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A B S T R A C T

Integration between production and distribution phases in supply chain has attracted close attention of many
researchers over the last decade as companies have to juggle these activities for survival in increasingly com-
petitive market conditions. In this paper, we study a joint production and distribution problem where a single
manufacturer has committed to processing jobs (i.e., customer orders) on permutation flow-shop environment
and subsequently distributing them by a single capacitated vehicle. Customers locate geographically-dispersed
points and place their orders with pre-determined due dates. Since a single vehicle is available, customer orders
should be consolidated in order to reduce the total trip time spent by the vehicle but this may result in failing to
meet some of customer orders before their due dates. The objective is therefore minimizing the total travelling
time plus total tardiness. We first develop a mixed integer linear programming to formulate the problem. Due to
intractability matters, mathematical formulation suffers to find optimal solutions even in moderate number of
customers. Thus, we present a memetic algorithm (MA) to find good or near-optimal solutions in an acceptable
amount of time. In order to evaluate the effectiveness of the algorithm, we compare CPLEX results with that of
the MA on a wide range of randomly generated test instances. Results indicate that MA is capable of finding
solutions to optimality in a quite short time for most of the small-sized instances. For medium and large-sized
instances, MA is still well-performing and yields better solutions as compared to CPLEX solutions found 3 h time
limit.

1. Introduction

One of the most important performance criteria in supply chain
management is to meet customer expectations at maximum service
level with limited resources. Just-In-Time (JIT) policy has been widely
used for many companies as it has an ultimate aim to eliminate all
wastes and reduce in process buffers in supply at all levels. The philo-
sophy of JIT shed lights on effective use of two important supply chain
phases, namely production and distribution, by removing intermediate
inventory phase, which might lead to excessive system cost. Beside JIT
philosophy, make-to-order production policy also necessitates linkage
between production and distribution functions with no or less stock
since almost every product is unique and keeping these products in
stock is needless.

Traditionally, production and distribution functions are treated
standalone but recent studies show that joint decisions yield higher
customer expectations with less system cost (Moons et al., 2017 and
Chen, 2004). While production decisions include which order will be
processed on which machine with the information of order starting and

completion time, distribution decision involves customer visitation se-
quences along with delivery times at each customer.

In practical point of view, there exist many application areas where
production and distribution decisions should jointly be made. For ex-
ample, perishable or time-sensitive products (e.g., newspapers, food
catering, ready-mixed concrete, and nuclear medicine) must be deliv-
ered to customers just after their production completes within a very
limited time.

In many manufacturing and assembly facilities operating in sectors
like electronic, telecommunication etc., each job consists of a series of
operations and each operation is performed on different machines setup
in series with a certain amount of time. This implies that each job
follows the same route. Let’s say machine 1, machine 2, and so forth.
This kind of shop is referred to as flow-shop environment. One special
case of flow-shop is that order of the jobs waiting to be processed in
front of each machine is the same. This shop is usually known as per-
mutation flow-shop.

The aim here is to generate a joint production and distribution
schedule for a manufacturer who is responsible for processing and
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distributing orders. For any planning horizon, once all customer orders
are collected, the manufacturer begins processing them with limited
number of machines setup in series and then subsequently distributing
the orders to the related customers by a single capacitated vehicle. As
the orders are placed with a particular due date, manufacturer might
fail to deliver some orders before due dates. The manufacturer may
want to visit as many customers as possible in each trip to reduce total
trip time subject to vehicle capacity. On the other hand, visiting more
customers in a trip is likely to increase delivery times and it will lead
some orders to be tardy. The objective is therefore minimizing the
summation of two conflicting objectives, total trip time and total tar-
diness, both of which are measured in time unit. Any subset of customer
orders to be delivered in a single trip is called “batch” and underlying
assumption is that after production of any sequence of the orders in a
batch complete, they are distributed to the related customers in the
same sequence.

In order to formulate the abovementioned problem, we first develop
a mixed integer linear programming (MILP) model. The problem con-
sists of two operational level problems, namely permutation flow-shop
scheduling and vehicle routing, both of which are proven to be NP-hard
in strong sense. Not surprisingly, the intractability of the problem does
not allow for the MILP model to provide optimal solutions even in
moderate size of customers. We therefore introduce a Memetic
Algorithm (MA) to obtain good or near optimal solutions in a shorter
amount of time.

