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 Persistent, unchanging, and non-reactive focal or generalized abnormal Slow Wave (SW) 

activities in an awake adult patient are examined pathologically. Although these waves in 

Electroencephalogram (EEG) are much less prominent than transient activities in some 

areas, it is not possible to understand them easily by looking at the EEG. For this reason, 

reliable computer programs that can sort out Slow Waves (SWs) correctly are needed. In 

this study, a new method based on MinPeakProminence that can detect abnormal SW 

activities was developed. To test the performance of the study, the data collected from 

Selcuk University Hospital (22 subjects - epilepsy and various neurological diseases) and 

Bonn Hospital (only normal A dataset) were used. Various statistical performance 

measurement methods were used to search the results. The results of this analysis revealed 

that the classification success, sensitivity and specificity values obtained with the SUH 

dataset were 96.5%, 93.3% and 96.1%, respectively. In the results of the experiments made 

with the Bonn dataset, 100% classification success was achieved. Besides, according to the 

analyses, it was found that SWs are frequently seen in the posterior regions of the brain, 

especially in the parietal and occipital regions in the SUH dataset. 
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1. INTRODUCTION 

 

Electroencephalography (EEG) is a technique where the 

electrical activities of the brain are recorded and it has an 

important place in the diagnosis of neurological diseases. With 

the developments in signal processing studies in recent years, 

it is possible to reveal the hidden and important signals in EEG. 

For example, changes in amplitude and frequency in 

background activities may indicate a lesion. In addition, 

epileptiform activities determined in the EEG signal also 

contribute greatly to the diagnosis of epilepsy [1]. 

Epilepsy is a chronic neurological disease that occurs as a 

result of abnormal and excessive electrical discharge in 

cortical neurons and the essential syndrome which is 

characterized by recurrent epileptic seizures [2].  

In the most common definition made by the International 

League Against Epilepsy (ILAE), epilepsy is a transient 

functional disorder of the central nervous system caused by 

excessive and synchronous abnormal neuronal activity in the 

cortex [3-7]. This neurological disease, which occurs as a 

consequence of recurrent seizures, negatively influences 

around 1% of the world population [8]. Even with the use of 

various medications and surgical treatment, seizures cannot be 

controlled in more than 25% of epilepsy patients. Due to the 

incapability to detect the occurrence of seizures in advance, 

sudden and unexpected deaths occur in some patients with this 

disease or the risk of morbidity increases [9]. 

The World Health Organization (WHO) reports that about 

50 million people worldwide have epileptic seizures, 

according to epidemiological data. It was revealed in a recent 

study that epilepsy is one of the severest disorders among 

neurological diseases [10]. 

It is known that epilepsy is the most common in childhood 

and adolescence, and the second most common after 

cerebrovascular diseases in adults. In spite of its widespread 

prevalence, various difficulties are encountered in establishing 

the definitive diagnosis of epilepsy, especially in 

distinguishing it from psychogenic seizures. To eliminate 

these difficulties and to obtain more precise and clear results, 

Video-EEG imaging (VEEG) method is used. However, this 

imaging technique, a gold standard in the differentiation of 

non-epileptic seizures and epilepsy, has a limited use because 

of the difficulties faced in its application and its high cost. Due 

to these reasons, this technique is often preferred to be used in 

situations where a decision cannot be made with anamnesis, 

clinical examination, and EEG [11].  

Before starting EEG, an EEG procedure suitable for the 

patient should be selected, taking into account their clinical 

information. The recorded signals should be carefully 

examined and interpreted because spikes or other recorded 

abnormalities that have been observed contain useful 

information in diagnosis and treatment [12]. Despite the 

advances in technology, the EEG recordings are mostly 

interpreted manually. Manual review/examination of EEG 

recordings of 20-30 minutes or even hours takes quite a long 

time [13, 14]. To make a faster and more accurate diagnosis, 

various signal processing algorithms and computer programs 

have been developed in recent years [15]. In studies regarding 

automated EEG analysis, seizures, spikes, and sharp waves, 

mostly indicative of epileptic activity, were examined [13, 14]. 

Focal slow waves in the delta and theta frequency range are 

often evaluated as psychopathological. Therefore, such waves 
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with high amplitude and low frequency activity are very 

important in the electroencephalogram. Wienbruch et al. 

aimed to detect focal slow wave activities. In their study, they 

compared the records of the patients diagnosed with 

schizophrenia and affective disorder with normal records [16]. 

In another study, a method was developed for detecting Slow 

Wave Sleep (SWS) on an automatic single channel in sleep 

EEG. With this study, the uncertainty caused by individual 

differences was minimized, and the effects of the SWS ratio 

on the effectiveness of sleep staging were investigated [17]. 

On the other hand, there has not been sufficient number of 

studies on the analysis of slow-waves since they vary more 

greatly than the morphology of sharp transients [18]. However, 

Slow Waves (SWs) are as important as spikes in both clinical 

diagnosis and automatic detection [19]. For this reason, in this 

study, a new MinPeakProminence-based (MPP) method has 

been developed for the detection of Slow Wave (SW), which 

is an indicative of EEG anomaly. The aim of this method is to 

determine the relationship of SW activities with epilepsy and 

other neurological diseases and to detect which regions of the 

brain are frequently seen (focal, lateralized, and generalized). 

Consequently, in this study, a new MPP-based method has 

been generated for the detection of SWs, which is the sign of 

EEG anomaly. With this method, it is intended to find out the 

relevance of SW activities with epilepsy and other 

neurological diseases and to locate which regions of the brain 

are commonly seen (focal, lateralized, generalized). 

The other parts of this paper are organized as follows. In 

Section II, the methods that form the basis of the whole study 

and the datasets used are mentioned. The experimental results 

obtained with the performed method are discussed in Section 

III. Finally, Section IV presents a brief summary of the study 

and the scope of future research. 

 

 

2. METHODOLOGY 

 

2.1 Electroencephalography (EEG) 

 

 
 

Figure 1. EEG electrode placements and polarity scheme. 

The signal sample taken from the electrode pairs formed by 

bipolar EEG recording of a subject in the Selcuk University 

Hospital (SUH) dataset is shown (Scale 50 on EEGLab) 

 

The method of recording brain waves from the human scalp 

is called EEG. The interpretation of the signals obtained by 

this method is quite significant for diagnosis [20]. Especially 

the conditions that cause epileptic disorders are accurately 

determined with the correct analysis of EEG signals (EEGs) 

[8]. Since EEG, which is used especially in the diagnosis of 

epilepsy, is a non-invasive and inexpensive method, it is 

currently used as the most frequently used method in diagnosis 

and treatment guidance. The diagnosis is made mainly by 

detecting marked asymmetry or slowing of the ground activity 

and epileptiform discharges (spike, sharp and spike-wave 

discharges) in the patient whose EEG record has been taken. 

Moreover, many epileptic patients can constantly show normal 

EEG findings in the interictal period. As it is hard to detect 

seizures with low frequency in ictal period with EEG 

recording, it is often not helpful in diagnosis in such cases. 

However, EEG is quite beneficial for the evaluation of focal 

or dynamic cerebral function thanks to its precise temporal 

sensitivity [21-24].  

