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Abstract
Patients infected with the COVID-19 virus develop severe pneumonia, which generally leads to death. Radiological evidence 
has demonstrated that the disease causes interstitial involvement in the lungs and lung opacities, as well as bilateral ground-
glass opacities and patchy opacities. In this study, new pipeline suggestions are presented, and their performance is tested to 
decrease the number of false-negative (FN), false-positive (FP), and total misclassified images (FN + FP) in the diagnosis of 
COVID-19 (COVID-19/non-COVID-19 and COVID-19 pneumonia/other pneumonia) from CT lung images. A total of 4320 
CT lung images, of which 2554 were related to COVID-19 and 1766 to non-COVID-19, were used for the test procedures 
in COVID-19 and non-COVID-19 classifications. Similarly, a total of 3801 CT lung images, of which 2554 were related 
to COVID-19 pneumonia and 1247 to other pneumonia, were used for the test procedures in COVID-19 pneumonia and 
other pneumonia classifications. A 24-layer convolutional neural network (CNN) architecture was used for the classification 
processes. Within the scope of this study, the results of two experiments were obtained by using CT lung images with and 
without local binary pattern (LBP) application, and sub-band images were obtained by applying dual-tree complex wavelet 
transform (DT-CWT) to these images. Next, new classification results were calculated from these two results by using the 
five pipeline approaches presented in this study. For COVID-19 and non-COVID-19 classification, the highest sensitiv-
ity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9676, 0.9181, 0.9456, 
0.9545, and 0.9890, respectively; using pipeline approaches, the values were 0.9832, 0.9622, 0.9577, 0.9642, and 0.9923, 
respectively. For COVID-19 pneumonia/other pneumonia classification, the highest sensitivity, specificity, accuracy, F-1, 
and AUC values obtained without using pipeline approaches were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respectively; 
using pipeline approaches, the values were 0.9915, 0.8140, 0.9071, 0.9327, and 0.9615, respectively. The results of this 
study show that classification success can be increased by reducing the time to obtain per-image results through using the 
proposed pipeline approaches.

Keywords COVID-19 · Convolutional neural networks (CNN) · CT lung classification · Deep learning · Dual-tree complex 
wavelet transform (DT-CWT) · Local binary pattern (LBP)

Introduction

In December 2019, a viral outbreak, later named COVID-19, 
occurred in Wuhan, China’s Hubei Province. Due to its high 
transmission rate, the disease quickly spread throughout the 

world and caused a pandemic [1]. The number of people 
infected with the disease exceeded one hundred and seventy 
million globally, and the number of deaths reached four mil-
lion by June 2021. Additionally, almost all countries were 
socially, economically, and politically affected by the epi-
demic. Although some studies to treat the disease have been 
conducted, a treatment, drug, or vaccine has not yet been 
developed. Therefore, it is estimated that the effects of the 
disease will continue for some time.

COVID-19 is diagnosed through clinical symptoms 
and blood and biochemical tests [2]. Occasionally, some 
problems are encountered in its diagnosis because some 
tests have low sensitivity, throat and nose specimens are 
sometimes not taken properly, and sometimes the virus has 
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descended from the nose and throat to the lungs in the course 
of the disease’s progression. In this context, lung and chest 
radiological images serve as important clinical data for diag-
nosis and treatment planning.

COVID-19 causes severe pneumonia in its advanced stage 
and leads to death [3, 4]. Many academic studies [5–10] have 
demonstrated that the disease causes interstitial involvement, 
lung opacities, bilateral ground-glass opacities, and patchy 
opacities in the lungs.

Long and Ehrenfeld [11] and McCall [12] stated that the 
use of artificial intelligence is an inevitable requirement for 
reducing the effects of the COVID-19 pandemic crisis and 
the workload of healthcare professionals while increasing 
and accelerating disease diagnosis and diagnostic success. 
Many artificial intelligence applications have been created 
to diagnose COVID-19 using deep learning methods on CT 
lung images. Table 1 contains detailed information of past 
studies on COVID-19 and non-COVID-19 classification, and 
Table 2 includes information on COVID-19 pneumonia and 
other pneumonia classification.

The main purpose of this study, which addresses early 
COVID-19 diagnosis using CT images, is to improve the 
classification results (such as false-negative (FN), false-
positive (FP) and total number of misclassified images 
(FN + FP)) by using new pipeline approaches. Additionally, 
this study aims to not increase in the classification time dur-
ing this improvement.

Within the scope of this study, convolutional neural 
network (CNN), local binary pattern (LBP), and dual-tree 
complex wavelet transform (DT-CWT) methods were used 
to achieve this goal. There are some previous studies in 
which LBP and DT-CWT methods were combined with 
CNN. LBP and DT-CWT were used in the recognition of 
palmprint images in a study carried out by Hardalac et al. 
[44]. In that study, it was shown that using LBP as a pre-
treatment improves its results. Zhang et al. [45] and Ke et al. 
[46] utilized these two methods for face recognition. In the 
study conducted by Yang et al. [47], LBP and CNN were 
combined in facial-expression recognition. Touahri et al. 
[48] used these two methods in breast cancer diagnosis. In 
these studies, LBP was generally used as a pre-treatment; 
LBP-based CNN was introduced by Juefei-Xu et al. [49].

In 2017, DT-CWT and CNN were used for gear fault 
diagnosis in a study by Sun et al. [50]. In that study, DT-
CWT was used in a one-dimensional signal separation of 
gear audio signals. In 2018, Lu et al. [51] proposed an algo-
rithm using these two methods for human thyroid medical 
image segmentation.

CNN, a deep learning method, was used in this study. 
COVID-19/non-COVID-19 classification results were 
obtained for the cases by directly using images, LBP as a 
pre-processing step, and DT-CWT as a secondary processing 
step; the results were combined using five different pipeline 

approaches. The same procedures were repeated for COVID-
19 pneumonia/other pneumonia classification. The results 
show that by using these approaches, diagnostic success 
(COVID-19/non-COVID-19 and COVID-19 pneumonia/
other pneumonia classification) can be improved by reducing 
the classification time cost. It is estimated that the proposed 
pipeline approaches will make an important contribution to 
the literature in general because they apply to the studies 
conducted by other researchers.

Methods

Used Data

Along with the emergence of COVID-19, many academic 
studies have been conducted in which CT lung and chest 
X-ray images are clinically evaluated. Some researchers 
have created datasets based on metadata, including the 
images published in these academic studies, and have made 
them available to the public. CT lung images of COVID-19 
patients used in this study were obtained by Cohen et al. 
[52] and Zhao et al. [53] by merging the datasets based on 
metadata that were created in this context and made avail-
able to the public via GitHub. During the merging process, 
the images and their related clinical notes were considered. 
As a result, a merged COVID-19 image dataset containing 
386 CT lung images was created. Images taken from the 
same patient in the dataset were taken on different days dur-
ing the course of the disease and by different imaging shots. 
Real images of patients, confirmed by PCR testing and col-
lected from the public Hospital of the Government Employ-
ees of Sao Paulo (HSPM) and the Metropolitan Hospital of 
Lapa (both in Sao Paulo, Brazil) by Soares et al. [54, 55], 
were also used in this study. In this context, the number of 
COVID-19 images used in this study increased to 2554 by 
including 2168 COVID-19 images.

An examination of the horizontal and vertical image 
sizes and their recording formats showed that their sizes 
varied between 115 × 98 and 2024 × 1523; their formats 
were png, jpg, and jpeg. The majority of images were 
24-bit RGB, while a small portion was 8-bit greyscale. 
Since the visual features in question showed such differ-
ences, they had to be standardized for use in this study. 
First, COVID-19 CT lung images were converted to 8-bit 
greyscale; next, the images were framed within the lung 
region borders, and the study area of interest was defined. 
After these standardization processes, all the images were 
rearranged, adjusted to 448 × 448, and saved in png format.

Some non-COVID-19 CT images used in this study 
were taken from the LIDC-IDRI dataset [56–58], which 
was created for use in cancer research. It was completed in 
2015 and subsequently made available for public access. 
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The dataset contains CT images of normal lungs, that is, 
having no cancer nodules smaller or larger than 3 mm, 
as well as CT images of lungs that have cancer nodules. 
Therefore, the dataset is a merged dataset containing var-
ied images of normal lungs and intensive cancer lungs. CT 
lung images of 1010 patients in the LIDC-IDRI dataset 
were used for this study. The CT lung images of all the 
patients in the dataset were used, and no elimination or 
exclusion was made. More detailed information about the 
dataset can be obtained from studies that published the 
dataset [56–58] and from the open-access extension [59] 
of the dataset. This study included 756 healthy CT lung 
images from the dataset published by Soares et al. [54, 
55]. Therefore, the total number of non-COVID-19 images 
used in the study increased to 1766.

In addition to the COVID-19/non-COVID-19 classi-
fication, COVID-19 pneumonia/other pneumonia clas-
sification was conducted. The images used for the other 
pneumonia class were obtained from a database that was 
created and made available by Soares et al. [54, 55]. This 
study used 1247 images of other pneumonia.

The same processes applied to COVID-19 CT lung 
images were applied to non-COVID-19 and other pneu-
monia images, and these images were also standardized. 
In Fig. 1, COVID-19, non-COVID-19, and other pneu-
monia CT lung images are shown. The images’ summary 
information is given in Table 3. If a comparison between 
the total number of images used in the study and the num-
ber of images used in previous studies in the literature is 
made, the average number of images used in 24 studies 
for COVID-19/non-COVID-19 classification is 1896. In 
this study, the total number of images used in this clas-
sification area was 4320 (2254 COVID-19 and 1766 non-
COVID-19). In this study, the number images used was 
more than 2 times the average, more images were used 
than 23 of the 24 previous studies, and almost an equal 
number as the 24th. For COVID-19 pneumonia/other 
pneumonia classification, an average of 1011 images 
were used in 7 studies in the literature, while the number 
of images used in this study was 3801 (2254 COVID-19 
and 1247 other pneumonia). Approximately four times 
the number of images used in this study, more than 91% 
related to COVID-19/non-COVID-19 classification were 
taken directly from the real world, and 90% were taken 
for COVID-19 pneumonia/other pneumonia classification. 
The main purpose of increasing the number of images 
used was to minimize the overfitting problem that can be 
encountered in CNN training.

Local Binary Pattern

LBP is a simple yet highly effective tissue-extraction oper-
ator that produces results by comparing a centre pixel with Ta
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its neighbours [60]. In the LBP operation, if the value of 
a neighbouring pixel is greater than or equal to the central 
pixel, the neighbouring pixel will be 1, and if it is smaller, 
it will be 0; therefore, binary values are assigned to the 
pixels around the centre pixel. The new value of the cen-
tre pixel is calculated by multiplying these binary values 
with the weight values that are calculated, depending on 

the order of the neighbouring pixels. As shown in Fig. 2, 
a sample LBP operation was carried out for a circle with 
a radius value of 1. It is possible to run LBP operations 
for many radius values, starting from 1. The radius values 
for LBP used in the first-stage experiments of this study 
were 1, 2, and 3. However, considering the length of the 
study, in later stage experiments, the process was contin-
ued using the radius value that provided the highest suc-
cess in the first-stage experiments. Figure 3 shows sample 
images obtained by applying the LBP operation to CT lung 
images used for this study.