The main contributions of our study can be summarized as follows.
First, we investigate the permutation flow-shop machine environment
which is studied in few works in the literature although this shop is
implemented in a broad range of real life cases. Second, we study, for
what we believe to be the first time, an objective function composing of
total trip time plus total tardiness. Finally, we present a memetic al-
gorithm with different decoding strategies.

The rest of the paper is organized as follows: Subsequent section
reviews the relevant studies on the integrated production and dis-
tribution scheduling problem including routing decisions. Section 3
describes the formal definition of integrated problem along with an
illustrative example. The proposed MILP formulation for the problem is
explained in Section 4. Section 5 is devoted to revealing the details of
MA. Section 6 presents the generation of random test instances. In
Section 7, experimental studies are presented, in which the comparative
results of the CPLEX and MA are discussed. Conclusions and future
directions are stated in Section 8.

2. Overview of the relevant literature

In recent years, more attention has been paid in literature to the
coordination of production and distribution activities in the supply
chain management. Although this research area has received much
interest from researchers, scant studies have examined relatively more
complex production and distribution environments. Based on the
survey study of Chen (2010), the existing literature can be categorized
into two areas regarding the type of delivery method. In the first area,
researchers study simple delivery methods, such as (i) immediate and
individual shipping of orders upon its completion, (ii) batch delivery to
a single customer by direct shipping, and (iii) batch delivery to multiple
customers by direct shipping. In the second area, however, researchers
consider delivery methods in which orders belonging to different cus-
tomers can be shipped together by routing method. In this study, we
limit our literature review to the studies in which routing decisions are
involved as shown in Table 1. Interested readers are also referred to the
study of Moons et al. (2017). We classify the relevant studies according
to machine configuration, vehicle number and type, objective function
and solution method. It is obvious from Table 1 that while most of the
studies concern with single and parallel machine production environ-
ments, few works deal with relatively more complex production en-
vironment such as flow-shop environment.

The first studies were related to newspaper printing and distribution
problem. Hurter and Van Buer (1996) proposed the joint decision of
production and distribution in a newspaper company and make sensi-
tivity analysis for various parameter levels, whereby using a greedy
algorithm with forward looking strategy to construct routes. Similarly,
Russell, Chiang and Zepeda (2008) also applied the joint decision me-
chanism for a big newspaper company in order to minimize not only the
number of vehicles required, but also the total travel distance incurred
by the fleet of vehicles.

Chen and Vairaktarakis (2005) studied two classes of problems in
terms of customer service level which is measured by the average and
maximum time when the jobs are delivered to related customers and
make worst case analyses for different variants of the problem.
Devapriya et al. (2006) formulated two mixed integer programming
models to solve the single plant and two-plant versions and provided
heuristics based on evolutionary algorithms so as to find good quality
solutions in a more reasonable time.

Geismar et al. (2008) developed a two-phase heuristic and subse-
quently developed a lower bound on the problem with the objective of
determining the minimum time required to produce and deliver the
products to customers. For the same problem setting, Karaoğlan and
Kesen (2017) developed a branch-and-cut algorithm to further improve
the results of Geismar et al. (2008). In a more recent study, Lacomme
et al. (2018) extended the same problem by permitting the use of
multiple vehicles and demonstrated the effectiveness of the proposed
algorithm against the results of Geismar et al. (2008) and Karaoğlan
and Kesen (2017) for some problem instances.

In the food industry, Chen, Hsueh and Chang (2009) formulated a
mixed-integer nonlinear programming model for fresh food products
under stochastic demands and proposed a solution algorithm based on
decomposition concept. The objective of the model was to maximize the
expected total profit of the supplier. In a study conducted in food in-
dustry more recently, Farahani, Grunow and Günther (2012) proposed
a mixed integer linear programming model for real settings of a food
catering company.

Park and Hong (2009) developed a hybrid genetic algorithm with
several local optimization techniques for single-period inventory pro-
ducts and compared the integrated model with the uncoordinated one.
Belo-Filho, Amorim and Lobo (2015) proposed an adaptive large
neighborhood search to tackle large size instances for the problem
presented in Amorim, Belo-Filho, Toledo, and d., Almeder, C., &
Almada-Lobo, B. (2013) where job splitting decisions are taken into
consideration in a parallel machine environment. In the study of
Devapriya, Ferrell and Geismar (2017) three heuristics based on genetic
and memetic algorithm were developed for the model, which de-
termines the fleet size as well as trucks’ routes.

Ullrich (2013) integrated production and distribution process in
order to minimize total tardiness and compared the genetic algorithm
and two decomposition approaches for parallel machine environment.
Kesen and Bektaş (2019) describe linear programming models for two
variants of the problem which includes parallel machine environment
in production phase with time windows consideration.