Vertical areas show stresses and horizontal areas show the 

time in a standard EEG. In this way, an almost real-time image 

of cerebral activity is obtained (Figure 1). 

 

2.2 EEG placement/montages 

 

Selecting the proper EEG montage is quite significant for 

diagnosis as it reveals rhythm indicative of anomalies [25]. 

There are two types of EEG recordings, depending on the 

way the signal is received from the head (from the scalp or 

intracranial). Electrodes that provide electrical contact in the 

type of recording taken from the scalp are placed on the scalp. 

In intracranial EEG, private electrodes are implanted in the 

brain by surgical operation. 

Electrodes are adjoined to the scalp according to the 

International 10/20 Electrode placement system in a standard 

EEG recording taken from the scalp. This placement system is 

essentially based on the distances between the marks 

indicating bony parts on the head. Then, the electrodes are 

placed at intervals between 10 and 20 percent of the total 

length of these lines. Each electrode position is identified by a 

letter and a given number. The letters (Fp, frontopolar; F, 

frontal; C, central; T, temporal; P, parietal; O, occipital, 

lower case "z", midline position of the scalp) indicate the 

position of the electrode on the head, and the numbers 

(electrodes in the left hemisphere are indicated by odd 

numbers, and electrodes in the right hemisphere as even 

numbers) indicate the brain hemisphere (Figure 2). This 

method enables the signals received from the same parts of the 

patients with different head sizes to be recorded in a standard 

way. On the other hand, the 10/20 system can be divided into 

smaller proportional distances to ensure a more precise 

recording of electrical activity. 

 

 
(a) 

 
(b) 

 

Figure 2. International 10/20 electrode placements in a 

bipolar montage (a) Side view (b) Top view [26] 
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After making the necessary calibration settings and 

determining the correct display of EEG recording, the EEG 

montage should be continued. Although there are many 

different types of montages used for EEG, they are roughly 

divided into two groups: monopolar and bipolar recording. In 

monopolar montages, each electrode is connected to a single 

reference point. This reference can be another electrode on the 

scalp or a mathematical combination of signals like a 

mathematical average reference. The bipolar montages consist 

of electrode chains connected to one or two adjacent electrodes. 

Another type of montage used for the evaluation of epilepsy is 

the Laplacian or source derivation montage in which each 

active recording electrode is compared to the mathematical 

weighted average of the surrounding electrodes. With the 

combined use of these montage techniques stated above, all 

abnormalities in EEG are rather beneficial not only as a 

reflection of the signal imaging method, but also for 

determining pathological conditions [27]. 

 

2.3 EEG frequency bands and waveforms 

 

Another vital issue to be considered in EEG recording is 

waveforms and frequency bandwidths. These waveforms and 

predominant frequencies (e.g., alert wakefulness, drowsiness, 

sleep), varying from patient to patient, are of great importance 

as they contain findings for the detection of the disease. 

Characteristics such as frequency/wavelength, 

voltage/amplitude, and waveform, eye blinking reactivity, 

hyperventilation and photic stimulation should be considered 

in the visual examination of EEG recordings. It is also 

necessary to define the spatial range (local or generalized, 

unilateral or bilateral) and temporal persistence (sporadic and 

short or long and persistent) of abnormalities [8]. 

Changes in EEG rhythms are associated with transient 

activities such as spike waves, multiple spikes and sharp 

waves. However, the main point here is the changes in the 

amplitude and frequency of the EEG rhythms [28]. Recent 

researches have shown that more accurate information can be 

obtained from EEG basic rhythms about neuronal activities 

such as various brain functioning and pathology states [10, 29]. 

Therefore, a detailed description of the waveforms and 

frequency bandwidths of the basic EEG waves is given in 

Table 1 [30-32]. 

Even though EEG includes a wide variety of frequency 

components, the range of clinical and physiological concern is 

between 0.3 and 30 Hz.  

The typical frequency ranges of sudden waves, sharp waves 

and SWs that are especially associated with cognitive 

processes in decision making and attention processes are 13.5–

50 Hz, 5–12.5 Hz, and 0.5–4 Hz, respectively [33-36]. 

 

2.4 Slow wave activity 

 

The most critical anomalies considered in epilepsy are spike 

waves, sharp waves, and short transient waves called spike 

wave complexes. These waveforms can take place in recurrent 

(polyspike and spike-wave) patterns [37]. Ictal or interictal 

EEG recordings of almost all epilepsy patients indicate similar 

characteristics. These similar characteristics in EEG 

recordings include many waveforms spikes, sharp waves, 

spike and waves, multiple spikes, multiple spike and waves, 

periodic sharp waves, slow wave complexes, and paroxysmal 

fast activity [38-45]. The most crucial thing to do before 

interpreting such activities is to pay attention to the 

background. A correct interpretation of the frequency, 

amplitude, and degree of synchronization can enable sufficient 

information about the background EEG.  

Slow theta or delta waves can be observed in an awake 

person, albeit temporarily. This condition generally occurs 

with the drowsiness of the person. Whereas these generalized 

activities are considered normal in children, adolescents, 

young adults, and some elderly individuals, the intermittent or 

diffuse, focal or general, theta or delta frequency observed in 

the EEG of an awake adult and the intermittent slowing of the 

background indicate pathology (Figure 3). In other words, 

background slowing may indicate diffuse or focal cerebral 

dysfunction. 

Background slowing is basically divided into two groups: 

focal slowing and general slowing. Focal slowing is an 

indication of focal cerebral pathology of the brain area. The 

slowing can be intermittent or permanent. Intermittent focal 

slowing may occur depending on the effects of a sedative or 

hypnotic drug. Examples of intermittent focal slowing may 

include stroke, cerebral hemorrhage, tumors, traumatic injury, 

malformations of cortical development, focal epileptic focus, 

arteriovenous malformations, and temporary or permanent 

ischemia resulting from focal brain infection [15]. General 

background slowing resembles focal slowing, but it indicates 

diffuse cerebral dysfunction. The effects of sedative centrally 

acting medications, neurodegenerative disorders, 

hydrocephalus, metabolic or toxic encephalopathy, central 

nervous system (CNS) infectious disorders, and focal midline 

structural lesions such as meningoencephalitis may cause 

general background slowing. Other epileptiform EEG 

abnormalities that could provide clues about the abnormal area 

are focal or lateralized slowing or activity asymmetry in both 

hemispheres [46]. 

 

Table 1. Main characteristics features of the brain waves 

 
Frequency band Frequency Brain states 

Gamma (γ) >32 Hz 
Gamma waves have a fairly high frequency band and are frequently filtered in 

EEG recordings due to the lack of clinical and physiological interest. 

Beta (β) 12-35 Hz 
Beta waves are mostly observed in the frontal areas. They are increased with 

expectancy states and tension. 

Alpha (α) 8-12 Hz 

Alpha waves are seen in normal adults in awake states in which they are not 

relaxed and mentally active. Although the amplitude is often less than 50 µV, they 

are often prominent in the occipital areas. 

Theta (θ) 4-8 Hz 

Theta waves are seen in normal situations in babies and children, and in adults 

during drowsiness and sleep. This waveform is rarely seen in normal and awake 

adults. The high theta activity in awake adults point out abnormal and pathological 

conditions as in delta waves. 