Dual‑Tree Complex Wavelet Transform

Wavelet transform is a method of transitioning to a frequency 
plane that is widely used in image-processing applications. 
Applying a discrete wavelet filter to an image allows four 
sub-band image matrices called LL, LH, HL, and HH to be 

Fig. 1  a COVID-19, b non-
COVID-19, and c other pneu-
monia CT lung image samples

Table 3  Information on CT lung images used in this study

Source COVID-19 
image

Non-COVID-19 
image

Other 
pneumo-
nia

Cohen et al. [52] and 
Zhao et al. [53]

386 X X

Soares et al. [54, 55] 2168 756 1247
LIDC-IDRI [56–58] X 1010 X
Total 2554 1766 1247
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obtained. The dimensions of the sub-band image matrices are 
half the image dimensions. It is also possible to obtain lower 
sub-band image matrices for different scale values by using 
the LL sub-band image matrix obtained in the first stage.

DT-CWT, which is based on the use of two wavelet fil-
ters operating in parallel, was first proposed by Kingsbury 
[61, 62]. One of the DT-CWT filters allows the real part of 
the sub-band image matrix to be obtained, and the other 
obtained the imaginary part. In this way, it is possible to 
perform operations in a greater number of directions than 
with the standard discrete wavelet filter, thereby obtaining 
the lower-band image matrix. At the end of the DT-CWT 
process, operations are performed in six different direc-
tions: + 15, − 15, + 45, − 45, + 75, and − 75°. Figure 4 shows 
the sub-band images obtained when DT-CWT was applied 
to an image. To reveal the effect on the results of the change 

in the scale parameter, the process was continued by using 
two different scale values: 1 and 2.

Convolutional Neural Network

Deep learning is a subfield of artificial intelligence that 
derives new data from existing data by using multiple hid-
den layers and any machine learning method. In practical 
applications, machine learning is mostly preferred over an 
artificial neural network. CNN is the most commonly used 
deep learning model, although there are other models, such 
as recurrent neural networks, deep belief networks, and 
autoencoders.

CNN consists of a convolution layer, an activation func-
tion, a pooling layer, flattening, and a fully connected layer. 
Descriptions for these components are briefly given below.

Fig. 2  A sample LBP transac-
tion

Fig. 3  Images obtained by 
applying LBP to some a 
COVID-19, b non-COVID-19, 
and c other pneumonia CT lung 
images in Fig. 1 (radius values 
from left to right are 1, 2, and 3, 
respectively)
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• The convolution layer is the layer where the convolution 
processes are carried out. The process is performed by 
dividing the image into small pieces according to the 
size of the convolution filter to be used. In principle, 
the convolution layers are placed one after another and 
allow image-feature patterns to be extracted. This extrac-
tion starts with the low-level features to continue to the 
high-level features. Following the convolution process, 
a process of normalization is also carried out through a 
normalization inter-layer.

• Activation functions generate new outputs from their 
inputs, according to their functions. These functions are 
among many alternatives that bring the inputs into a cer-
tain range, taking some of the inputs and dropping others, 
or changing the direction of the inputs.

• The dimensions of the feature matrices, obtained as a 
result of the convolution processes, are excessive for 
direct use. For this reason, they should be reduced by 
sampling. Pooling layers are the layers where these sam-
pling processes are carried out.

• The image property matrices obtained by convolution, 
the activation function, and pooling are converted from 
a matrix to a vector before being transferred to the fully 
connected layer where the classification is made. This 
process is called flattening.

• The fully connected layer is where the outputs, i.e. the 
classification results, are obtained by using flattened-
feature vectors as inputs. This layer can, in essence, be 
described as a conventional neural network.

In all the experiments conducted for this study, a 
24-layer CNN architecture was used. Table 4 shows the 
information and parameter properties of the CNN architec-
ture layers. For Table 4, specifically adjusted parameters 
were noted, and other parameters were used as defaults. 
The experiments were carried out using the MATLAB 
2019 (a) software, and detailed information about these 
specific and default parameters can be viewed on the 
MathWorks [63] page.

Special attention was given to the CNN architecture to 
prevent the vanishing gradient problem, so ReLU (Rectified 

Linear Unit), which is a saturate-in-one-direction-only func-
tion, was preferred. Accordingly, a total of five ReLU lay-
ers were added to the architecture and situated behind the 
convolution layers. Additionally, batch normalization was 
performed by adding a batch normalization layer between 
convolution and ReLU layers, thus preventing the destruc-
tion of small derivatives. The CNN architecture used in this 
study included five batch normalization layers in total.

Another issue considered in CNN design is the overfitting 
problem. To avoid this problem, a dropout layer was added 
just before the fully connected layer in the CNN architecture. 
In this way, half the data (0.5) in the fully connected layer 
entry was randomly set to zero, and the network was pre-
vented from memorizing. The purpose of keeping the data-
set much larger than in the literature studies, as explained 
before, was to prevent overfitting. As an additional meas-
ure, the training set data were randomly shuffled before each 
iteration during network training.

The parameters used for the CNN training are given in 
Table 5 so that the experiments can be repeated by other 
study groups if required. Among these values, the defaults 
used by MATLAB 2019 (a) are indicated separately in 
parentheses, and comprehensive descriptions of the param-
eters can be viewed on the MathWorks [64] page. During 
network training, no data augmentation method or process 
was used.

No transfer was made for the starting weights during the 
CNN training. In other words, the training phase was run 
from the very beginning, and each experiment was repeated 
five times to limit the effects of the initial weights randomly 
assigned by the program to the results and thereby stabilize 
the study’s results. The average values of the experimental 
repetitions were shared within the scope of this study.

Evaluation Criteria of the Classification Results

The confusion matrix, one of the most basic evaluation meth-
ods, was used to evaluate and compare the results. The confu-
sion matrix consists of four numerical components, TP, FP, 
TN, and FN, for a classification consisting of two groups. TP 
and TN are the numbers of patient data labelled patient and 

Fig. 4  DT-CWT decomposition 
scheme
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normal, respectively, and as a result of the classification, the 
actual statuses are patient and normal, respectively. FP is the 
number of normal data points labelled as patients as a result of 
the classification, and FN is the number of actual patient data 
points labelled as normal. Many comparison parameters, such 
as sensitivity, specificity, precision, negative predictive value, 
false discovery rate, false omission rate, accuracy, and F1 
score, are calculated using confusion-matrix components (TP, 
FP, TN, and FN). Therefore, the confusion-matrix results of 
all the experiments were added specifically to the result tables. 
In this way, if other researches need to perform a comparison, 
the calculation of these parameters can be easily made, even 
if they are not given in this study.

In addition to the confusion-matrix components, sensitiv-
ity (SEN), specificity (SPE), accuracy (ACC), and F-1 score 
(F-1) values were calculated and included. Sensitivity meas-
ures the ratio of the true positives labelled correctly. Specificity 
determines the ratio of the true negatives labelled correctly. 
Accuracy is the ratio of the number of correctly labelled data 
points to the total number of data points. Mathematical calcu-
lations of these parameters were performed with the formulas 
in Eqs. (1)–(2).

The threshold values used to label the results in determin-
ing the confusion-matrix components TP, FP, TN, and FN 
are of great importance. For example, in labelling a result 
set with classification results ranging from 0 to 1, differ-
ent confusion matrices were obtained for the case when the 

(1)SEN = TP∕(TP + FN)

(2)SPE = TN∕(TN + FP)

(3)ACC = (TP + TN)∕(TP + TN + FP + FN)

(4)F - 1 score = (2 × TP)∕(2 × TP + FP + FN)

Table 4  Features of the CNN 
architecture used for this study

Layer number Layer name Layer parameters (MATLAB)

1 imageInputLayer [448 448 1], [224 224 1], [224 224 2], [224 
224 3], [112 112 1], [112 112 2] and [112 
112 3]

2 convolution2dLayer (3,4,’Padding’,’same’)
3 batchNormalizationLayer Default
4 reluLayer Default
5 maxPooling2dLayer (2,’Stride’,2)
6 convolution2dLayer (3,8,’Padding’,’same’)
7 batchNormalizationLayer Default
8 reluLayer Default
9 maxPooling2dLayer (2,’Stride’,2)
10 convolution2dLayer (3,16,’Padding’,’same’)
11 batchNormalizationLayer Default
12 reluLayer Default
13 maxPooling2dLayer (2,’Stride’,2)
14 convolution2dLayer (3,32,’Padding’,’same’)
15 batchNormalizationLayer Default
16 reluLayer Default
17 maxPooling2dLayer (2,’Stride’,2)
18 convolution2dLayer (3,64,’Padding’,’same’)
19 batchNormalizationLayer Default
20 reluLayer Default
21 dropoutLayer 0,5
22 fullyConnectedLayer 2
23 softmaxLayer Default
24 classificationLayer Default

Table 5  Information on the CNN training options

Solver for training network sgdm (stochastic gradient 
descent with momentum)

Maximum number of epochs 30 (default)
Size of mini-batch 128 (default)
Option for data shuffling Every epoch
Initial learning rate 0.01 (default for sgdm)
Other parameters Default
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threshold value was 0.5 and 0.9; the labels were made for 
the threshold value to be accepted as 0.5.

Another basic evaluation method, receiver operating char-
acteristic (ROC) analysis, was used, and the area under the 
ROC curve (area under the curve (AUC)) was determined. 
The ROC curve is the change in sensitivity (SEN) (y-axis) 
relative to precision, namely, the complement of specific-
ity to 1 (1-SPE) (x-axis) depending on the variation in the 
threshold value used for labelling between the minimum and 
maximum result values predicted for classification.

Proposed Pipeline Approach for COVID‑19/
Non‑COVID‑19 and COVID‑19 Pneumonia/Other 
Pneumonia Classification

First, the results of the experiment were calculated for 
the case when the original CT lung images were used 
directly, and the images were obtained by applying LBP 
to these original CT lung images. Next, the results were 
obtained for the case when some combinations of sub-
image matrices, obtained by using DT-CWT transforma-
tion as an intermediate process in classification processes, 
were used. In this way, classification results were obtained 
with and without application of the LBP process. Figure 5 
shows a summary of the experiments carried out with this 
approach.

