usually encoded with features by using all
picture points, also in the lesser textured areas, to estimate
egomotion.

Hybrid Methods combine both feature-based and
direct-based methods in order to further improve algorithmic
robustness to complex unstructured scenarios. Recently, they
are increasingly gaining more favour for the monocular
VO/VIO [15]. In [47], Scaramuzza et al. proposed a hybrid
approach to use feature-basedmethod as translation estimator
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and dense-based method as rotation estimator in plane sur-
face. Study in [10] proposed SVO, in which localizations
are optimized by reducing the reprojection defects of feature
adjustment. In combination with feature-based translation
factor and then refined via a Kalman filter, study in [48] pro-
poses the dense ego-motion estimation technique. This work
was then expanded to a completely dense stereo ego-motion
probabilistic system which increases the robustness to more
challenging environments [49].

B. DATA-DRIVEN METHODS
Although DL is only relatively recently applied in the field
of VO/VIO methods, much research has been devoted to
optimizing its field potential. In this respect, it can be catego-
rized as an ego-motion estimation that calculates the relative
motion between two consecutive images and the global local-
ization that concerns the global pose estimation of a robot in
a specified, prior-knowledge environment.

Ego-motion estimation is to predict the gradual motion of
a robot using sequential camera images. Konda and Memise-
vic [50] used a classification technique to pose estimation in
one of these earlier methods, using convNet with the softmax
layer to infer the ego-motion between two camera frames
labeled with discrete changes of direction and velocity.
In another approach suggested by Nicholai et al. [51], image
and LiDAR data are combined to estimate the ego-motion
between two inputs of the camera. They extract the point
cloud from the 2D image and input this data into a neural
network to obtain trajectory. The study in [52] used CNN to
extract visual features from dense optical flows and to esti-
mate sequential motion based on these visual characteristics.
However, these approaches still lacked the end-to-end ability
of pose estimation from images.

In order to tackle this issue, A Siamese and recurrent
neural network (RNN) based architecture was developed by
Mohanty et al. [53] to estimate the robot pose through a
layer of L2 loss with equivalent weights. In a related paper,
Melekhov et al. [54] apply a weighting concept to the loss
balance of pose parameters that improve the pose regression.
In addition, they have a framework with a pooling layer
that makes their method more robust to various image quali-
ties. Saputra et al. [55] includes geometrical loss restrictions
in order to increase consistency between multiple poses.
In addition, Xue et al. [56] implemented a memory module
for storing global information and a refinement module for
enhancing pose estimation. However, all of the ego-motion
approaches referred to above are supervised methods and
need ground truth labels of poses to train. At this time, it is
usually challenging and costly to acquire ground truth labels
in practice, which makes the number of currently labeled
training datasets somewhat limited.

In order to deal with these limitations, there has been a
growing interest in exploring unsupervised learning of VO.
Unsupervised methods can learn from unlabeled data, and
therefore save human labeling effort and have a greater capac-
ity to adapt and generalize in unseen environments, where no

labeled data are present. This is achieved in a self-supervised
architecture that uses view synthesis technique to learn both
depth and camera relative pose from video sequences [57].
However, this work suffers from scale ambiguity and sensi-
tivity to camera occlusions. In order to address these issues,
a number of works extended this framework to improve the
performance [58]–[66].

Considering that IMU is a low-cost, power efficient and
widely deployed sensor, it has opened its way in DL based
VOs. VINet [24] was the first work to articulate the sequential
learning issue of VIO and suggest a profound network archi-
tecture for end-to-end VIO. Chen et al. [67] suggested a sen-
sor fusion architecture that selectively learns context aware
representations for VIO. VIOLearner [68] obtains motion
estimations from raw inertial data without the inertial IMU
intrinsic parameters or the extrinsic calibration between IMU
and camera. In addition, DeepVIO [69] integrates IMU and
stereo camera data and is trained with a dedicated loss to
reconstruct relative poses on a global scale.

Global Localization is the extraction of a robot’s absolute
position in a known environment. The first work that used
convNets as an absolute camera pose regressor was PoseNet
[25] that worked in an end-to-end manner. This was then
expanded in [70] by using multi-view geometry to improve
PoseNet efficiency.Melekhov et al. [71] usedResNet34 in the
original pipeline and Walch et al. utilized LSTM for dimen-
sionality reduction [72] and some works have used synthetic
target image generation to augment training data [73]–[75].
Hunag et al. [76] and Wang et al. [77] have shown that
self-attention modules can greatly enhance localization accu-
racy and instruct the network in the complex environment
to ignore distracting information from foreground objects.
Clark et al. [26] integrated temporal constraints in addition to
spatial constraints to support temporal connections between
images. In addition, GPS information was used by [78] to
improve the accuracy of motion between the estimated poses.
Moreover, [79] and [80] joined global localization and rel-
ative pose estimation networks. Finally, [81] and [82] used
more information constraints such as semantics and com-
bining information with pose regressor networks to achieve
higher pose estimations.