Low, Chang and Gao (2017) proposed a nonlinear mathematical
model considering heterogenous fleet in order to minimize the total
cost which includes transportation cost, vehicle arrangement cost and
penalty costs, subjected to satisfy all demands of each customer. Lee
et al. (2014) applied an integrated model to radioactive materials for
nuclear medicine so as to minimize the total cost including production
costs, fixed vehicle costs and travel costs. Viergutz and Knust (2014),
extended the problem in Armstrong, Gao, and Lei (2008) addressing a
product with a short lifespan and a predefined customer sequence and
proposed tabu search algorithm.

Li et al. (2016) proposed a non-dominated genetic algorithm with
the elite strategy (NSGA-II) for the problem with the objective of
minimizing the vehicle delivery cost and the total customer waiting
time. Kergosien, Gendreau and Billaut (2017) addressed the

E. Yağmur and S.E. Kesen Computers & Industrial Engineering 142 (2020) 106342

2



chemotherapy production and delivery problem where independent
jobs are prepared by pharmacy technicians working in parallel and used
Benders decomposition-based heuristic to find feasible solutions and
lower bounds.

Mohammadi, Al-e-Hashem and Rekik (2019), considered an in-
tegrated problem with time windows, in which production is assumed
to be performed in a flexible job-shop system for a furniture manu-
facturing company as a case study. They made a use of -constraint
method and particle swarm optimization for multi-objective model.

Mohammadi, Cheraghalikhani and Ramezanian (2018) addressed
the problem in permutation flow-shop system with minimizing the time
of the last order delivered to relevant customer by the last vehicle and
that vehicle returning to production center. They proposed the im-
perialist competitive algorithm for this problem. Ramezanian,
Mohammadi and Cheraghalikhani (2017) handled the problem studied
by Mohammadi et al. (2018) by different objective function minimizing
total production and distribution cost.

Scholz-Reiter et al. (2011) and Meinecke and Scholz-Reiter (2014),
also consider the integrated problem in flow shop production en-
vironment. These studies differ from the above-mentioned studies as
they consider inventory decisions. Scholz-Reiter et al. (2011) is the first
paper that explicitly mentions that inventory can be stored before the
first production level, between consecutive production levels, and be-
fore the departure of a vehicle trip, and takes holding costs into account
(Moons, 2017). Ehm and Freitag (2016), proposed a mixed integer
programing formulation for separate and integrated approach to show
the benefit of integration.

3. Formal definition of the problem

The problem can be formally stated as follows: We consider a single
plant owned by a manufacturer in which there is a set of machines

M{1, , } in series. A set of orders N{1, , }arrive at the plant where each
order has to visit each of the machines exactly once in the same se-
quence. The processing time of order i N{1, , } on machine
m M{1, , } is denoted by pim. Each order belongs to a unique cus-
tomer, for which reason we use the terms orders and customers

interchangeably as there is a one-to-one correspondence between them.
We assume that each order i is non-splittable, ready at time 0 and once
its operation on machine m starts, it cannot be interrupted until the
completion (i.e., preemption is not allowed). Each customer i locating
in different region has a demand size of di, for which pim units of time is
required to complete on machine m as a linear function of di. We also
assume that orders are produced in batches and each batch composes of
several different orders. Once processes of all orders in a particular
batch complete, a single vehicle with a capacity of Q delivers them to
the associated customers by considering due date of each order j (de-
noted as ddj). Due to capacity limitation of the vehicle, some batches
may have to temporarily wait at the plant for delivery in the next trip.
For the sake of simplicity, we further assume that orders constituting a
particular production batch are delivered in the same trip. The routing
part of the problem is modelled on a graph with N{0, 1, } as the set of
nodes in which 0 denotes the plant and remaining nodes represent
customers. The travel time between nodes i and j is denoted by tij and
assumed to be constant. Since the vehicle capacity is limited, it can be
used for multiple trips. The problem is to determine which orders will
be assigned to which batches in which sequence on each of the M
machines and to find the sequence of customers’ visit along with de-
livery times to the associated customers for each trip so as to minimize
the summation of total trip time and total tardiness.