Second, pipeline approaches, based on combining the 
results obtained in the first stage, were proposed, and their 

success was tested. Five pipeline approaches were used, 
where the first, second, and third pipeline approaches were 
based on the creation of the new classification results made 
through the combination, in certain proportions, of the 
numerical results obtained in the context of the two experi-
ments, which relate to the cases where the diagnosis of 
labels was performed with, and without, the help of the LBP 
process (COVID-19 or non-COVID-19 for COVID-19/non-
COVID-19 classification; COVID-19 pneumonia or other 
pneumonia for COVID-19 pneumonia/other pneumonia 
classification). If these labels differed, new diagnosis labels 
were affiliated with these results. In Fig. 6, the approach 
related to the first three pipelines is explained visually. New 
numerical results were obtained for three different weight 
combinations, with the sum of the weight rates being 100%, 
25%–75%, 50%–50%, and 75%–25%. Next, diagnostic label-
ling of the new numerical classification result was carried 
out. In these pipeline approaches, if the diagnostic labels 
obtained with and without the help of the LBP process were 
identical and if these labels were COVID-19, then the mini-
mum numerical result was accepted; if these labels were 
non-COVID-19, then the maximum numerical result was 
accepted as the new classification result for COVID-19/non-
COVID-19 classification.

Similarly, if the diagnostic labels obtained with and 
without the help of the LBP process were identical and if 
these labels were COVID-19 pneumonia, then the mini-
mum numerical result was accepted; if these labels were 

Fig. 5  Summary of the first-stage experiments carried out in this study
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other pneumonia, then the maximum numerical result was 
accepted as the new classification result for COVID-19 
pneumonia/other pneumonia classification.

The main reason for this is that a value of 0 was assigned 
as the target for COVID-19 images and a 1 value was 
assigned as the target for non-COVID-19 images in the 
course of training and test processes for COVID-19/non-
COVID-19 classification. Similarly, 0 was assigned as the 
target for COVID-19 pneumonia images, and 1 was assigned 
as the target for other pneumonia images for COVID-19 
pneumonia/other pneumonia classification.

The fourth and fifth pipeline approaches are explained 
in Figs.  7 and 8. The essential difference in these 
approaches from the first three is that if the diagnosis 
labels with and without the help of the LBP process were 
different, then unidirectional new numerical result calcula-
tions were performed. Here, unidirectional means only the 
COVID-19-labelled or non-COVID-19-labelled images for 
COVID-19/non-COVID-19 classification and COVID-19 
pneumonia-labelled or other pneumonia-labelled images 
for COVID-19 pneumonia/other pneumonia classification. 
In this pipeline approach, a 50%–50% weight combination 
was used in the combining process. The other new numeri-
cal results and label acquisition procedures were similar 
to those of the first three pipelines.

Experiments and Results

Experiments

This study used a deep learning method, one of the current 
artificial intelligence approaches, to automatically distin-
guish COVID-19/non-COVID-19 and COVID-19 pneu-
monia/other pneumonia from CT lung images. CT lung 
images of 2554 COVID-19 patients, obtained by combining 
three datasets, and 1766 non-COVID-19 CT lung images 
with normal to extremely dense level nodules, obtained by 
combining two datasets, were used for COVID-19/non-
COVID-19 classification. Similarly, CT lung images of 2554 
COVID-19 patients, obtained by combining three datasets, 
and 1247 other pneumonia CT lung images were used for 
COVID-19 pneumonia/other pneumonia classification. The 
images were first framed to determine the interests of CT 
lung images. While the framing was being done, action was 
taken to cover the borders of the lung region to the maxi-
mum extent. CNN, one of the deep learning methods, was 
used, and all images used in training and test procedures 
were the same size for it to work. After framing, the images 
were resized, and the image sizes were set to 448 × 448. In 
the last stage of the pre-processing section, the images were 
saved as 8-bit greyscale in png format. One thing to note 

Fig. 6  Block diagram of the pipeline approaches (Pipeline-1, Pipeline-2, and Pipeline-3) proposed in this study
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about the image sizes within the scope of this study is that 
after LBP processing, the image dimensions were re-set to 
448 × 448 because image sizes decreased due to the applica-
tion of the LBP process. Furthermore, the scale values of the 
DT-CWT operation used in this study were 1 and 2, and each 
application of this operation reduced image sizes by half.

A 24-layer CNN architecture, previously described in 
detail, was used for the training and testing section of this 
study. This CNN architecture was used for all training and 
test processes. However, since image and feature matrices 
of different sizes were used, only the image sizes given to 
the CNN input differed.

For the experiments, the training procedures were carried 
out according to the k-fold cross-validation principle, where 
the crossing value (k) was determined to be 10.

In every stage of the training process, 3889/3879 images 
were used in the training processes, except for 431/441 
images (nine groups consisted of 431 images and one group 
consisted of 441 images) that were used in the test processes 
for COVID-19/non-COVID-19 classification. These train-
ing and test processes were run ten times, and the results 
for the classification of all the images were obtained. While 
0 was assigned as the target value for COVID-19 images, 1 
was assigned for non-COVID-19 images. The COVID-19 

and non-COVID-19 labels of the numerical results were 
obtained, and the threshold value was accepted as 0.5. 
Numerical image results below this threshold value were 
labelled COVID-19, and numerical results above this value 
were labelled non-COVID-19.

In every stage of the training process, 3422/3411 
images were used for the training processes, except for 
379/390 images (nine groups consisting of 379 images 
and one group consisting of 390 images) that were used 
in test processes for COVID-19 pneumonia/other pneu-
monia classification. These training and test processes 
were run ten times, and the results for classification of 
all the images were obtained. While 0 was assigned as 
the target value for COVID-19 pneumonia images, 1 was 
assigned for other pneumonia images, and the threshold 
value was accepted as 0.5. Numerical image results below 
this threshold value were labelled COVID-19 pneumonia, 
and numerical results above this value were labelled other 
pneumonia.

Experiments were conducted, and results were obtained 
for both the images to which LBP was applied and those 
to which LBP was not applied, as described above. Next, 
the pipeline approaches, which allowed the results of these 
experiments to be combined and were previously explained, 

Fig. 7  Block diagram of Pipeline-4 proposed in this study
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were set to work. The success of the five pipeline approaches 
was tested. No transfer was made for the starting weights 
during the CNN training. In other words, the training phase 
was run from the very beginning. In this context, each exper-
iment was repeated five times to limit the effects of the initial 
weights randomly assigned by the program on the results 
and thereby stabilize the study’s results. The average values 
of the experimental repetitions were shared within the scope 
of this study.

To compare the operating times of the tested pipeline 
approaches, the period of CPU times in which results for 
the images were obtained were also measured. The experi-
ments were conducted with the help of the MATLAB 2019 
(a) software running on an Intel(R) Xeon (R) CPU E5-2680 
2.7-GHz (32-CPU) computer with 64 GB RAM.

Results

First, training and test processes were carried out (without 
using DT-CWT) using the images obtained by both apply-
ing and not applying the LBP process to greyscale CT lung 
images. In these experiments, the size of the image matrices 
given as input to the CNN architecture was 448 × 448 × 1. 
Next, the results of these two experiments were combined 

with the help of the five different pipeline approaches 
detailed in the previous sections, and new results were cal-
culated. In these first-stage experiments, the effect of the 
change in radius value used in the LBP process on the results 
was also examined. For this reason, the results for the images 
on which LBP was applied for three different radius values, 
1, 2, and 3, were shared. The results are given in Tables 6, 
7, and 8 for COVID-19/non-COVID-19 classification and 
in Tables 9, 10, and 11 for COVID-19 pneumonia/other 
pneumonia classification. The highest results obtained in 
Tables 6, 7, 8, 9, 10, and 11 (the same as in other tables) are 
marked in bold. The tested pipeline approaches increased the 
study results for all the parameters used in the evaluation.

Second, training and testing processes were carried out, 
and the results were obtained by using the real part of the 
LL and LLL sub-bands obtained by applying DT-CWT as 
an intermediate process to the CT lung images to which 
LBP was applied and not applied. Since the highest results 
obtained in the first-stage experiments were obtained when 
the LBP radius value was 1, only the results of this radius 
value are given for the processes after this stage. In these 
experiments, the size of the image matrices given as an 
input to the CNN architecture was 224 × 224 × 1 for the 
LL sub-band and 112 × 112 × 1 for the LLL sub-band. The 

Fig. 8  Block diagram of Pipeline-5 proposed in this study
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Table 6  Results obtained by 
directly using CT lung images 
for COVID-19/non-COVID-19 
classification (LBP radius value 
1)

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2446.40 107.60 1605.60 160.40 0.9579 0.9092 0.9380 0.9481 0.9833 1.1872
With LBP 2429.20 124.80 1588.20 177.80 0.9511 0.8993 0.9300 0.9414 0.9806 1.1915
Pipeline-1 2439.20 114.80 1606.60 159.40 0.9551 0.9097 0.9365 0.9468 0.9886 2.3788
Pipeline-2 2466.40 87.60 1637.40 128.60 0.9657 0.9272 0.9500 0.9580 0.9897 2.3788
Pipeline-3 2455.60 98.40 1626.60 139.40 0.9615 0.9211 0.9450 0.9538 0.9894 2.3788
Pipeline-4 2497.60 56.40 1555.00 211.00 0.9779 0.8805 0.9381 0.9492 0.9882 2.3788
Pipeline-5 2415.20 138.80 1688.00 78.00 0.9457 0.9558 0.9498 0.9571 0.9886 2.3788

Table 7  Results obtained by 
directly using CT lung images 
for COVID-19/non-COVID-19 
classification (LBP radius value 
2)

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2446.40 107.60 1605.60 160.40 0.9579 0.9092 0.9380 0.9481 0.9833 1.1872
With LBP 2423.40 130.60 1565.60 200.40 0.9489 0.8865 0.9234 0.9361 0.9767 1.1909
Pipeline-1 2436.40 117.60 1586.00 180.00 0.9540 0.8981 0.9311 0.9424 0.9870 2.3782
Pipeline-2 2466.00 88.00 1625.40 140.60 0.9655 0.9204 0.9471 0.9557 0.9885 2.3782
Pipeline-3 2454.60 99.40 1619.40 146.60 0.9611 0.9170 0.9431 0.9523 0.9884 2.3782
Pipeline-4 2496.20 57.80 1547.20 218.80 0.9774 0.8761 0.9360 0.9475 0.9874 2.3782
Pipeline-5 2416.20 137.80 1683.80 82.20 0.9460 0.9535 0.9491 0.9565 0.9878 2.3782

Table 8  Results obtained by 
directly using CT lung images 
for COVID-19/non-COVID-19 
classification (LBP radius value 
3)

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2446.40 107.60 1605.60 160.40 0.9579 0.9092 0.9380 0.9481 0.9833 1.1872
With LBP 2406.00 148.00 1519.80 246.20 0.9421 0.8606 0.9088 0.9244 0.9697 1.1893
Pipeline-1 2422.00 132.00 1565.80 200.20 0.9483 0.8866 0.9231 0.9359 0.9839 2.3766
Pipeline-2 2460.20 93.80 1620.80 145.20 0.9633 0.9178 0.9447 0.9537 0.9865 2.3766
Pipeline-3 2454.00 100.00 1621.60 144.40 0.9608 0.9182 0.9434 0.9526 0.9868 2.3766
Pipeline-4 2492.80 61.20 1542.40 223.60 0.9760 0.8734 0.9341 0.9460 0.9860 2.3766
Pipeline-5 2413.80 140.20 1684.00 82.00 0.9451 0.9536 0.9486 0.9560 0.9865 2.3766