Towards the DL based global localization approaches pre-
sented above, we propose a joint trainable multimodal frame-
work that simultaneously estimates the 6 DoF global pose
in an end-to-end manner. By jointly learning both features
from IMU measurements and camera frames and applying
two bi-directional LSTMs, our method is robust to con-
text mutation in the environment by utilizing past sensor
measurements, thereby merging the benefits of both LSTM
and ConvNet methods. Moreover, by integrating the tradi-
tional IMU measurement filtering methods instead of LSTM
with the CNNs we demonstrate a more time-efficient deep
pose estimation framework. Additionally, a comparison of
these methods is done on publicly available EuRoC dataset
and simulation environment to VIO benchmark algorithms.
Experimental results show that the proposed filter-based
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approach combined with a DL approach has promising per-
formance in terms of accuracy and time efficiency in indoor
localization of UAVs.

III. DEEP RCNN LOCALIZATION
The main objective of this architecture is to estimate the
global position accurately by minimizing the geometric con-
sistencies loss function. This problem is formulated in the
context of sequential, end-to-end, and multimodal training to
estimate the global pose information. The global localization
network exploits the outputs of CNN and LSTM in previous
layers to have more and better knowledge of the environment.
More specifically, the proposed neural network architecture
is three-fold; a convNet network, a small IMU integrator
bi-directional LSTM and global pose regressor bi-directional
LSTM network for pose estimation. An overall view of the
proposed architecture is shown in Figure 2.

Let’s suppose a sequential set of monocular RGB
images (. . . , It−1, It , It+1, . . .) and IMU measurements
(. . . , IMUt−1, IMUt , IMUt+1, . . .) are given, the network
predicts the global pose pt = [xt , qt ], where x ∈ R3

denotes the translation and q ∈ R4 denotes the rotation in
quaternion representation. The input to the CNN and small
LSTM streams are the image It and inertial measurement
IMUt , respectively, while the input to the global pose stream
is concatenation of features extracted by previous CNN and
LSTM networks. The deep RCNN network effectively learns
the following mapping, which converts image and IMU data
input sequences to global poses:

DeepRCNN : {(RW×H ,R6)1:T } → {(R7)1:T } (1)

where W × H is the width and height of the input camera
frames and 1 : T are the timesteps of the sequence. The rest of
this section presents the constituent parts of this architecture
and how the feature extractions and global localization are
performed.

A. VISUAL-CNN FEATURE EXTRACTOR
A convNet is implemented to extract visual features from
the monocular RGB image It and to make the process of
learning effective features suitable for the pose estimation
automated. Instead of providing an aspect or visual context,
the feature extraction is ideally geometrical, as there is a
need for pose estimation frameworks to be generalized and
applicable in environments not seen before. The Visual-CNN
feature extractor configuration is listed in Table 1.

It is based on the architecture of ResNet-50 and also optical
flow estimation network [83]. The ResNet50 is truncated
prior to the last average pooling layer and the softmax layers
are removed. A batch normalization and a rectified linear
unit (ReLU) follow each convolution layer. The average pool-
ing is then replaced by the global average pooling, which then
adds two fully connected layers (FC). The output of the final
convolutional layer is flattened and given as input to the first
FC layer. Finally vector zI of the visual features is obtained

TABLE 1. Visual-CNN feature extractor configuration.

TABLE 2. IMU-LSTM feature extractor configuration.

by the second FC layer.

zI = VisualCNN (RW×H ) (2)

Instead of preprocessed images or point clouds, the CNN
takes raw RGB images It as input, since the Visual-CNN
learns to extract optimal features for the pose estimation with
lower dimensionality. In addition to lowering the high level
of dimensionality in image of RGB in a compact vector,
these learned feature representations improve the sequential
training process. Therefore, for sequential modeling, the last
convolutional features are passed to the Full-LSTM.

B. IMU-LSTM FEATURE EXTRACTOR
In the problem of visual inertial pose estimation, there is a
challenge in processing the IMU measurements as they are
received at a higher rate (e.g. 100 - 300Hz) than camera frame
rate (e.g. 10 - 30 Hz). To handle this in the proposed net-
work, a small bi-directional LSTM inspired by [84] processes
batches of raw inertial data IMUt between continuous camera
data forming 6 dimensional vector and its corresponding
feature vector zIMU is given as output.

zIMU = IMULSTM (R6) (3)

Table 2 shows the configuration of the IMU-LSTM feature
extractor module. The IMU-LSTM takes a batch of raw iner-
tial measurements between two subsequent camera frames
in the form of IMUt = (αt , ωt ) ∈ R6, where αt ∈ R3 is
linear acceleration and ωt ∈ R3 is angular velocity. The IMU
module receives the same size of padded input in each time
frame. This processing module uses two sequential branches
consisting of one bi-directional LSTM and one FC layer. The
output feature vector of the FC layer is then carried over to
the Full-LSTM.