Delta (δ) 0.5-4 Hz 
Delta waves are predominantly observed during the deep sleep stages of normal 

adults. Other situations indicate pathology [28]. 
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Figure 3. Background slowing (Longitudinal bipolar montage). Routine EEGs of a 38-years-old subject with epilepsy included in 

the SUH dataset. a) Background theta and delta slowing in many channels in seconds 120-123, b) in seconds 126-129, and c) 

theta and delta slowing observed in almost all channels in seconds 133-135. These findings are abnormal for the EEG recorded 

while awake, and indicate an abnormality as noted in the subject's clinical history 

 

Table 2. The lowest and highest value ranges used in the detection of peaks [47] 

 
Peak 

Number 

Left Interval Lies 

Between Peak and 

Right Interval Lies 

Between Peak and 

Lowest Point on the 

Left Interval 

Lowest Point on the 

Right Interval 

Reference Level 

(Highest Minimum) 

1 Left end Crossing due to peak 2 Left endpoint a a 

2 Left end Right end Left endpoint h Left endpoint 

3 Crossing due to peak 2 Crossing due to peak 4 b c c 

4 Crossing due to peak 2 Crossing due to peak 6 b d b 

5 Crossing due to peak 4 Crossing due to peak 6 d e e 

6 Crossing due to peak 2 Right end d h d 

7 Crossing due to peak 6 Crossing due to peak 8 f g g 

8 Crossing due to peak 6 Right end f h f 

9 Crossing due to peak 8 Crossing due to right 

endpoint 

h i i 

 

2.5 Minpeakprominence Method (MPP) 

 

As mentioned in the previous sections, EEGs are generally 

divided into four frequency bands, and the focus of this study 

has been on delta and theta waves. For the detection of these 

waves, generally called SWs, a method based on MPP has 

been developed.  

 

 
 

Figure 4. Detection of the peaks of a signal with MPP 

 

MPP is a method used to detect only peaks of least relative 

importance of a given value. This method is used to detect 

more prominent peaks as opposed to selection by absolute 

value. The MPP method compares each neighbouring peak 

with each other and detects only the peaks that are most 

important to the specified level. The steps followed to detect 

the significant peaks of a signal shown in Figure 4 are detailed 

in Table 2. 

Examining the peaks of the signal in the example, it was 

observed that the signal passed the last value on the left for the 

left interval value and peak 2 for the right interval value. 

Consequently, the highest minimum peak for peak number 1 

was determined as a. As explicitly presented in the table, each 

peak is detected individually in compliance with the minimum 

interior height and the location of the other peaks, through this 

method. 

The following steps are operated when measuring the 

prominence of any peak: 

1. A marker is placed at the peak. 

2. Then, a horizontal line from above peak to left and right 

is extended until one of the following operations is 

performed. 

▪ If there is a higher peak it will pass this signal. 

▪ If not, the line is delivered to the left or right end of 

the signal. 

3. The minimum value of the signal is calculated in each of 

the two intervals defined in step 2. This point is either a 

valley or one of the signal endpoints. 

4. The peak stands out when these two intervals are higher 

than the minimum value.  
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Figure 5 shows a graph that enables the determination of 

important peaks of a signal with MPP. In this example, peaks 

with a significance of at least 4 were detected. Here, according 

to the aforementioned process steps, a marker is first placed on 

a peak, then higher peaks are searched. Significant peaks are 

detected when the peak marked last is higher than the 

minimum value of the two intervals. 

 

 
 

Figure 5. Graph showing the significant peaks of a signal 

(for MPP=4) [48] 

 

2.6 Data collection 

 

EEGs and clinical information of 22 subjects (the average 

age of 12 males’ patients is 43, and the average age of 10 

females’ patients is 49) who were diagnosed with epilepsy and 

other neurological disorders and who came to the SUH dataset 

due to various complaints (Non-Invasive Clinical Research 

Ethics Committee No. 2014/423) were collected 

retrospectively (in April and December, 2014).  

The distribution chart of the ages of these patients, whose 

average age range value is specified, is shown in Figure 6 in 

detail. When the Figure 6 was examined, it was observed that 

patients diagnosed with neurological disorders were especially 

between the ages of 40-60. EEGs of the subjects were obtained 

through bipolar montage using the 10/20 system EEG 

placement. During the routine EEG recording, 20 electrodes 

were connected, and the information of the last two channels 

(19th channel Electrocardiography (ECG), 20th channel 

Photic Stimulation) was not processed since it did not contain 

any information to describe neurological disorders. That’s 

why the focus was on the signals obtained with 18 electrodes.  

Signal amplitude value is 150 µVp-p from peak to peak, and 

sampling frequency is 200. Also, 1.0 and 15.0 were applied for 

the low-pass Notch filter and the high-pass Notch filter, 

respectively. 

The study did not include personal data of the subjects. The 

clinical information and inclusion criteria obtained as a 

consequence of the visual examination of these subjects are 

presented in Table 3. EEG records of subjects younger than 18 

years old and older than 70 years were excluded in the data in 

the study, in accordance with the opinions and 

recommendations of the attending physician.  

Some statistical characteristics of the same subjects in the 

dataset are introduced in Table 4. It is clearly seen in this table 

that the mean age of male and female subjects included in the 

dataset is 45.27. Some of these subjects in the dataset received 

drug treatment (14 subjects receiving medication) and some (8 

subjects not receiving medication) did not. However, this 

information was not recorded in the clinical reports of the 

subject who did not receive medication either because the 

subject was newly diagnosed or due to inadequate clinical 

information (EEG laborant forgetting to ask, subject not 

remembering, etc.). Besides, subject records with missing 

such clinical information were eliminated from the study. 15 

of these people coming to the hospital with various complaints 

were diagnosed with epilepsy, and 7 were diagnosed with 

different neurological diseases (encephalitis, shivering pain, 

etc.). Moreover, all other statistical features such as the 

distribution of diseases by gender and the ratio of the number 

of subjects to each other are also presented in detail in this 

Table 4. 

Although EEG records performed over 30 minutes are 

crucial for diagnosis and treatment, this duration is kept very 

short because of insufficient cost and limited time. Therefore, 

EEG records are generally performed for an average of 20 to 

30 minutes. Recording durations differ from each other. 

Therefore, the sizes of the EEG records of each subject are 

different depending on these durations. EEG page numbers 

(every page includes 15-sec x 200 sample rates) and file sizes 

in the SUH dataset are given in Table 5. When the file sizes in 

the table are examined, the shortest and longest EEG file sizes 

are 144000 and 192000, respectively. 

 

 
 

Figure 6. Graph of the probability plot for normal age 

distribution on SUH dataset 

 

The repetition numbers of the EEG page numbers are 

presented in Table 6, and the frequencies of the page numbers 

are shown in Figure 7 as the probability distribution for a better 

analysis. As it is seen in Figure 7, the number of pages of EEG 

records recorded in the highest number is between 57 and 60. 