Table 9  Results obtained by 
directly using CT lung images 
for COVID-19 pneumonia/other 
pneumonia classification (LBP 
radius value 1)

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2401.60 152.40 818.40 428.60 0.9403 0.6563 0.8471 0.8921 0.9019 1.1729
With LBP 2419.40 134.60 856.00 391.00 0.9473 0.6864 0.8617 0.9020 0.9251 1.1733
Pipeline-1 2440.40 113.60 865.60 381.40 0.9555 0.6941 0.8698 0.9079 0.9447 2.3463
Pipeline-2 2493.20 60.80 883.80 363.20 0.9762 0.7087 0.8885 0.9216 0.9477 2.3463
Pipeline-3 2445.60 108.40 846.80 400.20 0.9576 0.6791 0.8662 0.9058 0.9428 2.3463
Pipeline-4 2517.60 36.40 725.60 521.40 0.9857 0.5819 0.8532 0.9003 0.9342 2.3463
Pipeline-5 2377.20 176.80 976.60 270.40 0.9308 0.7832 0.8823 0.9140 0.9412 2.3463

Table 10  Results obtained by 
directly using CT lung images 
for COVID-19 pneumonia/other 
pneumonia classification (LBP 
radius value 2)

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2401.60 152.40 818.40 428.60 0.9403 0.6563 0.8471 0.8921 0.9019 1.1729
With LBP 2392.20 161.80 795.00 452.00 0.9366 0.6375 0.8385 0.8863 0.9024 1.1727
Pipeline-1 2430.00 124.00 818.00 429.00 0.9514 0.6560 0.8545 0.8979 0.9334 2.3456
Pipeline-2 2478.80 75.20 868.60 378.40 0.9706 0.6966 0.8807 0.9162 0.9388 2.3456
Pipeline-3 2438.80 115.20 845.20 401.80 0.9549 0.6778 0.8640 0.9042 0.9357 2.3456
Pipeline-4 2506.00 48.00 725.20 521.80 0.9812 0.5816 0.8501 0.8980 0.9289 2.3456
Pipeline-5 2374.40 179.60 961.80 285.20 0.9297 0.7713 0.8777 0.9108 0.9340 2.3456
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results obtained in this context are given in Tables 12 and 
13 for COVID-19/non-COVID-19 classification and in 
Tables 14 and 15 for COVID-19 pneumonia/other pneumo-
nia classification.

Third, training and testing processes were carried out, 
and the results were obtained by using the imaginary part 
of the LL and LLL sub-bands obtained by applying DT-
CWT as an intermediate process to the CT lung images to 
which LBP was not applied. In these experiments, the sizes 

of the image matrices given as input to the CNN architecture 
were 224 × 224 × 1 for the LL sub-band and 112 × 112 × 1 
for the LLL sub-band. The results are given in Tables 16 
and 17 for COVID-19/non-COVID-19 classification and in 
Tables 18 and 19 for COVID-19 pneumonia/other pneumo-
nia classification.

Fourth, training and testing processes were carried out, 
and the results were obtained by using the real part of 
the LL, LH, and HL sub-bands and the real part of the 

Table 11  Results obtained by 
directly using CT lung images 
for COVID-19 pneumonia/other 
pneumonia classification (LBP 
radius value 3)

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2401.60 152.40 818.40 428.60 0.9403 0.6563 0.8471 0.8921 0.9019 1.1729
With LBP 2379.40 174.60 795.00 452.00 0.9316 0.6375 0.8351 0.8837 0.9007 1.1744
Pipeline-1 2419.60 134.40 812.20 434.80 0.9474 0.6513 0.8502 0.8948 0.9346 2.3473
Pipeline-2 2474.00 80.00 856.20 390.80 0.9687 0.6866 0.8761 0.9131 0.9400 2.3473
Pipeline-3 2437.40 116.60 840.60 406.40 0.9543 0.6741 0.8624 0.9031 0.9374 2.3473
Pipeline-4 2500.80 53.20 724.40 522.60 0.9792 0.5809 0.8485 0.8968 0.9276 2.3473
Pipeline-5 2374.80 179.20 950.20 296.80 0.9298 0.7620 0.8748 0.9089 0.9358 2.3473

Table 12  Results obtained by 
using the real part of the LL 
sub-band obtained by applying 
DT-CWT to CT lung images 
for COVID-19/non-COVID-19 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2471.2 82.8 1598.6 167.4 0.9676 0.9052 0.9421 0.9518 0.9884 0.3347
With LBP 2445.4 108.6 1588.4 177.6 0.9575 0.8994 0.9338 0.9447 0.9828 0.3366
Pipeline-1 2457.8 96.2 1598.2 167.8 0.9623 0.9050 0.9389 0.9490 0.9906 0.6712
Pipeline-2 2488.8 65.2 1636.6 129.4 0.9745 0.9267 0.9550 0.9624 0.9918 0.6712
Pipeline-3 2475.4 78.6 1615.6 150.4 0.9692 0.9148 0.9470 0.9558 0.9915 0.6712
Pipeline-4 2510.2 43.8 1549.8 216.2 0.9829 0.8776 0.9398 0.9508 0.9913 0.6712
Pipeline-5 2449.8 104.2 1685.4 80.6 0.9592 0.9544 0.9572 0.9636 0.9911 0.6712

Table 13  Results obtained by 
using the real part of the LLL 
sub-band obtained by applying 
DT-CWT to CT lung images 
for COVID-19/non-COVID-19 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2450.2 103.8 1565.6 200.4 0.9594 0.8865 0.9296 0.9416 0.9839 0.1270
With LBP 2428.4 125.6 1581.2 184.8 0.9508 0.8954 0.9281 0.9399 0.9810 0.1269
Pipeline-1 2441.6 112.4 1596.2 169.8 0.9560 0.9039 0.9347 0.9454 0.9882 0.2539
Pipeline-2 2482.4 71.6 1620.4 145.6 0.9720 0.9176 0.9497 0.9581 0.9894 0.2539
Pipeline-3 2456.8 97.2 1584.4 181.6 0.9619 0.8972 0.9355 0.9463 0.9886 0.2539
Pipeline-4 2505.2 48.8 1524.4 241.6 0.9809 0.8632 0.9328 0.9452 0.9884 0.2539
Pipeline-5 2427.4 126.6 1661.6 104.4 0.9504 0.9409 0.9465 0.9546 0.9881 0.2539

Table 14  Results obtained by 
using the real part of the LL 
sub-band obtained by applying 
DT-CWT to CT lung images 
for COVID-19 pneumonia/other 
pneumonia classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2440.6 113.4 889.2 357.8 0.9556 0.7131 0.8760 0.9120 0.9322 0.3326
With LBP 2416.6 137.4 874.8 372.2 0.9462 0.7015 0.8659 0.9046 0.9286 0.3330
Pipeline-1 2441.0 113.0 891.0 356.0 0.9558 0.7145 0.8766 0.9124 0.9543 0.6656
Pipeline-2 2508.4 45.6 918.2 328.8 0.9821 0.7363 0.9015 0.9306 0.9588 0.6656
Pipeline-3 2467.0 87.0 901.6 345.4 0.9659 0.7230 0.8862 0.9194 0.9567 0.6656
Pipeline-4 2525.6 28.4 805.4 441.6 0.9889 0.6459 0.8763 0.9149 0.9493 0.6656
Pipeline-5 2423.4 130.6 1002.0 245.0 0.9489 0.8035 0.9012 0.9281 0.9556 0.6656
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LLL, LLH, and LHL sub-bands obtained by applying DT-
CWT as an intermediate process to CT lung images to 
which LBP was applied and not applied. In these experi-
ments, the size of the image matrices given as an input to 
the CNN architecture was 224 × 224 × 3 for the LL, LH, 
and HL sub-bands and 112 × 112 × 3 for the LLL, LLH, 
and LHL sub-bands. The results are given in Tables 20 
and 21 for COVID-19/non-COVID-19 classification and 

in Tables 22 and 23 for COVID-19 pneumonia/other pneu-
monia classification.

Fifth, training and testing processes were carried out, 
and the results were obtained by using the imaginary 
part of the LL, LH, and HL sub-bands and the imaginary 
part of the LLL, LLH, and LHL sub-bands obtained by 
applying DT-CWT as an intermediate process to CT lung 
images to which LBP was applied and not applied. In these 

Table 15  Results obtained by 
using the real part of the LLL 
sub-band obtained by applying 
DT-CWT to CT lung images 
for COVID-19 pneumonia/other 
pneumonia classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2416.8 137.2 861.8 385.2 0.9463 0.6911 0.8626 0.9025 0.9198 0.1252
With LBP 2374.8 179.2 809.2 437.8 0.9298 0.6489 0.8377 0.8850 0.9063 0.1251
Pipeline-1 2400.4 153.6 827.2 419.8 0.9399 0.6634 0.8491 0.8933 0.9379 0.2503
Pipeline-2 2482.4 71.6 882.2 364.8 0.9720 0.7075 0.8852 0.9192 0.9449 0.2503
Pipeline-3 2439.0 115.0 866.6 380.4 0.9550 0.6949 0.8697 0.9078 0.9433 0.2503
Pipeline-4 2510.4 43.6 768.8 478.2 0.9829 0.6165 0.8627 0.9059 0.9370 0.2503
Pipeline-5 2388.8 165.2 975.2 271.8 0.9353 0.7820 0.8850 0.9162 0.9420 0.2503

Table 16  Results obtained by 
using the imaginary part of 
the LL sub-band obtained by 
applying DT-CWT to CT lung 
images for COVID-19/non-
COVID-19 classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2463.6 90.4 1621.4 144.6 0.9646 0.9181 0.9456 0.9545 0.9890 0.3348
With LBP 2438.2 115.8 1593.8 172.2 0.9547 0.9025 0.9333 0.9442 0.9825 0.3363
Pipeline-1 2451.4 102.6 1612.0 154.0 0.9598 0.9128 0.9406 0.9503 0.9910 0.6711
Pipeline-2 2483.8 70.2 1651.8 114.2 0.9725 0.9353 0.9573 0.9642 0.9923 0.6711
Pipeline-3 2470.0 84.0 1634.4 131.6 0.9671 0.9255 0.9501 0.9582 0.9921 0.6711
Pipeline-4 2509.2 44.8 1574.0 192.0 0.9825 0.8913 0.9452 0.9550 0.9922 0.6711
Pipeline-5 2438.2 115.8 1699.2 66.8 0.9547 0.9622 0.9577 0.9639 0.9916 0.6711