C. FULL-LSTM POSE REGRESSOR
The configuration of the Full-LSTM pose regressor is
presented in Table 3. The fundamental principle of pose
estimation demands modeling temporal dependencies to
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FIGURE 2. Architecture of the proposed Deep RCNN pose estimation system.

derive connections between sequential features. Hence, a bi-
directional Full-LSTM takes as input the concatenated feature
zt = concat(zI , zIMU ) together with its hidden previous
states ht−1. By leveraging hidden states present between
the sequences, LSTM utilizes the dynamics and temporal
relationship of the sequential inputs. After the Full-LSTM,
a fully connected layer serves as the pose estimator. It is
of dimension 7 for the regression of translation and rotation
in quaternion as x and q, respectively. Overall, the fully
connected layer transforms the vector representation zt of
features into a pose vector as follows:

xt = FullLSTM (zt , zht−1) (4)

D. LOSS FUNCTION
As for pose estimation, the translation and orientation of the
robot is estimated inspired byWang et al. [85]. Here, the pose
estimation is considered as a probabilistic problem. That is,
the set of sequential poses Xt , their corresponding sequence
of camera images It and IMU data IMUt up to to time t are
given as follows:

Xt = (x1, x2, . . . , xt ) (5)

TABLE 3. Full-LSTM global pose regressor configuration.

It = (i1, i2, . . . , it ) (6)

IMUt = (imu1, imu2, . . . , imut ) (7)

dt = (it , imut ) (8)

Dt = (d1, d2, . . . , dt ) (9)

Then

P(Xt | Dt ) = P(x1, x2, . . . , xt | d1, d2, . . . , dt ) (10)

It is possible to learn optimal weights θ∗ by optimizing
Equation 10.

θ∗ = argmaxP(Xt | Dt ; θ ) (11)
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The L2 norm of ground truth xt = (pt T , ωt T )T and its
estimate x̂t = (p̂t T , ω̂t T )T at time t based on MSE, can
therefore be reduced using

θ∗ = argmin
1
T

T∑
t=1

‖ p̂t − pt ‖22 +λ ‖ ω̂t − ωt ‖
2
2 (12)

where p and ω are translation and orientation along with ‖
· ‖ and λ representing the L2 distance and a scale factor to
balance the weights of translations and orientations. The ω
is represented in quaternions since the Euler representations
might face issues in the global coordinate frame.

E. IMU-FILTER
1) MAHONY
The Mahony filter [86] is a Complementary filter which esti-
mates the attitude, angle and orientation by fusing gyroscope
measurements with accelerometer measurements. To do this,
Mahony first computes orientation error from previous esti-
mates using accelerometer measurements.

et+1 = I ât+1 × v(I
q
t ) (13)

ei,t+1 = ei,t + et+11t (14)

where I ât+1 denotes the normalized accelerometer measure-
ments, v(Iqt ) is the orientation in quaternion and 1t is the
timestamp between t and t + 1. Next is to fuse and estimate
the orientation using incremental orientation between time t
and t + 1.

Iωt+1 = Iωt+1 + Kpet+1 + Kiei,t+1 (15)

1IWt+1 =
1
2
I Ŵt ⊗ [0, Iωt+1]

T (16)

IWt+1 = I Ŵt +1I
W
t+11t (17)

Here, Iωt+1 is updated gyro after fusion,1I
W
t+1 is orientation

increment from gyro measurements and IWt+1 is the estimated
orientation after integration of orientation increment.

2) MADGWICK
The Madgwick filter [87] also formulates the issue of ori-
entation estimation in a quaternion space and the idea is to
estimate IWt+1 fusing angular velocity and acceleration mea-
surement by gyroscope and accelerometers. First step is the
gradient step which computes orientation increment from
accelerometer measurements.

Iat+1 = −β
argminf (I Ŵt ,Wĝ, I

â
t+1)

‖ f (I Ŵt ,Wĝ, I
â
t+1) ‖

(18)

where Iat+1 denotes the attitude component from accelerom-

eter measurements, I Ŵt is orientation in quaternion, Wĝ is
normalized gravity and I ât+1 is the normalized accelerometer
measurements. Second step is to compute the orientation
increment from gyro and finally fuse it with accelerometer
measurements to obtain the estimated orientation.