In other respects, the least frequent pages are 48, 53, 56, and 

64. Consequently, it can be simply said that routine EEG 

records for this dataset include an average of 58.5 (for 57, 58, 

59 and 60) pages. The average duration of the recordings (58.5 

/ 4≈15 minutes) is 15 minutes. As mentioned in the previous 

sections, routine EEG recording durations are actually around 

20-30 minutes. EEG recordings taken during these durations 

often contain artefacts. These artefacts can hinder algorithmic 

analysis and visual inspection. It was observed in this dataset 

that some parts of the recordings were either empty or entirely 
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filled with artefacts because of some reasons such as the 

movement of most subjects and loose contact caused by the 

disconnection of the electrode connections. For this reason, 

such recordings that do not form connections were eliminated 

from the EEG recordings. 

 

Table 3. Personal information and clinical characteristics of 

the subjects included in the SUH dataset 

 
Subject (gender, age) Diagnosis Drug (Yes/No) 

suh-01 (M 38) Epilepsy Yes 

suh-02 (M 24) Epilepsy Yes 

suh-03 (F 42) Epilepsy No 

suh-04 (M 60) Psychogenic seizure No 

suh-05 (F 38) Epilepsy No 

suh-06 (F 27) Epilepsy Yes 

suh-07 (M 24) Encephalitis Yes 

suh-08 (M 35) Cerebrovascular Yes 

suh-09 (M 46) Epilepsy No 

suh-10 (M 55) Epilepsy Yes 

suh-11 (M 35) Headache No 

suh-12 (F 65) Encephalitis Yes 

suh-13 (F 30) Epilepsy Yes 

suh-14 (F 66) Epilepsy No 

suh-15 (F 41) Epilepsy Yes 

suh-16 (F 66) Epilepsy Yes 

suh-17 (F 61) Epilepsy Yes 

suh-18 (F 49) Epilepsy No 

suh-19 (M 49) Epilepsy No 

suh-20 (M 49) Shivering pain Yes 

suh-21 (M 61) Parkinson Yes 

suh-22 (M 35) Epilepsy Yes 

 

Table 4. Statistical characteristics of the subjects included in 

the study 

 

Characteristics Value 

Number of subjects 22 

Average age of subjects 45.27 

Median age of subjects 44 

Min age 24 

Max age 66 

Number of Male/Female 12/10 

Average of Male age 43 

Average of Female age 49 

Epilepsy 15 

Male 6 

Female 9 

Other diseases 7 

Male 6 

Female 1 

Treatment with antiepileptic drugs (Yes/No) 14/8 

Ratio (Male: Female) 1.2:1 

Male: Female (Greatest common deminator) 6:5 

 

In Figure 8, 1-second EEG signal images from both datasets 

used in the study are given. When the signals are examined, 

the approximate frequency value of the signals in Figure 8.a) 

can be easily observed as 8. This signal points to the Theta 

wave range in Table 1. On the other hand, it was observed in 

Figure 8.b) that the average frequency value of the signals is 

greater than 8. It can be said that there is no SW in this signal 

given as an example in the Bonn dataset.  

Since the SUH dataset does not include any normal EEG 

record without any disease diagnosis, normal EEG records in 

the public Bonn dataset were utilized to determine the 

accuracy and reliability of the method. For this reason, these 

two datasets were used to determine the success of the method 

implemented. The characteristics of this dataset are given in 

Table 7. 

 

Table 5. The information of data files in routine EEG 

 
Subject# Page# File Size 

suh-01 53 159000 

suh-02 61 183000 

suh-03 64 192000 

suh-04 57 171000 

suh-05 59 177000 

suh-06 48 144000 

suh-07 59 177000 

suh-08 60 180000 

suh-09 57 171000 

suh-10 54 162000 

suh-11 58 174000 

suh-12 56 168000 

suh-13 57 171000 

suh-14 58 174000 

suh-15 60 180000 

suh-16 59 177000 

suh-17 54 162000 

suh-18 61 183000 

suh-19 57 171000 

suh-20 58 174000 

suh-21 57 171000 

suh-22 59 177000 

Average 57.55 172636.36 

Min 48 144000 

Max 64 192000 

 

Table 6. Pivot table of the SUH dataset 

 
Pages# The number of repetitions 

48 1 

53 1 

54 2 

56 1 

57 5 

58 3 

59 4 

60 2 

61 2 

64 1 

Grand Total 22 

 

 
 

Figure 7. Graph of the probability plot of normal distribution 

in the SUH dataset (Each page consists of 3000 samples as 

200 sample rates x 15 seconds) 
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Table 7. Overview of Bonn dataset (Only dataset A was used in the study) 

 
 Healthy Individuals Epilepsy Individuals 

Dataset A B C D E 

State 
Awake with eyes 

open 

Awake with 

eyes closed 
Seizure-free Seizure-free Seizure activity 

Electrode type Surface Surface Intracranial Intracranial Intracranial 

Electrode 

placement 

10/20 

international 

system 

10/20 

international 

system 

10/20 opposite to 

epileptogenic 

zone 

Within 

epileptogenic 

zone 

Within 

epileptogenic 

zone 

 

As shown in the table, the records in the Bonn dataset are 

obtained in five different ways. The sampling frequency of the 

records is 173.61 Hz, and each dataset consists of 100 records. 

In this dataset, a low pass filter of 40 Hz is applied for the first 

step of the analysis [49]. There are five different records 

encoded with A, B, C, D, and E, as it is seen obviously in the 

table. It is the Bonn dataset A (eyes open and scalp EEG) that 

is appropriate for the recording properties of the data in the 

SUH dataset. Accordingly, the reliability of the method 

performed using only the A dataset was tested in this study. 

 

 
(a) 

 
(b) 

 

Figure 8. Signals in the SUH and Bonn dataset a) 1 second 

EEG signal display in SUH dataset, b) 1 second EEG signal 

display in Bonn dataset 

 

 

3. EXPERIMENTAL RESULTS 

 

General background slowing (theta and delta frequency 

ranges) is a normal finding on EEG when it signifies 

developmental slowing or the development of lethargy and 

sleep activity in children, adolescents, and some young adults. 

The background EEG is generally normal in patients with 

epilepsy [50]. On the other hand, general or focal background 

slowing can be seen in the EEG records of epilepsy patients. 

When it is not diagnosed accurately, patients with psychogenic 

non-epileptic seizures (PNES) encounter serious and 

multifaceted problems such as delay in starting the correct 

treatment, the long-term financial burden of antiepileptic 

drugs, and possible side effects.  

An epileptic seizure manifests itself with sudden changes in 

sensory-motor functions, behaviour, memory, and 

consciousness. In general, the way the seizure manifests itself 

behaviourally varies depending on the localization and area of 

the affected brain area [51]. Epilepsy classification is most 

frequently made according to this clinical situation. According 

to this classification, epileptic seizures are examined in two 

parts: partial seizures affecting only a certain part of the brain 

and not always accompanied by loss of consciousness, and 

generalized seizures affecting the whole brain, always with 

loss of consciousness [52]. Etiologically, epilepsies are 

examined in two groups as primary or idiopathic and 

secondary epilepsies [53]. 