3.1. Illustrative example

In this section, we aim to explain the problem with the help of an
illustrative example. Table 2 shows dataset generated for an instance
involving 3 machines and 7 customer orders. In Table 2, first column
represents the customer nodes. Node 0 indicates the plant, which is
located in the middle of the two-dimensional plane. Second and third
columns give the coordinates of the associated customer nodes. We
should note that the transportation time between each pair of nodes
iand j is calculated using Euclidian distances. While di represents the
demand size of customer i, pi1, pi2, and pi3 are the processing times of
order i on machines 1, 2, and 3, respectively. The vehicle capacity Q is
set to 180. Last two columns represent two different due date

Table 1
An overview of existing literature.

Paper Machine Configuration Vehicle number/ type Objective Solution method

Hurter and Van Buer (1996) Single Limited/ Homogenous Cost Heuristic
Chen & Vairaktarakis (2005) Single/Parallel Sufficient/ Homogenous Cost/ Service Exact/ Heuristic
Devapriya et al. (2006) Single Sufficient/ Homogenous Cost Exact/ Heuristic
Armstrong et al. (2008) Single Limited (single) Service Exact
Geismar et al. (2008) Single Limited (single) Service Exact/ Heuristic
Russell, Chiang and Zepeda (2008) Parallel Limited/ Heterogenous Cost/ Service Heuristic
Chen, Hsueh and Chang (2009) Single Limited/ Homogenous Profit Exact
Park and Hong (2009) Single Limited/ Homogenous Cost Exact/ Heuristic
Scholz-Reiter et al. (2011) Flow shop Limited/ Heterogenous Cost Exact
Farahani, Grunow and Günther (2012) Parallel Limited/ Homogenous Cost/ Quality Exact/ Heuristic
Amorim et al. (2013) Parallel Sufficient/ Homogenous Cost Exact
Ullrich et al. (2013) Parallel Limited/ Heterogenous Service Exact/ Heuristic
Lee et al. (2014) Parallel Limited/ Heterogenous Cost Exact/ Heuristic
Low, Chang and Gao (2017) Single Sufficient/ Heterogenous Cost Exact/ Heuristic
Meinecke and Scholz-Reiter (2014) Flow shop Limited/ Homogenous Cost Heuristic
Viergutz and Knust (2014) Single Limited (single) Service Exact/ Heuristic
Belo-Filho, Amorim and Lobo (2015) Parallel Sufficient/ Homogenous Cost Exact / Heuristic
Ehm and Freitag (2016) Flow shop Limited/ Heterogenous Cost/ Service Exact
Li et al. (2016) Single Limited/ Homogenous Cost/ Service Exact / Heuristic
Mohammadi et al. (2018) Flow shop Limited/ Heterogenous Service Exact / Heuristic
Devapriya, Ferrell and Geismar (2017) Single Sufficient/ Homogenous Cost Exact / Heuristic
Karaoglan and Kesen (2017) Single Limited (single) Service Exact
Kergosien, Gendreau and Billaut (2017) Parallel Limited (single) Service Exact/ Heuristic
Ramezanian, Mohammadi and Cheraghalikhani (2017) Flow shop Limited/ Heterogenous Cost Exact/ Heuristic
Lacomme et al. (2018) Single Limited (single) Service Exact/ Heuristic
Kesen and Bektaş (2019) Parallel Limited/ Heterogenous Service Exact
Mohammadi et al. (2019) Job shop Limited/ Heterogenous Cost/ service Exact/ Heuristic
Our study Flow shop Limited (single) Service Exact/ Heuristic
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parameters, namely ddwide and ddtight to be able to see the effect of due
dates on the solution. In the problem examined under ddwide parameter,
due dates are relatively wider than the problem examined under ddtight
parameter.

Fig. 1 displays feasible solutions for the illustrative example in ac-
cordance with two due date settings. For a particular tour, the load
capacity of the vehicle is not exceeded. According to the Fig. 1(a) which
considers ddwide parameters, vehicle completes its delivery service with
four tours as follows: 0–5–0 (tour 1), 0–1–6–0 (tour 2), 0–7–4–0 (tour 3)
and 0–2–3–0 (tour 4). And the case in which solution generated based
on ddtight parameters depicted in Fig. 1(b), vehicle meets the customer
demands with five tours as follows: 0–4–0 (tour 1), 0–7–0 (tour 2),
0–1–6–0 (tour 3), 0–2–3–0 (tour 4) and 0–5–0 (tour 5).