1Iωt+1 =
1
2
I Ŵt ⊗ [0, Iωt+1]

T (19)

1IWt+1 = 1I
ω
t+1 + I

a
t+1 (20)

IWt+1 = I Ŵt +1I
W
t+11t (21)

Here,1Iωt+1 is the gyro orientation increment,1IWt+1 is the
fused orientation increment of gyro and accelerometer and
IWt+1 is the estimated orientation.

3) EKF
Real life system dynamics and observation models are rarely
globally linear. However, they are often approximated well as
linear functions locally. In order to linearize these functions
the Taylor Expansion and Jacobians could be used and the
EKF uses them to linearize the KF system. Here, the prior
p(x0) is a Gaussian distribution (i. e. p(x0) ∼ N (µ0, 60))
where x = [qw qx qy qz ωx ωy ωz] is a state vector of 7 states
to estimate the attitude. The continuous time process model
x̂ = f (x, u, n) is non-linear with additive white Gaussian
Noise Qt . The observation model h(x, v) is non-linear with
additive white Gaussian Noise Rt .

The linearization of dynamics model and observation
model are done by

xt+1 ≈ f (xt , t)+ Qt (22)

zt ≈ h(xt , t)+ Rt (23)

After initializing the state vector x̂−0 and state covariance
P−0 matrices, the Kalman gain matrix is computed

Kt = P−t H
T
t [HtP

−
t H

T
t + Rt ]

−1 (24)

whereHt ≈ ϑh
ϑx |x=x̂−t

. Next is to calculate the state correction
vector and update state vector by

x̂t = x̂−t + Kt [zt − ẑ
−
t ], with ẑ−t = h(x̂−t , t) (25)

And the error covariance is update by

Pt = [I − KtHt ]P−t (26)

The prediction of new state vector and state covariance
vector matrices are done using

x̂−t+1 = f (x̂t , t) (27)

P−t+1 = 8tPt8T
t + Qt (28)

where 8t =
ϑ ft
ϑx |x=x̂−t

.

4) UKF
The UKF used here is inspired by [88] that processes the
estimated state and covariance matrix by the actual system
dynamics. Just like EKF, nonlinear processes are managed by
this method. The filter begins by initializing with a process
noise Q, measurement noise R and a covariance P the same
as the EKF. However, upon this step the disturbances are cal-
culated from the covariance process noise using the Cholesky
Decomposition. We have a state vector of 7 states to estimate
the attitude.

x = [qw qx qy qz ωx ωy ωz]T (29)

10060 VOLUME 9, 2021



A. Yusefi et al.: LSTM and Filter Based Comparison Analysis for Indoor Global Localization in UAVs

The Kalman gain could be computed by:

K = PxzP−1vv (30)

where, Pxz and Pvv denote cross correlation matrix and inno-
vation covariance. For the details on the calculation of these
two variables referring to reference paper [88] is suggested.

With the Kalman gain computed, the state estimate and the
state covariance can be updated as follows.

Pt+1 = P̂t − KPvvKT (31)

x̂t+1 = x̂t + K (ẑ− Z̄ ) (32)

where, Pt+1 denotes updated covariance, P̂t is the estimated
covariance, x̂t+1 is the updated state, x̂t is the estimated
state, ẑ is the measurement readings and Z̄ is the estimated
measurement readings.

IV. EXPERIMENTATION AND RESULTS
In this section, the performance of proposed Deep RCNN
for global localization is evaluated and compared with the
various popular and recent approaches developed for posi-
tion estimation of UAVs in terms of computation time and
position precision. Moreover, a comparison of IMU-LSTM
and IMU-Filter based pose estimators are also presented by
detailed analysis.

A. DATASET
EuRoC Dataset: EuRoC dataset [89] is frequently used in
evaluating VIO algorithms and is shared publicly by ETH.
The dataset is collected by flying a UAV in two completely
different envrionments and contains 11 sequences of Cam-
era, IMU and LiDAR ground truth data. It comprises the
synchronized stereo grayscale frames and IMU information
with corresponding trajectory ground truth having frame rates
of 20Hz, 200Hz and 100Hz respectively. Position ground
truth values were measured with a Leica MS50 laser tracker
and Vicon motion capture system. In addition, the database
is categorized in three levels in terms of difficulty. These
levels are easy, medium and difficult which are classified
based on the image brightness level, image blurring, flight
motion speed, etc. Such categorization of dataset lets the
VIO algorithms deal with different challenges and therefore
creation of better VIO methods. The Vicon Room dataset
containing 6 sequences (V1_01-03, V2_01-03) at different
levels of difficulty were used in this paper.
Simulation Dataset: For collecting simulation dataset, the

Gazebo [90], an open-source library designed to simulate the
real world, is used. It can be used as a plugin to Robotic
Operating System (ROS) [91] and simulate environments
compatible to it. We collect training data in the virtual
environment retrieved from the ROS. Figure 3 shows the
simulation environment and its 2D grid map obtained by
Hokuyo UTM-30LX installed on a Turtlebot 3 Waffle Pi
along with sample camera views of Tello UAV. The UAV
collects all the information in the simulation environment,
which randomly flies and lands at constant speed indoors.