The main question that needs to be answered in patients 

coming to the clinic with loss of consciousness is whether the 

situation is an epileptic seizure. Since the seizure has already 

stopped when the patient is taken to the hospital, the most 

critical information in distinguishing this can be gathered from 

the patient or the eyewitnesses present during the loss of 

consciousness. In cases where anamnesis cannot be taken 

adequately, it becomes difficult to make a differential 

diagnosis to the patient. Besides, having a single seizure does 

not mean that a person has epilepsy. Epilepsy, as mentioned 

earlier, is a disease that occurs without any triggering cause 

and is defined by recurrent (two or more) seizures [54]. For 

this reason, it is critically essential to consider all epileptic 

activities that can be observed in EEG recordings. The main 

focus of recent studies has been on transient activities, which 

are signs of epileptic activity. However, the detection of slow 

waves is at least as critical as the detection of transient 

activities [19]. That being the case, a new MPP-based method 

has been developed to determine the relevance of SWs, which 

are the signs of EEG anomalies, with epilepsy and other 

neurological diseases, and to determine which regions of the 

brain are frequently detected (focal, lateralized, generalized). 

For a better understanding of the working principle of the 

method, all examples are explained using a single data (suh-

01) in the SUH dataset. The image of a 15-second EEG 

recording obtained from subject suh-01 data is shown in 

Figure 9. Even though the ground activities generally include 

alpha waves, SWs are encountered in some channels, as can 

be seen in the Figure 9. Photic Stimulation is one of the 

activation methods applied during routine EEG recording. 

Eyelid myoclonus, generalized myoclonic jerks, absence 

seizures, generalized tonic clonic seizures, focal seizures, and 

more rarely tonic versive seizures and focal asymmetric 

myoclonic seizures can be triggered by photic stimulation [55]. 

In addition, the emergence of generalized discharges 

consisting of spike-slow wave, sharp wave-slow wave and 

multiple spike-slow wave elements in epilepsies generalized 

with photic stimulation becomes easier. In this technique, a 

bright light stimulus flashing at different frequencies for 5-10 

seconds is applied to a patient from a distance of 30 cm with 

eyes open and closed. The blue line in Figure 9 and the blue 

line shown at the bottom (photic stimulation) was applied for 

10 seconds. The fact that this blue line continues straight 

means that photic stimulation is not applied. 

Detecting background activities that indicate the anomaly is 

quite significant for diagnosis and treatment. Therefore, the 
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signal that Discrete Wavelet Transform (DWT) or any pass 

filter (low pass, high pass, etc.) is not applied has been 

examined with threshold and MPP. For the signal analysis here, 

various studies have been conducted on the peak values of the 

original signal and the peaks obtained after applying the 

threshold and MPP. That's why the focus has been on the 

signals belonging to all channels in the second of the subject 

suh-01 dataset. First of all, 1st and 2nd channels of these 

signals in the 2nd second were examined. Various trials were 

carried out by giving different values for Threshold and MPP. 

As it is seen in Figure 10, the peaks and peak numbers obtained 

with both techniques are indicated. All peak numbers (original 

signal, threshold, and MPP) obtained as a result of the trials 

are taken into a matrix. Afterward, the peak numbers obtained 

by threshold and MPP were subtracted from the original peak 

numbers and the differences between them were analysed. 

Analysing the obtained differences, it was determined that the 

channels with the least subtraction result had SW as given in 

Figure 10. The differences between all the peak numbers in 

each dataset were obtained through the program written in the 

Matlab program. 

The numerically obtained differences between the peak 

numbers of the original signal obtained before any processing 

and the peaks obtained as a result of the threshold and MPP 

are shown in Table 8. The difference 1, difference 2 and 

difference 3 indicate the values obtained by the MPP method, 

while the difference 4, difference 5 and difference 5 indicate 

the values obtained by the Threshold method, respectively. In 

Table 8, the values where the difference between the peak 

numbers of the original signal and the peak numbers obtained 

with the threshold and MPP techniques is 3 and below 3 are 

marked with a green background colour. These values marked 

signify possible SW. Examining the table, when MPP 2 and 5 

values were given, 8 and 4 SWs were found, respectively. On 

the other side, 3 and 1 SWs were found for threshold 2 and 5, 

respectively, but no SW was found for the value 7. Signals that 

may be SWs were almost never detected, especially in trials 

with the threshold. As it is shown in the table, when the value 

7 for MPP is given, SWs marked manually by a neurologist 

were found to be high. That's why the value 7 was taken as the 

basis for the MPP based method implemented, and this value 

was used on all the next dataset. SUH and Bonn datasets were 

used to test the reliability and accuracy of the MPP method. 

To determine which channels and on which pages the SWs 

are seen frequently, the data were processed page by page. 

Besides, it was determined in which channels it was frequently 

seen by taking the average SWs value for each channel. In this 

way, it was determined in which areas of the brain the SWs are 

seen or whether they are seen in all (focal, lateralized, and 

generalized). 

Statistical measures of the performance, commonly used in 

scientific studies, were used to evaluate the success of the 

method. As it is known, the confusion matrix is one of the 

easiest and well-known methods used to interpret the success 

of classifiers [56]. This confusion matrix provides us with 

detailed information regarding correct and incorrect 

predictions in classification. In this method that generally 

evaluates the performance of data in the form of matrixes, 

there are four possible results: True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

Explanations of these possible results are given in Table 9 [57, 

58]. 
 

 

 
 

Figure 9. 18-channel EEG recording (only 15 sec) of the subject suh-01. Generally, the ground activity is well developed in the 

posterior areas of the hemispheres and includes 8-13 Hz alpha waves. However, SW is observed in some of the channels marked 
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Figure 10. Peak detection trials of the signals in the 2nd second of channels 1 and 2 of the subject suh-01. a) 1. Channel on 

2nd second, b) 2. Channel on 2nd second 

 

The performance of a classifier is assessed by statistical 

parameters such as Sensitivity (SEN), specificity (SPE), and 

classification accuracy (ACC) (Eqns. (1), (2), and (3)). 

 

SEN=TP/(TP+FN) (1) 

 

SPE=TN/(TN+FP) (2) 

 

ACC= (TP+TN)/(TP+TN+FP+FN) (3) 

 

Examining the classifier success (ACC) alone is not always 

adequate to evaluate the success of a system. Especially in 

imbalanced datasets, it will be beneficial to examine the 

parameters of precision (Eq. (4)) and F-score (Eq. (5)) together 

with these parameters. The Positive Predicted Value (PPV) or 

Precision value provides information regarding how many of 

those identified as patients are actually sick, and the F-score 

(also F-measure or F1-score) is used to calculate the truth of 

a test and it balances the use of precision. The F-score value 

can provide the measurement of a test's performance in a more 

realistic way through both precision and recall. 