Fig. 2 represents Gantt charts for the solutions in Fig. 1 with order
arrival times A( )j and due dates dd( )j of related customers. As men-
tioned before, any particular batch constitutes the same orders for both
production and distribution. When we look at Fig. 2(a) based on the
first due date setting ddwide, the production of the order 5 is completed
at time 274, at which vehicle starts the delivery of the first tour. The
vehicle returns to the depot at time 420 after making the delivery of the
order 5. Despite the production completion time of the second batch
including orders 1 and 6 is 409, the delivery of the second batch starts
only after vehicle is ready (i.e., at time 420). The vehicle returns to the
depot at time 582 after making the delivery of the third batch including
customer orders 1 and 6. Although the third production batch com-
pletes its last operation on the last machine at time 581, the delivery of
this batch can only start at time 582, which is the returning time of
vehicle after making the delivery of second batch. While the vehicle
returns to the plant at time 719, the production completion time of the
last batch which consists of orders 2 and 3 is 733. So, the starting time
of the distribution for the last batch at time 733 and under this pro-
duction and distribution sequences, the returning time of vehicle after
fulfilling all deliveries is found as 898. From Fig. 2(a), we can see that
order 1, order 4 and order 7 become tardy. For this solution total

tardiness time is calculated as 165 ( =T 201 , =T 1444 and =T 17 ) and
total trip time is calculated as 610. So, the objective function, sum-
mation of total trip time and total tardiness, is found to be 775 for the
illustrative example.

The Gantt chart for the second solution shown in Fig. 2(b) can be
followed in a similar fashion. As seen from Fig. 2(b) only order 4 is
delivered before its due date. It is possible to make some shifts in the
schedule without disrupting the flow of subsequent orders. For ex-
ample, order 7 is served exactly at its due date, although it may be
delivered before this time. For this solution, total trip time is calculated
as 675 and total tardiness time is calculated as 577 =T( 611 ,

= = =T T T57, 44, 4092 3 5 and =T 66 ). So, the objective function is found
to be 675 + 577 = 1252 for the solution shown in Fig. 2(b).

While distributing the orders, idle times could occur in two different
cases. In the first case the vehicle which is ready in the plant waits until
the completion of production of the orders in the next batch. Or ad-
versely, the batch whose production is completed waits until the vehicle
visits all customers in its previous trip and returns to the plant. In the
illustrative example, idle waiting times for both production and dis-
tribution occur.

4. A mathematical formulation

In this section, we will present a mathematical formulation for in-
tegrated production and distribution scheduling problem. We now de-
scribe the parameters, decision variables and MILP formulation for
considered model.

Parameters
di : demand of customer i =i N( 1, , )
pim : processing time of order i on machine m

= =i N m M( 1, , ; 1, , )
Q : the capacity of vehicle
tij : travel time between customers i and j
=i j N i j( , 0, 1, , ; ; index0indicatesdepot)

ddj: due date for order j
H : sufficiently large number
Decision variables
Xij = 1 if vehicle goes directly from node i to node j
=i j N i j( , 0, 1, , ; ), 0 otherwise.

Wij = 1 if vehicle completes preceding tour with node i and starts
succeeding tour with node j =i j N i j( , 0, 1, , ; ), 0 otherwise.

ui: the total size of load on vehicle just before visiting node i
=i N( 0, 1, , )

Sim: process starting time of order i on machine m
= =i N m M( 1, , ; 1, , )

Cim: process completion time of order i on machine m

Table 2
Random dataset for the illustrative example.

i X coordinate Y coordinate di pi1 pi2 pi3 ddwide ddtight

0 0 0
1 2 33 75 77 76 69 434 446
2 7 −51 92 87 97 93 795 630
3 52 −15 65 65 69 59 910 701
4 –33 −42 76 73 76 84 521 311
5 54 49 89 91 85 98 451 464
6 −48 55 60 63 60 66 552 556
7 2 −46 89 83 94 88 628 402

        (a)                                                               (b)

Fig. 1. Feasible solutions for the illustrative example with different due date settings.
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= =i N m M( 1, , ; 1, , )
Ai: The arrival (or delivery) time of vehicle at customer i

=i N( 1, , )
Yi : Production completion time of a batch to which order i belongs

=i N( 1, , )
Ti: Tardiness for customeri =i N( 1, , )
The mathematical formulation is given as follows:

+
= = =

minimize t X T
i

N

j

N

ij ij
i

N

i
0 0 1 (1)

subject to

= =
=

X j N1 1, ,
i

N

ij
1 (2)

= =
= =

X X i N0, ,
j

N

ij
j

N

ji
0 0 (3)

+ + =u u QX Q d d X Q d i j N i j( ) , 1, , ;j i ij i j ji i (4)

+ =
=

u d d X i N1, ,i i
j j i

N

j ij
1; (5)