FIGURE 3. Simulation environment, its 2D grid map and sample camera
views of Tello UAV.

It collects the timestamped ground truth position of UAV in
dimension of R3 and orientation in dimension of R4 at the rate
of 300Hz. The IMU and camera sensors data were collected at
the rate of 300Hz and 30Hz, respectively. The preprocessing
and synchronization of ground-truth and sensors data were
then performed. With the required pose measurements from
the data collected in simulation, the RGB camera frames were
labeled accordingly. Lastly, in order to minimize processing
costs, the image resolutions were reduced to 640 x 480.
Real-World Experiment: In order to better evaluate the

performance of the proposed Deep RCNN architecture on
the global pose estimation, a real-world experiment was per-
formed using the DJI Tello drone in an indoor laboratory
environment. The training dataset was collected from a 20 x
15-meter sized laboratory containing different objects (e. g.,
chairs, tables, computers, ground and aerial robots, etc.),
making the environment textured. All implementations were
done on the ROS framework using the python programming
language. Since the Tello is a low-cost drone with minimal
processing power, it was only used to collect monocular
images, IMU measurements, and ground truth poses. The
main pose estimation process was performed on a remote
processing unit connected to the Tello drone via the wireless
connection. The drone sends real-time information to the
remote processing unit through topics published by ROS
packages and receives the control commands the same way
vice versa.

During the data collection, it was observed that the real
drone experiment differs from simulation and other datasets
in at least two ways. An issue faced during the experiment
was the asynchronous data collection. The fact that the visual
data received from the Tello drone was in h264 compressed
video format made the data synchronization difficult. In order
to handle this issue, a real-time encoder was implemented fol-
lowed by an interpolation technique to synchronize the visual,
IMU, and ground truth information into a 30Hz frame rate.
The second difference from the simulation environment was
the quality of the Tello drone’s visual information. Since the
data are encoded from h264 compressed videos and collected
through a wireless connection, the visual data faced quality
degradation, as shown in Figure 4. However, as demonstrated
in section 4.4.3, the proposed Deep RCNN architecture was
capable of handling the degraded visual data without a severe
negative effect on the global pose estimation performance.
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FIGURE 4. DJI Tello drone and its sample degraded images collected from
laboratory.

B. NETWORK TRAINING
All the demonstrated experiments were carried out on an
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz processor
system loaded with 16 GB DDR3 RAM and NVIDIA
GeForce GTX 1660Ti GPU. To evaluate the pose estima-
tion learning process and GPU implementations, the Ten-
sorflow framework [92], developed by Google Brain team.
The entire data preprocessing was implemented in Python,
using relevant libraries compatible with the python bindings
of Tensorflow.

In order to obtain best features frommonocular images, the
transfer learning technique is used in CNN feature extractor
module of proposed deep pose estimator. Here, the ResNet50
model is used with the last classification layer removed as
explained in section 3.1. Since the ResNet50 accepts input
images of size 224×224×3, the images have been downsized
accordingly. The full network is trained for 100 epochs using
a batch size of 64 which took on average 3 hours per dataset.
The ADAM [93] is used as the optimization function with
learning rate = 1e − 4, decay = le−4

200 and error function of
mean absolute error (MAE).

Figure 5 demonstrates the training and validation loss
and accuracy for EuRoC sequence V1_02_medium using
five different setups of Deep RCNN: red curve depicts the
training accuracy and loss of Deep RCNN localization with
IMU-LSTM only, blue curve is the accuracy and loss trained
with Mahony, purple is the accuracy and loss trained with
Madgwick, gray and yellow curves are the accuracy and loss
of VIO trained with EKF and UKF respectively. It can be
observed that the convergence of the network on the training
set is the same for all network forms. However, in the vali-
dation set the convergence of accuracy is faster for EKF and
UKF compared to other forms of network. For the validation
loss graph the UKF andMahony have the faster convergence.
It is worth noting that the LSTM form of the network has the

FIGURE 5. Comparison of training and validation accuracy (top) and
loss (bottom) using five forms of network on sequence V1_02_medium of
EuRoC dataset.

medium performance on both validation accuracy and loss
graphs.