 

PPV=TP/(TP+FP) (4) 

 

F-score=2TP/(2TP+FP+FN) (5) 
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Table 8. The peak numbers obtained in the 2nd second of all channels of the subject suh-01 (Available/No Available (A/N)) 

 

Channel 

Name 

SWs 

(A/N

) 

The 

number of 

Original 

Peaks  

(all 

channel - 2 

second) 

Threshold

=None 

MPP Threshold 

=2 
Difference 

1 
=5 

Difference 

2 
=7 

Differen

ce 3 

=

2 

Difference 

4 

=

5 

Difference 

5 

=

7 

Difference 

6 

Fp1-F7 N 15 10 5 5 10 1 14 
1

1 
4 1 14 0 15 

F7-T3 N 14 10 4 5 9 3 11 
1
3 

1 5 9 1 13 

T3-T5 N 13 10 3 6 7 5 8 
1

0 
3 5 8 2 11 

T5-O1 A 10 10 0 10 0 6 4 
1

0 
0 6 4 2 8 

Fp1-F3 N 13 10 3 2 11 1 12 8 5 1 12 0 13 

F3-C3 N 13 11 2 6 7 3 10 
1

3 
0 3 10 0 13 

C3-P3 N 13 10 3 7 6 5 8  13 4 9 2 11 
P3-O1 A 11 11 0 9 2 9 2  11 8 3 7 4 

FZ-CZ N 12 11 1 9 3 3 9  12 2 10 1 11 

CZ-PZ N 13 9 4 7 6 4 9  13 4 9 1 12 
Fp2-F8 N 15 6 9 3 12 3 12  15 7 8 6 9 

F8-T4 N 12 11 1 8 4 6 6  12 6 6 2 10 

T4-T6 N 13 11 2 9 4 7 6  13 7 6 2 11 
T6-O2 N 13 10 3 7 6 6 7  13 6 7 4 9 

Fp2-F4 N 14 8 6 4 10 2 12  14 4 10 1 13 

F4-C4 N 11 11 0 9 2 5 6  11 5 6 0 11 
C4-P4 N 13 9 4 8 5 8 5  13 8 5 3 10 

P4-O2 A 12 11 1 10 2 10 2  12 
1

1 
1 8 4 

 

Table 9. Possible results on confusion matrix 

 
Predicted Values  

A
ct

u
a

l 
V

a
lu

es
 

 0 1 

0 

TN  

(Telling not sick to those 

who are not sick) 

FP  

(Telling sick to those 

who are not sick) 

1 

FN  

(Telling not sick to those 

who are sick) 

TP  

(Telling sick to those 

who are sick) 

 

The average of ACC values obtained with the confusion 

matrix found for the SUH dataset is given in Table 10. 

Comparing the average ACC values obtained by the method 

performed with clinical findings, it was found that there was a 

high rate of SWs in places where the average value was 1 and 

greater than 1 (channel numbers with SWs are marked in the 

relevant table for each data). For this reason, those with an 

average ACC value less than 1 were not taken into account. 

For a better analysis, the average ACC values given in Table 

11 were plotted with glyphplot (Figure 11). In this way, it is 

better to analyse which channels have more SWs by examining 

these values visually for each channel. The graph shows that 

the channels with the most SWs are the 8th (P3-O1) and 18th 

(P4-O2) channels. However, in general, a considerable 

number of SWs were detected in the 3rd (T3-T5), 4th (T5-O1), 

10th (CZ-PZ), 13th (T4-T6), and 14th (T6-O2) channels. 

When the electrode connection points of the channels where 

SWs are most frequently seen were examined, it was found 

that they were in both hemispheres (both right and left), around 

the occipital area, that is, in the posterior part of the skull 

(Figure 12). This indicates that such SWs are observed in the 

posterior areas of the brain, particularly in the temporal, 

parietal, and occipital regions. 

 

Table 10. Confusion matrix for the SUH dataset 

 
suh-01 0 1   suh-02 0 1   suh-03 0 1   suh-04 0 1  

0 454 57 511  0 165 14 179  0 535 19 554  0 912 16 928 

1 13 430 443  1 8 911 919  1 15 583 598  1 7 91 98 
 467 487 954   173 925 1098   550 602 1152   919 107 1026 

                   

suh-05 0 1   suh-06 0 1   suh-07 0 1   suh-08 0 1  

0 573 25 598  0 655 19 674  0 688 18 706  0 788 17 805 

1 14 450 464  1 23 167 190  1 15 341 356  1 11 264 275 
 587 475 1062   678 186 864   703 359 1062   799 281 1080 

                   

suh-09 0 1   suh-10 0 1   suh-11 0 1   suh-12 0 1  

0 872 25 897  0 654 13 667  0 912 8 920  0 712 35 747 

1 6 123 129  1 12 293 305  1 8 116 124  1 9 252 261 
 878 148 1026   666 306 972   920 124 1044   721 287 1008 
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suh-13 0 1   suh-14 0 1   suh-15 0 1   suh-16 0 1  

0 858 15 873  0 865 7 872  0 415 37 452  0 642 24 666 

1 21 132 153  1 17 155 172  1 8 620 628  1 19 377 396 
 879 147 1026   882 162 1044   423 657 1080   661 401 1062 

                   

suh-17 0 1   suh-18 0 1   suh-19 0 1   suh-20 0 1  

0 629 35 664  0 1034 14 1048  0 805 24 829  0 203 22 225 

1 30 278 308  1 9 41 50  1 11 186 197  1 7 812 819 
 659 313 972   1043 55 1098   816 210 1026   210 834 1044 

                   

suh-21 0 1   suh-22 0 1            

0 645 41 686  0 988 8 996           

1 24 316 340  1 14 52 66           

 669 357 1026   1002 60 1062           

 

Table 11. Average of SWs numbers found for all channels in the SUH dataset 

 
Subj

ect# 

Fp1-

F7 

F7-

T3 

T3-

T5 

T5-

O1 

Fp1-

F3 

F3-

C3 

C3-

P3 

P3-

O1 

FZ-

CZ 

CZ-

PZ 

Fp2-

F8 

F8-

T4 

T4-

T6 

T6-

O2 

Fp2-

F4 

F4-

C4 

C4-

P4 

P4-

O2 

1 0.1 0.1 3.5 5.0 0.0 0.7 1.7 8.1 0.5 0.7 0.2 0.5 4.2 6.3 0.1 0.2 1.8 9.0 

2 1.1 1.1 5.1 3.6 1.2 1.0 3.3 7.6 1.9 4.8 1.5 2.1 6.9 6.4 1.8 1.8 3.7 10.3 

3 0.7 0.4 2.1 3.1 0.3 0.9 1.0 6.5 0.1 1.0 0.4 1.2 4.8 4.0 0.1 0.4 0.8 9.5 

4 0.0 0.0 0.0 0.0 0.0 0.4 0.1 1.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.9 

5 1.2 0.1 0.5 2.8 1.2 0.4 1.3 4.5 1.6 1.4 0.4 0.2 0.4 1.1 0.7 0.5 0.4 2.8 

6 0.1 0.0 0.2 1.4 0.0 0.2 0.9 0.1 0.2 0.8 0.0 0.1 0.0 1.5 0.0 0.1 0.2 2.0 

7 0.1 0.6 0.4 0.2 0.2 0.4 0.1 1.6 0.9 0.7 0.2 0.1 1.0 0.9 0.4 0.3 0.0 3.8 

8 0.1 0.4 0.2 0.8 0.0 0.1 0.3 5.1 0.1 0.4 0.0 0.4 2.2 0.5 0.0 0.4 0.1 1.0 

9 0.2 0.1 0.5 0.0 0.1 0.0 0.4 1.0 0.1 0.3 0.3 0.1 0.8 0.0 0.0 0.1 0.1 1.0 

10 1.2 0.7 0.1 2.8 0.0 0.3 0.1 0.4 0.1 0.2 3.9 2.0 0.7 0.7 0.0 0.2 0.4 1.2 

11 0.0 0.0 0.0 0.3 0.0 0.0 0.0 1.4 0.0 0.1 0.0 0.0 0.0 0.4 0.0 0.0 0.0 2.7 

12 1.1 0.3 0.0 0.1 0.4 0.2 0.4 1.7 0.6 0.2 1.9 0.1 0.0 0.1 1.2 0.4 0.3 1.5 

13 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.9 0.1 0.3 0.1 0.0 0.5 0.5 0.0 0.2 0.1 0.9 