Table 17  Results obtained by 
using the imaginary part of 
the LLL sub-band obtained by 
applying DT-CWT to CT lung 
images for COVID-19/non-
COVID-19 classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2450.2 103.8 1566.2 199.8 0.9594 0.8869 0.9297 0.9417 0.9829 0.1270
With LBP 2428.8 125.2 1578.8 187.2 0.9510 0.8940 0.9277 0.9396 0.9811 0.1257
Pipeline-1 2442.8 111.2 1590.2 175.8 0.9565 0.9005 0.9336 0.9445 0.9880 0.2527
Pipeline-2 2480.8 73.2 1621.6 144.4 0.9713 0.9182 0.9496 0.9580 0.9893 0.2527
Pipeline-3 2459.0 95.0 1583.6 182.4 0.9628 0.8967 0.9358 0.9466 0.9884 0.2527
Pipeline-4 2504.8 49.2 1529.6 236.4 0.9807 0.8661 0.9339 0.9461 0.9882 0.2527
Pipeline-5 2426.2 127.8 1658.2 107.8 0.9500 0.9390 0.9455 0.9537 0.9877 0.2527

Table 18  Results obtained 
by using the imaginary part 
of the LL sub-band obtained 
by applying DT-CWT to CT 
lung images for COVID-19 
pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2451.4 102.6 898.0 349.0 0.9598 0.7201 0.8812 0.9157 0.9325 0.3323
With LBP 2410.0 144.0 880.6 366.4 0.9436 0.7062 0.8657 0.9043 0.9315 0.3323
Pipeline-1 2434.6 119.4 894.6 352.4 0.9532 0.7174 0.8759 0.9117 0.9556 0.6646
Pipeline-2 2502.2 51.8 921.4 325.6 0.9797 0.7389 0.9007 0.9299 0.9603 0.6646
Pipeline-3 2469.6 84.4 904.8 342.2 0.9670 0.7256 0.8878 0.9205 0.9589 0.6646
Pipeline-4 2527.8 26.2 814.0 433.0 0.9897 0.6528 0.8792 0.9168 0.9498 0.6646
Pipeline-5 2425.8 128.2 1005.4 241.6 0.9498 0.8063 0.9027 0.9292 0.9580 0.6646
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experiments, the size of the image matrices given as an 
input to the CNN architecture was 224 × 224 × 3 for the LL, 
LH, and HL sub-bands and 112 × 112 × 3 for the LLL, LLH, 
and LHL sub-bands. The results are given in Tables 24 and 
25 for COVID-19/non-COVID-19 classification and in 
Tables 26 and 27 for COVID-19 pneumonia/other pneu-
monia classification.

Sixth, training and testing processes were carried 
out, and the results were obtained by using the real and 

imaginary parts of the LL and LLL sub-bands obtained 
by applying DT-CWT as an intermediate process to CT 
lung images to which LBP was applied and not applied. 
In these experiments, the size of the image matrices given 
as an input to the CNN architecture was 224 × 224 × 2 for 
the LL sub-band and 112 × 112 × 2 for the LLL sub-band. 
The results are given in Tables 28 and 29 for COVID-19/
non-COVID-19 classification and in Tables 30 and 31 for 
COVID-19 pneumonia/other pneumonia classification.

Table 19  Results obtained by 
using the imaginary part of 
the LLL sub-band obtained 
by applying DT-CWT to CT 
lung images for COVID-19 
pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2444.0 110.0 853.8 393.2 0.9569 0.6847 0.8676 0.9067 0.9227 0.1261
With LBP 2371.0 183.0 812.4 434.6 0.9283 0.6515 0.8375 0.8848 0.9057 0.1244
Pipeline-1 2396.6 157.4 829.4 417.6 0.9384 0.6651 0.8487 0.8929 0.9373 0.2505
Pipeline-2 2491.8 62.2 872.8 374.2 0.9756 0.6999 0.8852 0.9195 0.9445 0.2505
Pipeline-3 2459.6 94.4 861.8 385.2 0.9630 0.6911 0.8738 0.9112 0.9441 0.2505
Pipeline-4 2521.0 33.0 756.8 490.2 0.9871 0.6069 0.8624 0.9060 0.9389 0.2505
Pipeline-5 2414.8 139.2 969.8 277.2 0.9455 0.7777 0.8904 0.9206 0.9429 0.2505

Table 20  Results obtained by 
using the real part of the LL, 
LH, and HL sub-bands obtained 
by applying DT-CWT to CT 
lung images for COVID-19/
non-COVID-19 classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2468.8 85.2 1599.8 166.2 0.9666 0.9059 0.9418 0.9516 0.9882 0.6488
With LBP 2432.6 121.4 1593.8 172.2 0.9525 0.9025 0.9320 0.9431 0.9815 0.6460
Pipeline-1 2440.4 113.6 1604.8 161.2 0.9555 0.9087 0.9364 0.9467 0.9903 1.2948
Pipeline-2 2480.2 73.8 1641.8 124.2 0.9711 0.9297 0.9542 0.9616 0.9916 1.2948
Pipeline-3 2478.4 75.6 1620.4 145.6 0.9704 0.9176 0.9488 0.9573 0.9915 1.2948
Pipeline-4 2505.2 48.8 1552.8 213.2 0.9809 0.8793 0.9394 0.9503 0.9914 1.2948
Pipeline-5 2443.8 110.2 1688.8 77.2 0.9569 0.9563 0.9566 0.9631 0.9912 1.2948

Table 21  Results obtained 
by using the real part of the 
LLL, LLH, and LHL sub-
bands obtained by applying 
DT-CWT to CT lung images 
for COVID-19/non-COVID-19 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2449.6 104.4 1581.2 184.8 0.9591 0.8954 0.9331 0.9443 0.9846 0.2038
With LBP 2408.6 145.4 1575.4 190.6 0.9431 0.8921 0.9222 0.9348 0.9778 0.2043
Pipeline-1 2425.0 129.0 1589.8 176.2 0.9495 0.9002 0.9294 0.9408 0.9873 0.4080
Pipeline-2 2475.0 79.0 1629.6 136.4 0.9691 0.9228 0.9501 0.9583 0.9890 0.4080
Pipeline-3 2459.0 95.0 1596.2 169.8 0.9628 0.9039 0.9387 0.9489 0.9887 0.4080
Pipeline-4 2499.6 54.4 1538.6 227.4 0.9787 0.8712 0.9348 0.9467 0.9888 0.4080
Pipeline-5 2425.0 129.0 1672.2 93.8 0.9495 0.9469 0.9484 0.9561 0.9883 0.4080

Table 22  Results obtained by 
using the real part of the LL, 
LH, and HL sub-bands obtained 
by applying DT-CWT to CT 
lung images for COVID-19 
pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2455.6 98.4 906.6 340.4 0.9615 0.7270 0.8846 0.9180 0.9370 0.6367
With LBP 2412.4 141.6 874.2 372.8 0.9446 0.7010 0.8647 0.9037 0.9321 0.6396
Pipeline-1 2439.6 114.4 897.2 349.8 0.9552 0.7195 0.8779 0.9131 0.9565 1.2763
Pipeline-2 2509.6 44.4 929.0 318.0 0.9826 0.7450 0.9047 0.9327 0.9615 1.2763
Pipeline-3 2476.4 77.6 915.2 331.8 0.9696 0.7339 0.8923 0.9236 0.9604 1.2763
Pipeline-4 2532.4 21.6 820.6 426.4 0.9915 0.6581 0.8821 0.9187 0.9539 1.2763
Pipeline-5 2432.8 121.2 1015.0 232.0 0.9525 0.8140 0.9071 0.9323 0.9592 1.2763
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Table 23  Results obtained by 
using the real part of the LLL, 
LLH, and LHL sub-bands 
obtained by applying DT-CWT 
to CT lung images for COVID-
19 pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2428.4 125.6 847.6 399.4 0.9508 0.6797 0.8619 0.9025 0.9223 0.2033
With LBP 2327.4 226.6 797.6 449.4 0.9113 0.6396 0.8222 0.8732 0.8909 0.2026
Pipeline-1 2358.6 195.4 812.2 434.8 0.9235 0.6513 0.8342 0.8822 0.9316 0.4058
Pipeline-2 2474.6 79.4 859.8 387.2 0.9689 0.6895 0.8772 0.9139 0.9411 0.4058
Pipeline-3 2444.2 109.8 859.2 387.8 0.9570 0.6890 0.8691 0.9076 0.9414 0.4058
Pipeline-4 2512.8 41.2 742.0 505.0 0.9839 0.5950 0.8563 0.9020 0.9374 0.4058
Pipeline-5 2390.2 163.8 965.4 281.6 0.9359 0.7742 0.8828 0.9148 0.9398 0.4058

Table 24  Results obtained by 
using the imaginary part of 
the LL, LH, and HL sub-
bands obtained by applying 
DT-CWT to CT lung images 
for COVID-19/non-COVID-19 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2466.2 87.8 1590.4 175.6 0.9656 0.9006 0.9390 0.9493 0.9878 0.6440
With LBP 2431.8 122.2 1596.6 169.4 0.9522 0.9041 0.9325 0.9434 0.9831 0.6448
Pipeline-1 2445.4 108.6 1612.2 153.8 0.9575 0.9129 0.9393 0.9491 0.9905 1.2888
Pipeline-2 2483.0 71.0 1650.8 115.2 0.9722 0.9348 0.9569 0.9639 0.9918 1.2888
Pipeline-3 2475.6 78.4 1611.4 154.6 0.9693 0.9125 0.9461 0.9551 0.9914 1.2888
Pipeline-4 2507.6 46.4 1555.6 210.4 0.9818 0.8809 0.9406 0.9513 0.9912 1.2888
Pipeline-5 2441.6 112.4 1685.6 80.4 0.9560 0.9545 0.9554 0.9620 0.9910 1.2888

Table 25  Results obtained 
by using the imaginary part 
of the LLL, LLH, and LHL 
sub-bands obtained by applying 
DT-CWT to CT lung images 
for COVID-19/non-COVID-19 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2450.2 103.8 1548.2 217.8 0.9594 0.8767 0.9256 0.9385 0.9820 0.2037
With LBP 2405.0 149.0 1541.4 224.6 0.9417 0.8728 0.9135 0.9279 0.9741 0.2043
Pipeline-1 2423.0 131.0 1554.0 212.0 0.9487 0.8800 0.9206 0.9339 0.9851 0.4080
Pipeline-2 2470.4 83.6 1594.6 171.4 0.9673 0.9029 0.9410 0.9509 0.9871 0.4080
Pipeline-3 2454.8 99.2 1560.0 206.0 0.9612 0.8834 0.9294 0.9415 0.9868 0.4080
Pipeline-4 2499.0 55.0 1500.6 265.4 0.9785 0.8497 0.9258 0.9398 0.9867 0.4080
Pipeline-5 2421.6 132.4 1642.2 123.8 0.9482 0.9299 0.9407 0.9498 0.9862 0.4080