C. EVALUATION METRIC
In order to assess the performance of proposed global local-
ization framework, the root mean square error (RMSE) of the
translation and rotations are calculated and comparedwith the
popular standard and deep methods in [94]–[105]. In other
terms, errors in position and orientation along the whole
trajectory were calculated and compared with ground truth.
For regression problems, the RMSE calculated the standard
deviation of the difference between predicted and ground
truth values

RMSE =

√∑I
i=1(x̂i − xi)2

n
(33)

where x is the ground truth and x̂ is the predicted value.
Moreover, to quantitatively evaluate the effects of filter

based methods compared to IMU-LSTM on the performance
of pose estimation, the time taken to process each frame in
end-to-end pose estimation is considered as the metric.

D. COMPARISON OF IMU-LSTM AND IMU-FILTER
In order to quantify the performance of Deep RCNN based
position estimators, we first compare the IMU-LSTM based
setup with filter based (Mahony, Madgwick, EKF, UKF)
ones.We compare these setups in terms of position estimation
accuracy and time-efficiency on both simulation and public
EuRoC datasets.

1) SIMULATION
In the simulation environment, the 3D ground truth motion
carried by Tello is shown in Figure 6. It consists of a
total of 2432 camera frames and 24320 IMU measurements.
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FIGURE 6. Ground Truth Trajectory for the tested simulation environment.

FIGURE 7. Comparison result of IMU-LSTM based and IMU-Filter based
position estimation setup on simulation environment.

As seen in this figure, the trajectory during the orientation
change is very sharp-edged which makes the learning state
estimation procedure somehow difficult for the network.

In Figure 7, the comparison result of Deep RCNN based
position estimation framework with different network setups
on the simulation dataset is given. Here, it is observed that
the IMU-LSTM setup has the better performance in terms
of accuracy compared to filter based alternatives. However,
it does not perform as fast as filter based methods. In terms
of time-efficiency, the filter based methods have better per-
formance and specifically the EKF setup has the best perfor-
mance followed by UKF.

2) EuRoC
In this section, the results of IMU-LSTM setup of Deep
RCNN based position estimation framework is presented
in comparison to the filter-based Deep RCNN position
estimators. The experiments are performed on the EuRoC
dataset using three challenging categories of sequences (easy,
medium, difficult). In the training process, the dataset was
split into two sets of testing and training. The train and test
datasets contained 75% and 25% of each sequence respec-
tively. For the ease of model understanding, we first tested
each of our transfer learning and LSTM models separately

FIGURE 8. The IMU-LSTM sub-model’s results on the sequence V1_01 of
EuRoC dataset.

on images and IMU data on the datasets. The ResNet50 was
able to extract sufficient features from the images. The LSTM
model also was able to predict the next IMU measurements
in a normalized manner which made the training process and
the pose prediction more stable.

Figure 8 shows the IMU-LSTM sub-model’s results on the
sequence V1_01 of EuRoC dataset. Here, the gyroscope and
accelerometer measurements are each represented in 3 axises
by (wx, wy, wz) and (ax, ay, az), respectively. The orange
curve depicts the biased IMU measurements and the blue
curve represents the filtered IMU measurements obtained
by the IMU-LSTM sub-model. The results indicate that
the IMU-LSTM sub-model provides normalized IMU data
values by considering the temporal dependencies between
IMU measurements. This normalization process helps to
handle the IMU noises available in the measurements. The
best-estimated values are observed in the gyroscope measure-
ments, where the predicted values are better normalized and
estimated. In the accelerometer measurements, the impact is
less compared to the gyroscope due to the accelerometer′s
high vibration noise. These normalized values are then used
as IMU input to the IMU-LSTM setup of Deep RCNN net-
work to estimate the global pose of the robot.

In Figure 9, the qualitative comparison of 3D trajectories
obtained from IMU-LSTM, IMU-Mahony, IMU-Madgwick,
IMU-EKF and IMU-UKF setup of Deep RCNN based
pose estimation architecture on the EuRoC dataset’s V1_02
sequence. All the 5 setups can deliver fairly good results
on both sequences despite their difficulty levels where
V1_03_difficult contained frames with more illumination
inconsistencies and motion speed causing blurry images.

3) REAL-WORLD EXPERIMENT
This experiment was conducted on the known laboratory
environment mentioned in section 4.1, with data segregated
into training and testing sequences in 75% and 25% ratios,
similar to the other experiments mentioned above. As shown
in Table 5, the performance comparison was performed
among five different setups of Deep RCNN for global local-
ization in terms of time efficiency and RMSE. The results
demonstrate that similar to simulation and EuRoC experi-
ments, the IMU-LSTM setup of the network performs better
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TABLE 4. Comparison result of IMU-LSTM based and IMU-Filter based position estimation setups on EuRoC dataset. The upper part shows the
comparison of 5 setups of deep RCNN based global pose estimators in terms of time taken in milliseconds to process each frame and its corresponding
IMU measurements. The results demonstrate that the IMU-Filter setups outperform IMU-LSTM one on all sequences. The time difference among
IMU-Filter setups are minor compared to IMU-LSTM setup. The lower part of the table shows their pose estimation accuracy comparison in terms of RMSE
and the results show that the IMU-LSTM setup has better performance compared to IMU-Filter on all sequences except V1_02 and V1_03. In these two
sequences the IMU-EKF and IMU-UKF alternative setups have achieved better accuracy compared to IMU-LSTM setup.