14 0.0 0.1 0.4 0.5 0.0 0.0 0.4 1.0 0.0 0.3 0.1 0.0 0.4 0.4 0.1 0.0 0.2 0.8 

15 0.2 3.0 8.1 0.7 0.2 3.4 2.1 9.9 0.1 3.0 0.7 1.1 4.8 6.1 0.2 0.0 3.6 10.8 

16 0.1 0.7 3.8 0.4 0.0 1.4 1.3 4.9 0.2 4.1 0.0 0.2 2.3 0.1 0.0 0.3 0.2 3.0 

17 0.0 0.2 0.1 0.2 0.2 0.9 0.3 2.2 0.1 1.9 0.5 0.1 0.0 0.3 0.4 0.3 2.4 1.5 

18 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.5 

19 0.1 0.2 0.6 0.9 0.1 0.0 0.1 4.0 0.1 0.3 0.0 0.1 0.4 1.0 0.0 0.0 0.1 3.5 

20 0.4 6.7 9.6 6.5 0.0 5.4 4.9 9.5 3.5 4.7 0.3 6.3 8.7 6.4 0.1 4.7 1.9 10.3 

21 0.9 0.4 0.1 0.8 0.4 0.5 0.3 1.8 0.1 0.4 0.4 0.5 0.3 1.0 0.4 0.2 0.4 2.4 

22 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.2 0.6 

 

 
 

Figure 11. The indication of the peak averages monitored by 

channels through glyhplot for the SUH dataset 

 

The number of SWs seen in the channels is given in Table 

12. Examining the frequency values 6 and higher than 6 in the 

table, it was determined that the channels with the most SWs 

are T3-T5, T5-O1, P3-O1, CZ-PZ, T4-T6, T6-O2, and P4-O2. 

 
 

Figure 12. The indication of the areas where SWs are most 

frequently seen in the electrode connection (channels marked 

in blue are the channels with the most SWs), according to the 

results obtained (SUH dataset) 

 

Also, all SWs found for the SUH dataset were examined 

with a box plot on a channel basis. A box plot (also known as 

box and whisker plot) is a type of chart used to visually 

indicate the distribution of quantitative data, the distributions 
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and skewness between variables or between levels of a 

categorical variable. The summary of a dataset consists of five 

parts: minimum score, first (lower) quarter, median, third 

(upper) quarter, and maximum score (Figure 13). 

 

Table 12. Frequency of SWs by channels for the SUH 

dataset (numerically) 

 

No. of 

Channel 
Channel Name 

Count of Channel 

Frequency 

1 Fp1-F7 4 

2 F7-T3 3 

3 T3-T5 6 

4 T5-O1 7 

5 Fp1-F3 2 

6 F3-C3 3 

7 C3-P3 7 

8 P3-O1 15 

9 FZ-CZ 3 

10 CZ-PZ 7 

11 Fp2-F8 3 

12 F8-T4 5 

13 T4-T6 8 

14 T6-O2 8 

15 Fp2-F4 2 

16 C4-C4 2 

17 C4-P4 5 

18 P4-O2 16 
 Grand Total 106 

 

 
 

Figure 13. Boxplot [59] 

 

In the box plot, the analysis is made according to the 

location of the median on the box. If the median is in the 

middle of the box and its whiskers are equidistant from both 

sides of the box, the distribution is symmetrical. If the median 

is closer to the bottom of the box and the whisker is shorter at 

the lower end of the box, the distribution is positively skewed. 

Finally, if the median is closer to the top of the box and the 

whisker is shorter at the upper end of the box, the distribution 

is negatively skewed. Considering these characteristics of the 

box plot, distributions and distortions between average ACC 

values can be visually analysed. Examining the variables given 

in Figure 14, it is observed that all the median values are close 

to the bottom of the box, and again they are quite short on their 

whiskers. Consequently, it can be said that the distribution is 

positively skewed. Besides, examining the graphic in general, 

it is quite obviously observed that the frequency of SWs is the 

highest in channels 3, 4, 8, 13, and 18. Interquartile range give 

us information about how the data is dispersed among each 

sample. In other words, as the box gets longer, the data shows 

more dispersal. On the other hand, the data is dispersed less as 

the box get smaller. When we look at Figure 14, the box 

showing the 8th channel is longer than the other boxes. In this 

case, it is seen that there are more SWs dispersals on this 

channel. The whiskers at the ends of each box give us 

information about the general spread. Looking at the whiskers 

in this figure, a wider spread was observed in channels 4 and 

13, especially in the 8th channel. In other words, the data are 

observed as more dispersed in these channels. 

Besides, it was examined in which areas of the brain SWs 

are seen more frequently, according to the results. The results 

of the analysis achieved in this context are given in Table 13. 

Examining the table, it was observed that slow waves emerge 

as generalized rather than focal or lateralized. It was 

determined that especially the multifocal occurrence, coded as 

D (at least 2 focus, each in different hemispheres), is more than 

the others. That being the case, it was determined that SWs are 

observed as multifocal in EEG recordings and, as discussed 

earlier, they are most frequently observed in the occipital area 

that includes both sides of the brain. 

 

 
 

Figure 14. The indication of the average ACC values 

obtained with Boxplot (SUH dataset) 

 

Table 13. The frequencies of SW values by the brain regions 

for the SUH dataset 

 
Co

de 
Brain region/hemisphere 

Frequency of 

SW 

A No-SWs or any SWs 4 

B one region - one focus 2 

C one hemisphere None 

D 
multifocal (at least 2 focus, each in 

different hemisphere) 
15 

E 
multifocal (at least 2 focus, each in same 

hemisphere) 
None 

F generalized 1 
 Total Data 22 

 

Statistical performance measurement results are presented 

in Table 14 in its most general form. All TP, TN, FP, FN 

values observed for the SUH dataset, and the results of the 

classifier metrics obtained with these values are seen in detail. 
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The lowest ACC value is 92.7%, and the highest ACC value 

is 98.5%. Looking at the PPV values in the table, the rate of 

correct detection was determined as 90.9% of those 

determined as SW. It was observed that the method performed 

according to the results has a high rate of success. 

 

 
 

Figure 15. The graph of ACC on the SUH dataset 

 

The main reason for using the F-Score value is not to make 

an incorrect model selection in unevenly distributed datasets. 

Besides, F-Score is a significant statistical metric when a 

measurement metric that includes not only FN or FP but also 

all error costs is needed. When the F1 score is 1, the model is 

considered perfect, and when it is 0, it is considered 

unsuccessful. Looking at Table 14, it is seen that F-score 

values are very close to 1 (average 92%). 

As it is seen in Figure 15, the classification success achieved 

for each data (22 subjects) is generally above 90%. The 

general average ACC value is 96.5% (Table 15). The method 

performed according to these results has a high rate of success 

in detecting SWs. 