Table 26  Results obtained by 
using the imaginary part of LL, 
LH, and HL sub-bands obtained 
by applying DT-CWT to CT 
lung images for COVID-19 
pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2442.6 111.4 881.0 366.0 0.9564 0.7065 0.8744 0.9110 0.9279 0.6388
With LBP 2404.4 149.6 857.6 389.4 0.9414 0.6877 0.8582 0.8992 0.9258 0.6409
Pipeline-1 2430.2 123.8 873.0 374.0 0.9515 0.7001 0.8690 0.9071 0.9491 1.2797
Pipeline-2 2504.6 49.4 906.6 340.4 0.9807 0.7270 0.8974 0.9278 0.9542 1.2797
Pipeline-3 2467.0 87.0 894.6 352.4 0.9659 0.7174 0.8844 0.9182 0.9526 1.2797
Pipeline-4 2525.4 28.6 794.2 452.8 0.9888 0.6369 0.8733 0.9130 0.9460 1.2797
Pipeline-5 2421.8 132.2 993.4 253.6 0.9482 0.7966 0.8985 0.9262 0.9515 1.2797

Table 27  Results obtained by 
using the imaginary part of 
LLL, LLH, and LHL sub-bands 
obtained by applying DT-CWT 
to CT lung images for COVID-
19 pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2423.6 130.4 874.8 372.2 0.9489 0.7015 0.8678 0.9060 0.9235 0.2029
With LBP 2337.8 216.2 781.2 465.8 0.9153 0.6265 0.8206 0.8727 0.8863 0.2035
Pipeline-1 2369.8 184.2 800.6 446.4 0.9279 0.6420 0.8341 0.8826 0.9305 0.4064
Pipeline-2 2477.0 77.0 869.6 377.4 0.9699 0.6974 0.8805 0.9160 0.9411 0.4064
Pipeline-3 2439.8 114.2 886.0 361.0 0.9553 0.7105 0.8750 0.9113 0.9414 0.4064
Pipeline-4 2509.0 45.0 767.6 479.4 0.9824 0.6156 0.8620 0.9054 0.9368 0.4064
Pipeline-5 2391.6 162.4 976.8 270.2 0.9364 0.7833 0.8862 0.9171 0.9404 0.4064
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Conclusion

The results of the experiments for COVID-19/non-
COVID-19 and COVID-19 pneumonia/other pneumonia 
classifications are shared in Tables 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
29, 30, and 31. In this section, the results are evaluated.

It was seen that the application of LBP as a pre-process 
to the images had some effects on the study results, and 
using the images related to COVID-19/non-COVID-19 clas-
sification without applying LBP as a pre-process provided 
better results in general than when LBP was applied as a 
pre-process; however, there were some exceptions. Excep-
tions occurred for the specificity parameter if DT-CWT 

Table 28  Results obtained by 
using the real and imaginary 
parts of the LL sub-band 
obtained by applying DT-CWT 
to CT lung images for COVID-
19/non-COVID-19 classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2469.8 84.2 1607.4 158.6 0.9670 0.9102 0.9438 0.9532 0.9889 0.4912
With LBP 2447.4 106.6 1581.0 185.0 0.9583 0.8952 0.9325 0.9438 0.9826 0.4919
Pipeline-1 2456.6 97.4 1596.0 170.0 0.9619 0.9037 0.9381 0.9484 0.9908 0.9830
Pipeline-2 2490.2 63.8 1633.0 133.0 0.9750 0.9247 0.9544 0.9620 0.9920 0.9830
Pipeline-3 2475.0 79.0 1619.8 146.2 0.9691 0.9172 0.9479 0.9565 0.9918 0.9830
Pipeline-4 2511.0 43.0 1552.2 213.8 0.9832 0.8789 0.9406 0.9514 0.9918 0.9830
Pipeline-5 2449.0 105.0 1688.2 77.8 0.9589 0.9559 0.9577 0.9640 0.9916 0.9830

Table 29  Results obtained by 
using the real and imaginary 
parts of the LLL sub-band 
obtained by applying DT-CWT 
to CT lung images for COVID-
19/non-COVID-19 classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2448.0 106.0 1560.6 205.4 0.9585 0.8837 0.9279 0.9402 0.9821 0.1661
With LBP 2439.0 115.0 1582.2 183.8 0.9550 0.8959 0.9308 0.9423 0.9820 0.1660
Pipeline-1 2453.2 100.8 1595.0 171.0 0.9605 0.9032 0.9371 0.9475 0.9886 0.3321
Pipeline-2 2483.4 70.6 1612.6 153.4 0.9724 0.9131 0.9481 0.9568 0.9894 0.3321
Pipeline-3 2459.0 95.0 1574.0 192.0 0.9628 0.8913 0.9336 0.9449 0.9885 0.3321
Pipeline-4 2506.2 47.8 1515.8 250.2 0.9813 0.8583 0.9310 0.9439 0.9881 0.3321
Pipeline-5 2425.2 128.8 1657.4 108.6 0.9496 0.9385 0.9450 0.9533 0.9878 0.3321

Table 30  Results obtained by 
using the real and imaginary 
parts of the LL sub-band 
obtained by applying DT-CWT 
to CT lung images for COVID-
19 pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2441.6 112.4 859.0 388.0 0.9560 0.6889 0.8684 0.9071 0.9281 0.4854
With LBP 2411.0 143.0 869.8 377.2 0.9440 0.6975 0.8631 0.9026 0.9255 0.4863
Pipeline-1 2434.6 119.4 879.2 367.8 0.9532 0.7051 0.8718 0.9091 0.9486 0.9717
Pipeline-2 2505.2 48.8 904.6 342.4 0.9809 0.7254 0.8971 0.9276 0.9530 0.9717
Pipeline-3 2469.8 84.2 872.2 374.8 0.9670 0.6994 0.8792 0.9150 0.9509 0.9717
Pipeline-4 2525.0 29.0 782.4 464.6 0.9886 0.6274 0.8701 0.9110 0.9450 0.9717
Pipeline-5 2421.8 132.2 981.2 265.8 0.9482 0.7868 0.8953 0.9241 0.9499 0.9717

Table 31  Results obtained by 
using the real and imaginary 
parts of the LLL sub-band 
obtained by applying DT-CWT 
to CT lung images for COVID-
19 pneumonia/other pneumonia 
classification

Method TP FN TN FP SEN SPE ACC F-1 AUC CPU time

Without LBP 2424.6 129.4 861.6 385.4 0.9493 0.6909 0.8646 0.9040 0.9225 0.1653
With LBP 2374.0 180.0 830.4 416.6 0.9295 0.6659 0.8430 0.8884 0.9122 0.1652
Pipeline-1 2404.4 149.6 845.0 402.0 0.9414 0.6776 0.8549 0.8971 0.9415 0.3305
Pipeline-2 2493.2 60.8 890.6 356.4 0.9762 0.7142 0.8902 0.9228 0.9486 0.3305
Pipeline-3 2445.8 108.2 873.4 373.6 0.9576 0.7004 0.8732 0.9103 0.9465 0.3305
Pipeline-4 2518.8 35.2 765.6 481.4 0.9862 0.6140 0.8641 0.9070 0.9401 0.3305
Pipeline-5 2399.0 155.0 986.6 260.4 0.9393 0.7912 0.8907 0.9203 0.9453 0.3305
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was implemented as a secondary process. In addition, the 
increase in the radius values used in the LBP process nega-
tively affected the results. For this reason, considering the 
length of the study, only the results for the case where the 
radius value was 1 in the experiments performed after the 
first stage are shared. The summary information of the test 
results obtained by applying, and not applying, LBP as pre-
processing for COVID-19/non-COVID-19 classification is 
given in Table 32.

When the effect of applying LBP on the images related to 
COVID-19 pneumonia/other pneumonia classification was 
examined, it was seen that there was a different situation 
compared with COVID-19/non-COVID-19 classification. In 
the experiments performed without DT-CWT as a secondary 
process, the test results for the case when the LBP radius 
value was 1, obtained by applying LBP as a pre-process, 
were better than the results of the experiments where LBP 
pre-processing was not applied. However, if the radius value 
used in the LBP process increased or DT-CWT was used as 
the secondary process, the test results obtained by apply-
ing LBP as a pre-process fell behind the results obtained 
without applying LBP. The decrease in the results, due to 

the increase in the radius value used in the LBP process, 
was also valid for COVID-19 pneumonia/other pneumonia 
classification. The summary information of the test results 
obtained by applying and not applying LBP as a pre-process 
for COVID-19 pneumonia/other pneumonia classification is 
included in Table 33.

The effect of using DT-CWT as a secondary procedure 
on the results is another topic that needs to be studied. 
The summary information of the results obtained by using 
DT-CWT (scale values 1 and 2) and not using DT-CWT 
for COVID-19/non-COVID-19 classification is given in 
Table 34. As seen in Table 34, if DT-CWT was used as a 
secondary process, there was a certain amount of change in 
the results. While these changes were limited for the scale 
value 1, the amount of these changes increased depending on 
the increase in the scale value. However, if a comparison is 
made in terms of the per-image speed of producing results, 
there was a significant reduction in processing times due to 
the use of DT-CWT. The summary information for COVID-
19 pneumonia/other pneumonia classification is included in 
Table 35, which shows that there is a similar situation for 
this classification heading.

Table 32  Summary information 
of the study results obtained 
with and without LBP for 
COVID-19/non-COVID-19 
classification

Method Min./max SEN SPE ACC F-1 AUC 

Without LBP Minimum 0.9579 0.8767 0.9256 0.9385 0.9820
Without LBP Maximum 0.9676 0.9181 0.9456 0.9545 0.9890
With LBP Minimum 0.9417 0.8728 0.9135 0.9279 0.9741
With LBP Maximum 0.9583 0.9041 0.9338 0.9447 0.9831

Table 33  Summary information 
of the study results obtained 
with and without LBP for 
COVID-19 pneumonia/other 
pneumonia classification

Method Min./max SEN SPE ACC F-1 AUC 

Without LBP Minimum 0.9403 0.6563 0.8471 0.8921 0.9019
Without LBP Maximum 0.9615 0.7270 0.8846 0.9180 0.9370
With LBP Minimum 0.9113 0.6265 0.8206 0.8727 0.8863
With LBP Maximum 0.9473 0.7062 0.8659 0.9046 0.9321

Table 34  Summary information of the study results obtained with and without DT-CWT for COVID-19/non-COVID-19 classification

Method Min./max SEN SPE ACC F-1 AUC CPU time

Without LBP Without DT-CWT Single result 0.9579 0.9092 0.9380 0.9481 0.9833 1.1872
Without LBP With DT-CWT (level = 1) Minimum 0.9646 0.9006 0.9390 0.9493 0.9878 0.3347
Without LBP With DT-CWT (level = 1) Maximum 0.9676 0.9181 0.9456 0.9545 0.9890 0.6488
Without LBP With DT-CWT (level = 2) Minimum 0.9585 0.8767 0.9256 0.9385 0.9820 0.1270
Without LBP With DT-CWT (level = 2) Maximum 0.9594 0.8954 0.9331 0.9443 0.9846 0.2038
With LBP Without DT-CWT Single result 0.9511 0.8993 0.9300 0.9414 0.9806 1.1915
With LBP With DT-CWT (level = 1) Minimum 0.9522 0.8952 0.9320 0.9431 0.9815 0.3363
With LBP With DT-CWT (level = 1) Maximum 0.9583 0.9041 0.9338 0.9447 0.9831 0.6460
With LBP With DT-CWT (level = 2) Minimum 0.9417 0.8728 0.9135 0.9279 0.9741 0.1257
With LBP With DT-CWT (level = 2) Maximum 0.9550 0.8959 0.9308 0.9423 0.9820 0.2043
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Significant improvements in the results were achieved by 
using the recommended pipeline approaches. Table 36 pro-
vides information on the best FN, FP, FN + FP, and 1-AUC 
values obtained for the experiments carried out before and 
after using the pipeline approaches for COVID-19/non-
COVID-19 classification and shows the rates of change 
related to these values. Table 37 shows, as does Table 36, 
the aforementioned information for COVID-19 pneumonia/
other pneumonia classification.