FIGURE 9. Trajectory Comparison of IMU-LSTM based and IMU-Filter based position estimation setups on EuRoC sequences V1_02 (top) and V1_03
(bottom) (Left to Right: LSTM, Mahony, Madgwick, EKF, UKF).

TABLE 5. Comparison result of IMU-LSTM based and IMU-Filter based
position estimation setups on real-time experiment.

in terms of accuracy, with the cost of being slower in process-
ing frames compared to its filter-based alternatives.

To analyze the localization performance qualitatively
concerning the tested environment, we present a trajectory
visualization that shows the pose estimate obtained from five
different setups of the Deep RCNN framework compared to
the ground truth. Figure 10 displays the results of this exper-
iment. The predicted poses are shown as a blue trajectory,
and the ground truth poses are shown as an orange trajectory.

This displays that all five setups’ performances are compara-
ble to each other with minor accuracy difference even with
the presence of degraded monocular images, as shown in
Figure 4. The IMU-LSTM setup demonstrated the minimum
error rate, and the IMU-Mahony has the highest error rate
compared to other setups.

E. COMPARISON TO LITERATURE
In order to show an empirical comparison to the closest
related methods in the literature, we compare our approach to
a selection of state-of-the-art traditional and learning based
VO, VIO, and V-SLAM methods [94]–[105]. The tradi-
tional methods include SVOMSF [95], MSCKF [96], OKVIS
[97], ROVIO [98], VINSMONO [99], VINSMONO+LC
[100], SVOGTSAM [101], ORBSLAM2 [12], STCM-SLAM
[102] and learning based are SelfVIO [103], Kimera [104]
and methods proposed by Baldini et al. [94] and Li and
Steven [105]. The dataset used for this evaluation is EuRoC’s
V1_01-03, V2_01-03 sequences.
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FIGURE 10. Trajectory Comparison of IMU-LSTM based and IMU-Filter based position estimation setups on real-world experiment (Left to Right:
LSTM, Mahony, Madgwick, EKF, UKF).

TABLE 6. Comparative results for EuRoC (V1_01-03, V2_01-03) sequences.

Table 6 shows the comparative results for these sequences.
It is observed that the proposed architecture consistently out-
performs existing methods for all sequences in terms of pose
estimation accuracy. In particular, the highest improvement
was obtained in the more difficult and challenging sequences
that contain textureless and blurred camera frames. As illus-
trated, traditional methods handle high quality and feature-
ful images, but fail with full sensor degradation and image
occlusions due to their geometrical algorithm limitations and
not benefiting from temporal information. From the observed
results, the inference is that conventional visual-based pose
estimation methods are not an appropriate approach for local-
ization in the presence of occluded or textureless visual data
and when the IMU measurements are not tightly synchro-
nized. In addition, the estimation accuracy of the proposed
architecture is superior to the learning based methods listed
in Table 6. It is worth noting that, proposed method is able
to take the temporal constraints into account that helps it to
generalize for unseen scenarios to some extent.

F. ABLATION STUDY
In order to demonstrate the effectiveness of each module and
the overall architecture of Deep RCNN, we evaluate various
setups of our method on the EuRoC dataset, simulation envi-
ronment, and real-world experiment in the ablation section.
Figures 7-10 and tables 4-6 display the best performance
results in bold and the second-best in underlined.

First, we evaluate our method on pose estimation of a
drone in a simulation environment (section 4.4.1). It includes
training the Deep RCNN network using five different setups

on the dataset collected from the simulation environment and
testing the trained model to pose estimation of a drone in the
same simulation environment. It can be seen from Figure 7,
even though the simulation environment has many similar
or no wall textures (where traditional geometric methods
struggle to deal with feature extraction and matching), our
network setups still show considerably high accuracy with
fairly low processing cost. The results also indicate that the
IMU-LSTM setup can benefit from temporal features of IMU
and therefore reduce RMSE error compared to its filter-based
alternatives. On the other hand, the filter-based methods
reduce the time taken to process each frame with the cost of
increasing the RMSE compared to their LSTM alternative.