The results achieved were analyzed graphically with 

polynomial fitting (Figure 16). The curve fitting process was 

conducted with the Linear model Ploy3. As can be seen in the 

Figure 16, some data such as suh-06, suh-09, and suh-11 stay 

out of the fitting curve. However, most of the data collected as 

a result of the best model and the curve fitting process are 

appropriate for the model. Looking at the Root Mean Square 

Error (RMSE) value of the method performed, it has a small 

error rate of 0.01598. 

The method performed on the second dataset (Bonn dataset) 

was implemented using the same values (7 value for MPP and 

average <=3). All average SW values obtained on the Bonn 

dataset are presented in Table 16. The averages of 1 and above 

1 from the average SW values obtained for the SUH dataset 

were taken into account. Channels above 1 and 1 in the Bonn 

dataset must have SWs. However, when the table is examined, 

all the average values are below 1. This proves that there is no 

SW in the Bonn dataset (normal data - A) used in the study. 

Consequently, thanks to the method performed, while the SUH 

dataset had a high SW rate of 96.5%, a 100% success rate 

(ACC) was achieved in the Bonn dataset without SW. 

 

 

Table 14. Experimental results using the proposed method on the SUH dataset (PPV, SEN, SPE, F-score, ACC) 

 
Subject# TN FP FN TP PPV (%) SEN (%) SPE (%) F-score (%) ACC (%) 

1 454 57 13 430 88.3 97.1 88.8 92.5 92.7 

2 165 14 8 911 98.5 99.1 92.2 98.8 98.0 

3 535 19 15 583 96.8 97.5 96.6 97.2 97.0 

4 912 16 7 91 85.0 92.9 98.3 88.8 97.8 

5 573 25 14 450 94.7 97.0 95.8 95.8 96.3 

6 655 19 23 167 89.8 87.9 97.2 88.8 95.1 

7 688 18 15 341 95.0 95.8 97.5 95.4 96.9 

8 788 17 11 264 94.0 96.0 97.9 95.0 97.4 

9 872 25 6 123 83.1 95.3 97.2 88.8 97.0 

10 654 13 12 293 95.8 96.1 98.1 95.9 97.4 

11 912 8 8 116 93.5 93.5 99.1 93.5 98.5 

12 712 35 9 252 87.8 96.6 95.3 92.0 95.6 

13 858 15 21 132 89.8 86.3 98.3 88.0 96.5 

14 865 7 17 155 95.7 90.1 99.2 92.8 97.7 

15 415 37 8 620 94.4 98.7 91.8 96.5 95.8 

16 642 24 19 377 94.0 95.2 96.4 94.6 96.0 

17 629 35 30 278 88.8 90.3 94.7 89.5 93.3 

18 1034 14 9 41 74.5 82.0 98.7 78.1 97.9 

19 805 24 11 186 88.6 94.4 97.1 91.4 96.6 

20 203 22 7 812 97.4 99.1 90.2 98.2 97.2 

21 645 41 24 316 88.5 92.9 94.0 90.7 93.7 

22 988 8 14 52 86.7 78.8 99.2 82.5 97.9 

 

Table 15. Overall statistics in the SUH dataset 

 
ACC 

(±std.dev.) 

SEN 

(±std.dev.) 

SPE 

(±std.dev.) Error rate 

96.5 ± 0.015785779 93.3 ± 0.054348636 96.1 ± 0.029663221 0.035 
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Figure 16. Graph of overall ACC on SUH dataset 

 

Table 16. Average of SW on Bonn dataset 

 
No. of 

records Average of SW 

No. of 

records Average of SW 

No. of 

records Average of SW 

No. of 

records Average of SW 

1 0.260869565 26 0.391304348 51 0.086956522 76 0.173913043 

2 0.173913043 27 0.782608696 52 0.826086957 77 0.304347826 

3 0.47826087 28 0.043478261 53 0.130434783 78 0.739130435 

4 0.130434783 29 0.086956522 54 0.217391304 79 0.173913043 

5 0.217391304 30 0.304347826 55 0.652173913 80 0 

6 0.304347826 31 0 56 0.130434783 81 0.173913043 

7 0.652173913 32 0.043478261 57 0.173913043 82 0.434782609 

8 0.260869565 33 0.260869565 58 0.043478261 83 0.130434783 

9 0 34 0.086956522 59 0.130434783 84 0.086956522 

10 0.086956522 35 0.391304348 60 0.086956522 85 0.130434783 

11 0 36 0.130434783 61 0.130434783 86 0 

12 0.130434783 37 0.130434783 62 0.304347826 87 0.043478261 

13 0.043478261 38 0.086956522 63 0.043478261 88 0.086956522 

14 0.130434783 39 0.217391304 64 0.043478261 89 0.130434783 

15 0.043478261 40 0.043478261 65 0.565217391 90 0.434782609 

16 0.086956522 41 0.130434783 66 0.086956522 91 0.043478261 

17 0 42 0 67 0.086956522 92 0.434782609 

18 0.347826087 43 0.130434783 68 0.173913043 93 0.391304348 

19 0 44 0.304347826 69 0.391304348 94 0.347826087 

20 0.043478261 45 0.347826087 70 0 95 0.608695652 

21 0 46 0.130434783 71 0.173913043 96 0.391304348 

22 0.043478261 47 0.043478261 72 0.608695652 97 0.347826087 

23 0.304347826 48 0.391304348 73 0 98 0.173913043 

24 0.043478261 49 0.260869565 74 0.173913043 99 0.739130435 

25 0.173913043 50 0.260869565 75 0.347826087 100 0 

 

 

4. CONCLUSIONS 

 

Epilepsy is a disease that necessitates long-term monitoring 

and treatment. The first step to be followed is to establish the 

correct diagnosis and decide whether drug therapy is needed. 

The diagnosis and classification of epilepsy depend primarily 

on the patient's past medical records and physical findings. 

Epilepsy may manifest itself in various clinical forms. Its 

clinical features, etiology, severity, prognosis, and other 

accompanying neurological findings are quite variable, so 

there might be challenges in making a differential diagnosis. 

Epileptic seizures in epilepsy patients are not random events, 

but they are the products of highly complex dynamic brain 

networks developing over time [9]. Epileptic seizures 
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negatively affect both the consciousness and memory states of 

patients and their motor and sensory functions. Besides, the 

patients' quality of life is considerably reduced because of the 

negative risks of anti-epileptic drugs [60]. Therefore, a correct 

analysis of EEG records will make a great contribution to the 

diagnosis. Computer-aided automatic EEG examinations are 

required because of reasons such as undesirable situations 

occurring during long EEG recordings, a long examination by 

the neurologist, and lack of time for EEG examination. Within 

this scope, many studies have been conducted in the literature, 

particularly on the detection of transient activities. SW 

activities, mostly examined in sleep EEG, have not been 

emphasized adequately, though. Due to these reasons, a new 

method for detecting SWs has been developed in this study. 

The results of the study were compared with clinical 

information and the opinion of the specialist physician was 

received. When the results obtained with the method 

performed were compared with manual examinations, a high 

degree of accuracy was found. A further study in which both 

transient activities and background activities can be evaluated 

together will be beneficial to examine the effects and successes 

on online records other than retrospective records. 
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