As seen from Table  36, with the aid of pipeline 
approaches, improvements were achieved for COVID-19/
non-COVID-19 classification at rates varying between 42.7 
and 54.9% in the FN parameter, 40.9 and 53.8% in the FP 
parameter, 17.1 and 29.3% in the FN + FP parameter, and 
20.9 and 41.1% in the 1-AUC parameter. Similarly, as shown 
in Table 37, improvements were achieved for COVID-19 
pneumonia/other pneumonia classification at rates varying 
between 65.1 and 78% in the FN parameter, 27.4 and 33.5% 
in the FP parameter, 13.9 and 21.9% in the FN + FP param-
eter, and 23.5 and 41.2% in the 1-AUC parameter.

The highest sensitivity, specificity, accuracy, F-1, and 
AUC values obtained without using the pipeline approach 
for COVID-19/non-COVID-19 classification were 0.9676, 
0.9181, 0.9456, 0.9545, and 0.9890, respectively. The high-
est sensitivity, specificity, accuracy, F-1, and AUC values 
obtained by using the pipeline approach in the same clas-
sification heading were 0.9832, 0.9622, 0.9577, 0.9642, and 
0.9923, respectively. The comparison of these results, which 
showed the highest scores achieved, with previous studies 
is shown in Table 38. The highest sensitivity value obtained 
through pipeline approaches was achieved using the real and 
imaginary parts of the LL sub-band as input data with the 
help of the Pipeline-4 approach. The highest specificity and 
accuracy values were achieved using the imaginary part of 
the LL sub-band as input data with the help of the Pipeline-5 
approach. The highest F-1 and AUC values were achieved 

using the same input data with the help of the Pipeline-2 
approach.

The highest sensitivity, specificity, accuracy, F-1, and 
AUC values obtained for COVID-19 pneumonia/other pneu-
monia classification without using the pipeline approach 
were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respec-
tively. The highest sensitivity, specificity, accuracy, F-1, and 
AUC values obtained by using the pipeline approach in the 
same classification heading were 0.9915, 0.8140, 0.9071, 
0.9327, and 0.9615, respectively. The comparison of these 
results, which showed the highest scores achieved, with pre-
vious studies is shown in Table 39. The highest sensitivity 
value obtained through pipeline approaches was achieved 
using the real part of the LL, LH, and HL sub-bands as 
input data with the help of the Pipeline-4 approach. The 
highest specificity and accuracy values were achieved using 
the same input data with the help of the Pipeline-5 approach. 
The highest F-1 and AUC values were achieved using the 
same input data with the help of the Pipeline-2 approach.

Discussion

This study makes suggestions for new pipeline approaches 
that were tested to reduce the number of FN, FP, and total 
misclassified images (FN + FP) obtained from CT lung 
images in COVID-19 diagnosis, and important results were 
obtained. First, COVID-19/non-COVID-19 classification 
test results were obtained with and without the help of LBP 
processes, and then new classification results were calcu-
lated by combining pipeline approaches with these results. 
The classifications related to the first two experiments were 
carried out through one of the actual deep learning methods, 
that is, CNN. Moreover, DT-CWT, as an intermediate pro-
cess, was put to use to reduce the size of the image in some 
experimental groups.

Table 35  Summary information of the study results obtained with and without DT-CWT for COVID-19 pneumonia/other pneumonia classifica-
tion

Method Min./max SEN SPE ACC F-1 AUC CPU time

Without LBP Without DT-CWT Single result 0.9403 0.6563 0.8471 0.8921 0.9019 1.1729
Without LBP With DT-CWT (level = 1) Minimum 0.9556 0.6889 0.8684 0.9071 0.9279 0.3323
Without LBP With DT-CWT (level = 1) Maximum 0.9615 0.7270 0.8846 0.9180 0.9370 0.6388
Without LBP With DT-CWT (level = 2) Minimum 0.9463 0.6797 0.8619 0.9025 0.9198 0.1252
Without LBP With DT-CWT (level = 2) Maximum 0.9569 0.7015 0.8678 0.9067 0.9235 0.2033
With LBP Without DT-CWT Single result 0.9473 0.6864 0.8617 0.9020 0.9251 1.1733
With LBP With DT-CWT (level = 1) Minimum 0.9414 0.6877 0.8582 0.8992 0.9255 0.3323
With LBP With DT-CWT (level = 1) Maximum 0.9462 0.7062 0.8659 0.9046 0.9321 0.6409
With LBP With DT-CWT (level = 2) Minimum 0.9113 0.6265 0.8206 0.8727 0.8863 0.1244
With LBP With DT-CWT (level = 2) Maximum 0.9298 0.6659 0.8430 0.8884 0.9122 0.2035
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If a comparison of the classification results obtained 
with and without the help of the LBP process was made, 
it could be said that, in general, the results obtained were 
more successful if LBP was not used; only in some exper-
imental groups did LBP provide better results. In this 
respect, it can be seen that using LBP as a pre-process 
alone does not increase but decreases the classification 
accuracy. It was also seen that the periods of time for 

producing results related to the experiments conducted 
with and without the help of LBP were close when the 
results per image were compared. From the experiments, 
it is understood that the LBP process produces the best 
results if 1 is selected as a radius.

The results were calculated using sub-band matrix and 
matrix combinations obtained by using DT-CWT as a sec-
ondary process in addition to the experiments conducted 

Table 36  Information on the best FN, FP, FN + FP and 1-AUC values obtained for the experiments before and after using the pipeline 
approaches for COVID-19/non-COVID-19 classification

Method Stage FN FP FN + FP 1-AUC 

Directly CT lung images (LBP radius value 1) Before pipeline approach 107.6 160.4 268.0 0.0167
Directly CT lung images (LBP radius value 1) After pipeline approach 56.4 78.0 216.2 0.0103
Directly CT lung images (LBP radius value 1) Rate of change 47.6% 51.4% 19.3% 38.3%
Directly CT lung images (LBP radius value 2) Before pipeline approach 107.6 160.4 268.0 0.0167
Directly CT lung images (LBP radius value 2) After pipeline approach 57.8 82.2 220.0 0.0115
Directly CT lung images (LBP radius value 2) Rate of change 46.3% 48.8% 17.9% 30.9%
Directly CT lung images (LBP radius value 3) Before pipeline approach 107.6 160.4 268.0 0.0167
Directly CT lung images (LBP radius value 3) After pipeline approach 61.2 82.0 222.2 0.0132
Directly CT lung images (LBP radius value 3) Rate of change 43.1% 48.9% 17.1% 20.9%
Real part of LL sub-band Before pipeline approach 82.8 167.4 250.2 0.0116
Real part of LL sub-band After pipeline approach 43.8 80.6 184.8 0.0082
Real part of LL sub-band Rate of change 47.1% 51.9% 26.1% 28.8%
Real part of LLL sub-band Before pipeline approach 103.8 184.8 304.2 0.0161
Real part of LLL sub-band After pipeline approach 48.8 104.4 217.2 0.0106
Real part of LLL sub-band Rate of change 53.0% 43.5% 28.6% 34.2%
Imaginary part of LL sub-band Before pipeline approach 90.4 144.6 235.0 0.0110
Imaginary part of LL sub-band After pipeline approach 44.8 66.8 182.6 0.0077
Imaginary part of LL sub-band Rate of change 50.4% 53.8% 22.3% 30.1%
Imaginary part of LLL sub-band Before pipeline approach 103.8 187.2 303.6 0.0171
Imaginary part of LLL sub-band After pipeline approach 49.2 107.8 217.6 0.0107
Imaginary part of LLL sub-band Rate of change 52.6% 42.4% 28.3% 37.1%
Real part of LL, LH, HL sub-bands Before pipeline approach 85.2 166.2 251.4 0.0118
Real part of LL, LH, HL sub-bands After pipeline approach 48.8 77.2 187.4 0.0084
Real part of LL, LH, HL sub-bands Rate of change 42.7% 53.5% 25.5% 28.7%
Real part of LLL, LLH, LHL sub-bands Before pipeline approach 104.4 184.8 289.2 0.0154
Real part of LLL, LLH, LHL sub-bands After pipeline approach 54.4 93.8 215.4 0.0110
Real part of LLL, LLH, LHL sub-bands Rate of change 47.9% 49.2% 25.5% 28.8%
Imaginary part of LL, LH, HL sub-bands Before pipeline approach 87.8 169.4 263.4 0.0122
Imaginary part of LL, LH, HL sub-bands After pipeline approach 46.4 80.4 186.2 0.0082
Imaginary part of LL, LH, HL sub-bands Rate of change 47.2% 52.5% 29.3% 32.6%
Imaginary part of LLL, LLH, LHL sub-bands Before pipeline approach 103.8 217.8 321.6 0.0180
Imaginary part of LLL, LLH, LHL sub-bands After pipeline approach 55.0 123.8 255.0 0.0129
Imaginary part of LLL, LLH, LHL sub-bands Rate of change 47.0% 43.2% 20.7% 28.2%
Real and imaginary parts of the LL sub-band Before pipeline approach 84.2 158.6 242.8 0.0111
Real and imaginary parts of the LL sub-band After pipeline approach 43.0 77.8 182.8 0.0080
Real and imaginary parts of the LL sub-band Rate of change 48.9% 50.9% 24.7% 27.4%
Real and imaginary parts of the LLL sub-band Before pipeline approach 106.0 183.8 298.8 0.0179
Real and imaginary parts of the LLL sub-band After pipeline approach 47.8 108.6 224.0 0.0106
Real and imaginary parts of the LLL sub-band Rate of change 54.9% 40.9% 25.0% 41.1%
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with and without the help of LBP. In general, the DT-
CWT process kept the general features of the image intact, 
thus reducing its dimensions. However, as the scale value 
used in the DT-CWT process increased, the change in the 
results also increased. Using the pipeline approach gener-
ally doubled the processing load. Choosing 1 for the scale 
value in the DT-CWT process was sufficient to tolerate this 
increase in processing load. In this context, it is estimated 

that using a scale value of 1 in the DT-CWT process is the 
most appropriate choice.