Second, we compare our Deep RCNN architecture’s
efficiency on a common indoor benchmark dataset called
EuRoC. Since this dataset contains three different difficulty
levels, our focus was to test our architecture in dealing
with more challenging visual data like blurred images and
high-speed velocity changes. The results are depicted in
Table 4 and Figure 9. It can be seen that, although the dataset
contained very blurred images and in situations where the
visual data brightness are overexposed or very low, the Deep
RCNN network is able to reduce RMSE error to some extent,
indicating that it is capable of dealing with high motion
speeds in various illuminations. In comparing five network
setups, the general outcome of the simulation environment
holds here too, where the IMU-LSTM utilizes the temporal
dependency in IMU data and thus has better RMSE compared
to filter-based setups. However, the filter-based methods per-
form better in the case of time-efficiency.
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Finally, to study the effect of Deep RCNN architecture
on the real-time global localization of a UAV, a real-world
experiment was performed using a DJI Tello drone in an
indoor laboratory environment. In this experiment, it was
observed that the data received from the drone depends on
the UAV components’ quality and the connection between
the UAV and the remote processing unit. For instance, in the
experiment, the DJI Tello drone’s data was highly desynchro-
nized, and the visual data was degraded (Figure 4). However,
as demonstrated in Table 5 and Figure 10, the results show
that this visual degradation does not negatively impact the
accuracy and the Deep RCNN architecture is capable of han-
dling it. In addition, compared with filter-based setups, the
IMU-LSTM version provides a further boost to the pose esti-
mation accuracy. Asmentioned in the previous paragraph, the
reason is that IMU-LSTM integrates temporal correlations
and previous experience over window sequences between
IMU measurements. Besides, filter-based setups tend to per-
form better than IMU-LSTM in time-efficiency. The per-
formance difference among filter-based setups themselves
changed for various tests and was negligible.

V. DISCUSSION AND FUTURE WORK
The proposed method demonstrates competitive performance
on the EuRoC dataset and simulation environment. From
the results, it can be observed that the proposed method
works significantly better than its camera-only or IMU-only
traditional and learning based alternative methods. Fusing
visual information with inertial measurements positively
affects the performance of the DL based pose estimation by
adding historic knowledge lying in IMU data hence signif-
icantly improving position estimations. This indicates that
these kinds of DL based VIO architectures can be tested on
real-time robotic platforms.

Observing the results, it is apparent that the more the
network knows about a specific scene, the better it gets to
estimate position. However, this could lead to the problem of
overfitting and the trained model lacking the generalization
capability. Moreover, the additional downside of supervised
DL methods is the need for ground truth labels and the fact
that data need to be trained for all scenarios of challenges (e.g.
different weather and environment dynamicity). In case the
training data does not hold the latter condition, the resulting
trained model will lack the generalization characteristic and
will not be usable in real world applications.

Some approaches in order to tackle these issues and
develop a robust and powerful DL based pose estimation or
SLAM systems could be:

• More sensor data and better fusion algorithms: Beyond
the camera and IMU sensors, the use of information
from other sensors such as LiDAR, thermal camera,
mmwave device and Radar may let the DL based
localization systems to have more accurate and robust
estimations particularly in harsh weather or low-light
situations. Moreover, the fusion of these sensor data is

a way to research. Not many DL-based pose estimation
studies have focused on sensor fusion algorithms in
DL-based systems. Therefore, the use of multimodal
sensors and enhanced fusion algorithms has the potential
to produce more robust systems.

• Unsupervised/Adaptive Learning: Using unsuper-
vised/adaptive learning methods could boost the perfor-
mance of DL based methods by eliminating the need for
large amounts of training data. Such methods allow DL
methods to generalize and adapt to unseen and dynamic
environments by predicting poses or scenes.

• Semantic information: The semantic information present
in the camera images could enhance DL based
approaches by incorporating more understanding of the
environment and more semantic reasoning. This knowl-
edge led the device to detect the objects surrounding the
robot and to make localization decisions based on that
information. Such information can also help the robot
navigate by providing more information to the control
commands.

• Hybrid systems: combining the advantages of DL based
methods and traditional methods may lead to a hybrid
system. The robust feature detection ability of DL com-
bined with loop closing and efficient optimization capa-
bilities of traditional methods could improve the pose
estimation and SLAM systems.

VI. CONCLUSION
In this study, a sequential, end-to-end, and multimodal DL
based monocular visual-inertial localization system is pro-
posed to resolve the problem of global pose regression for
UAV in indoor scenarios. In addition a filter based IMU alter-
native to IMU-LSTM is provided to enhance the computa-
tion efficiency without degrading the accuracy. The proposed
deep global positioning is compared in terms of accuracywith
various state-of-the-art algorithms for public EuRoC dataset
and simulation environments. Furthermore, a thorough com-
parison of Filter based and LSTMbased deepRCNNhas been
carried out in terms of accuracy and time-efficiency. Experi-
mental findings demonstrate a high degree of time efficiency
and promising accuracy in UAVs indoor localization with the
proposed filter based deep RCNN.
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