The results obtained with and without the help of LBP 
were combined through pipeline approaches, and new results 
were calculated. The results show that in all experimental 
groups, comparison parameters can be increased using pipe-
line approaches. This shows that the highest sensitivity values 
in the experimental groups were obtained by using the fourth 

Table 37  Information on the best FN, FP, FN + FP and 1-AUC values obtained for the experiments before and after using the pipeline 
approaches for COVID-19 pneumonia/other pneumonia classification

Method Stage FN FP FN + FP 1-AUC 

Directly CT lung images (LBP radius value 1) Before pipeline approach 134.6 391.0 525.6 0.0749
Directly CT lung images (LBP radius value 1) After pipeline approach 36.4 270.4 424.0 0.0523
Directly CT lung images (LBP radius value 1) Rate of change 73.0% 30.8% 19.3% 30.3%
Directly CT lung images (LBP radius value 2) Before pipeline approach 152.4 428.6 581.0 0.0976
Directly CT lung images (LBP radius value 2) After pipeline approach 48.0 285.2 453.6 0.0612
Directly CT lung images (LBP radius value 2) Rate of change 68.5% 33.5% 21.9% 37.3%
Directly CT lung images (LBP radius value 3) Before pipeline approach 152.4 428.6 581.0 0.0981
Directly CT lung images (LBP radius value 3) After pipeline approach 53.2 296.8 470.8 0.0600
Directly CT lung images (LBP radius value 3) Rate of change 65.1% 30.8% 19.0% 38.8%
Real part of LL sub-band Before pipeline approach 113.4 357.8 471.2 0.0678
Real part of LL sub-band After pipeline approach 28.4 245.0 374.4 0.0412
Real part of LL sub-band Rate of change 75.0% 31.5% 20.5% 39.2%
Real part of LLL sub-band Before pipeline approach 137.2 385.2 522.4 0.0802
Real part of LLL sub-band After pipeline approach 43.6 271.8 436.4 0.0551
Real part of LLL sub-band Rate of change 68.2% 29.4% 16.5% 31.3%
Imaginary part of LL sub-band Before pipeline approach 102.6 349.0 451.6 0.0675
Imaginary part of LL sub-band After pipeline approach 26.2 241.6 369.8 0.0397
Imaginary part of LL sub-band Rate of change 74.5% 30.8% 18.1% 41.2%
Imaginary part of LLL sub-band Before pipeline approach 110.0 393.2 503.2 0.0773
Imaginary part of LLL sub-band After pipeline approach 33.0 277.2 416.4 0.0555
Imaginary part of LLL sub-band Rate of change 70.0% 29.5% 17.2% 28.2%
Real part of LL, LH, HL sub-bands Before pipeline approach 98.4 340.4 438.8 0.0630
Real part of LL, LH, HL sub-bands After pipeline approach 21.6 232.0 353.2 0.0385
Real part of LL, LH, HL sub-bands Rate of change 78.0% 31.8% 19.5% 38.9%
Real part of LLL, LLH, LHL sub-bands Before pipeline approach 125.6 399.4 525.0 0.0777
Real part of LLL, LLH, LHL sub-bands After pipeline approach 41.2 281.6 445.4 0.0586
Real part of LLL, LLH, LHL sub-bands Rate of change 67.2% 29.5% 15.2% 24.7%
Imaginary part of LL, LH, HL sub-bands Before pipeline approach 111.4 366.0 477.4 0.0721
Imaginary part of LL, LH, HL sub-bands After pipeline approach 28.6 253.6 385.8 0.0458
Imaginary part of LL, LH, HL sub-bands Rate of change 74.3% 30.7% 19.2% 36.6%
Imaginary part of LLL, LLH, LHL sub-bands Before pipeline approach 130.4 372.2 502.6 0.0765
Imaginary part of LLL, LLH, LHL sub-bands After pipeline approach 45.0 270.2 432.6 0.0586
Imaginary part of LLL, LLH, LHL sub-bands Rate of change 65.5% 27.4% 13.9% 23.5%
Real and imaginary parts of the LL sub-band Before pipeline approach 112.4 377.2 500.4 0.0719
Real and imaginary parts of the LL sub-band After pipeline approach 29.0 265.8 391.2 0.0470
Real and imaginary parts of the LL sub-band Rate of change 74.2% 29.5% 21.8% 34.6%
Real and imaginary parts of the LLL sub-band Before pipeline approach 129.4 385.4 514.8 0.0775
Real and imaginary parts of the LLL sub-band After pipeline approach 35.2 260.4 415.4 0.0514
Real and imaginary parts of the LLL sub-band Rate of change 72.8% 32.4% 19.3% 33.7%



Cognitive Computation 

1 3

pipeline approach, the highest specificity values were obtained 
by using the fifth pipeline approach, and the highest accu-
racy for F-1 and AUC values in the experimental groups were 
obtained by using the second and fifth pipeline approaches.

Because the pipeline approaches’ operating time was less 
than one-thousandth of a second per image, the operating 
times of the pipeline approaches were approximately equal 
to the total operating times of the first two experiments. This 

Table 38  Comparison of the results with previous studies for COVID-19/non-COVID-19 classification

Study SEN SPE ACC F-1 AUC 

Yasar and Ceylan [13] 0.9197–0.9404 0.9891–0.9901 0.9473–0.9599 0.9058–0.9284 0.9888–0.9903
Ni et al. [14] 1.00 0.25 0.94 0.97 X
Wang et al. [15] X X 0.847–0.901 X 0.9590
Han et al. [16] 0.968–0.979 X 0.968–0.979 0.968–0.979 0.982–0.990
Ardakani et al. [17] 0.7843–1.000 0.6863–1.000 0.7892–0.9951 X 0.894–0.994
Harmon et al. [18] 0.751–0.853 0.901–0.951 0.889–0.908 X 0.938–0.949
Jaiswal et al. [19] 0.9206–0.9735 0.8972–0.9621 0.909–0.9625 0.9109–0.9629 0.97
Horry et al. [20] 0.81–0.83 X X 0.81–0.83 X
Pathak et al. [21] 0.9146 0.9478 0.9302 X X
Ouyang et al. [22] 0.869 0.901 0.875 0.820 0.944
Sakagianni et al. [23] 0.8831 X X 0.8831 X
Hu et al. [24] 0.8330 0.9560 0.9060 X 0.9430
Ragab and Attallah [25] 0.99 X 0.99 0.99 1.00
Sen et al. [26] 0.8406–0.9778 X 0.90–0.9839 0.8855–0.98 0.9414–0.9952
Konar et al. [27] 0.935 X 0.944 0.948 0.983
Kaur et al. [28] 0.9960 X 0.9918–0.9938 0.992–0.994 0.9916–0.9958
Goel et al. [29] 0.9978 0.9778 0.9922 0.9879 X
Zhu et al. [30] 0.93 0.92 0.93 0.93 0.93
Saad et al. [31] 0.985 X 0.989 0.9892 X
Liang et al. [32] 0.999 0.97 0.985 X 0.999
Alshazly et al. [33] 0.937–0.998 0.922–0.996 0.929–0.994 0.925–0.994 X
Chaudhary and Pachori [34] 0.97–0.976 0.965–0.9836 0.976 0.97–0.98 X
Lacerda et al. [35] 0.97 X 0.88 X X
Singh et al. [36] X X 0.957 0.953 0.958
Our study (before pipeline approach) 0.9676 0.9052 0.9421 0.9518 0.9884
Our study (before pipeline approach) 0.9646 0.9181 0.9456 0.9545 0.9890
Our study (after pipeline approach) 0.9832 0.8789 0.9406 0.9514 0.9918
Our study (after pipeline approach) 0.9547 0.9622 0.9577 0.9639 0.9916
Our study (after pipeline approach) 0.9725 0.9353 0.9573 0.9642 0.9923

Table 39  Comparison of the results with previous studies for COVID-19 pneumonia/other pneumonia classification

Study SEN SPE ACC F-1 AUC 

Wu et al. [37] 0.622–0.811 0.615 0.620–0.760 X 0.634–0.819
Yan et al. [38] 0.891 0.857 0.875 X 0.934
Zhang et al. [39] 0.879 0.887–0.9 X X 0.922–0.959
Song et al. [40] 0.96 0.77 0.86 0.87 0.95
Kang et al. [41] 0.85–0.925 0.75–0.975 0.8125–0.912 X X
Giordano et al. [42] 0.63–0.87 0.51–0.74 0.7 X 0.84
Saba et al. [43] 0.5097–0.9899 0.9099–0.9964 X 0.622–0.9899 0.993
Our study (before pipeline approach) 0.9615 0.7270 0.8846 0.9180 0.9370
Our study (after pipeline approach) 0.9915 0.6581 0.8821 0.9187 0.9539
Our study (after pipeline approach) 0.9525 0.8140 0.9071 0.9323 0.9592
Our study (after pipeline approach) 0.9826 0.7450 0.9047 0.9327 0.9615
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approximate equation is valid for all experimental groups. 
The classification time per image was 1.1915s (for COVID-
19/non-COVID-19 classification) and 1.1733s (for COVID-
19 pneumonia/other pneumonia classification) without oper-
ating the pipeline and without applying LBP or DT-CWT 
processes to the images. If the method of combining the 
results with the pipeline approaches and the use of the pro-
posed application of LBP and DT-CWT to the images were 
combined, the classification time for the case with the high-
est time cost was 0.6488 and 0.6409 s, respectively. This 
means that the classification approach to produce the results 
per image proposed in this study reduced the time by at least 
half, and it also provided a significant improvement in the 
classification results.

The results support different studies [44–49] where the 
use of CNN and LBP methods applied together and the use 
of LBP increased the success of the relevant studies. How-
ever, in those studies, the use of LBP appears to be a fac-
tor that directly improves the results. The use of LBP in 
this study did not directly increase the result, and it often 
decreased it. However, if used with the proposed pipeline 
algorithm, the results significantly improved. In this respect, 
it differed from other studies. In addition, this is the first 
study in which the LBP, DT-CWT, and CNN methods were 
used together, and it makes an important contribution to the 
literature.

When the results for COVID-19/non-COVID-19 classi-
fication are compared with the results obtained in previous 
studies (information of which is given in Tables 1 and 38), 
it can be seen that significant results were obtained in this 
study. In this context, it is understood that better results have 
been obtained than two-thirds of the studies carried out in 
the literature. For COVID-19 pneumonia/other pneumonia 
classification, higher results were obtained from six of the 
seven studies performed in the literature. Since the num-
ber of images used in this study was considerably higher 
than in other studies, it is estimated that it is more valid by 
comparison.

In the studies to be carried out after this stage, the aim 
is to make an automatic classification of chest X-ray and 
ultrasound images, which are important diagnostic tools 
similar to CT lung images in the classification of COVID-
19, with the aid of the new pipeline approaches used in this 
study and those to be developed after. It is also planned to 
combine the results using direct transfer learning by using 
pipeline approaches. The use of the analysis of the effects 
using multi-resolution analyses other than DT-CWT on the 
study results is also seen as an important subject of study. In 
contrast, it is estimated that another important application 
will be the classification of complex-valued sub-image bands 
obtained through multi-resolution analysis by directly using 
a complex-valued CNN.
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