=u Q Q d X i N( ) 1, ,i i i0 (6)

=
=

W X i N1, ,
j i j

N

ij i
1;

0
(7)

=
=

W X j N1, ,
i i j

N

ij j
1,

0
(8)

Fig. 2. Gantt charts of feasible solutions for the illustrative example with different due date settings.
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=
= = =

X W 1
j

N

j
i

N

j

N

ij
1

0
1 1 (9)

=Y C i N1, ,i iM (10)

+ =Y C H X i N(1 ) 1, ,i iM i0 (11)

=Y Y H X X i j N i j(1 ) , 1, , ;j i ij ji (12)

+ + =A A HX H t t X H t i j N i j( ) , 1, , ;i j ij ij ji ji ij (13)

+ =A A HW H t t i j N i j, 1, , ;i j ij i j0 0 (14)

+ + =A HW H Y t i j N i j, 1, , ;j ij j j0 (15)

+ + =
=

A Y t H X Wij j N i j1 1, , ;j j j j
i

N

0 0
1 (16)

+ + =
=

A Y t H X Wij j N i j1 1, , ;j j j j
i

N

0 0
1 (17)

= =C S H X W i j N i j m M(1 ) , 1, , ; ; 1, ,im jm ij ij (18)

= =+S C i N m M1, , ; 1, , 1i m im( 1) (19)

= + = =C S p i N m M1, , ; 1, ,im im im (20)

=T A dd i N1, ,i i i (21)

A u S C Y T, , , , , 0i i im im i i (22)

=X i j N{0, 1} , 0, ,ij (23)

=W i j N{0, 1} , 1, ,ij (24)

The objective, which is given in Eq. (1) is to minimize total trip time
and total tardiness. Eq. (2) ensures that each node is visited exactly
once. Eq. (3) indicates that the number of arcs entering and leaving any
node must be the same. Eqs. (4)–(6) are capacity and sub-tour elim-
ination constraints. In particular, Eq. (4) states that the total load on
vehicle in any tour must not exceed the capacity limit of the vehicle. Eq.
(5) and Eq. (6) indicate the lower and upper limit for auxiliary variables
of ui. Eq. (7) and Eq. (8) determine the successive tour combinations,
using the last customer (let’s say customer i) of the preceding tour and
the first customer (let’s say customer j) of the succeeding tour. Eq. (9)
guarantees that difference between the total number of tours and the
total number of successive tour combinations is exactly one. Eq. (10)
and Eq. (11) state that production of any particular batch must be
completed after operation of the last order i in the batch is performed
on the last machine M . Eq. (12) indicates that all orders in a batch must
wait until the completion of the last order i in a production to get ready
for distribution. Eq. (13) determines the arrival time of the successive
orders in the same batch at the associated customers. Eq. (14) along
with Eq. (15) inter connect the arrival time of the first order j in the
succeeding batch with the last order i in the preceding batch if =W 1ij .
Eq. (14) ensures that the vehicle can only start the delivery of the first
customer i in the succeeding batch after completing the delivery of last
order j in the preceding batch and returning to the depot. Eq. (15)
states that the vehicle can only start the delivery of customer j after

Algorithm 1 - Proposed Algorithm 
Input: Parameters of population size, tournament size, crossover rate, mutation rate, maximum number of 
generations
Output: The best individual in all generations 
Step 1: Initialize population size individuals 

Step 1.1: Generate first individual by Clarke and Wright’s Saving Algorithm 
       Generate a giant tour for second individual by Nearest Neighbor Algorithm 

               Generate giant tours for (population size/2)-2 individuals by Random Task Heuristic 
       Generate giant tours for population size/2 individuals by fully random 

Step 1.2: Decode each giant tour by Prins’ splitting algorithm for evaluation (Obtain feasible 
solution) 

WHILE number of generations is less than maximum number of generations DO
Step 2: Compute the fitness of each individual 
Step 3: Perform the selection process with binary tournament among randomly selected individuals 
as much as tournament size
Step 4: Use the order crossover operator with probability of crossover rate and generate two 
offspring 
Step 5: Mutate the resulting offspring by swap or 2-opt swap procedure with probability of mutation 
rate
Step 6: Check feasibility of new generated offspring by different decoding strategies 

Decode new generated offspring by Prins’ splitting algorithm 
Decode new generated offspring by direct shipping policy 
Decode new generated offspring by random splitting 

Step 7: Evaluate new offspring 
ELSEIF both of the offspring already exist in population THEN

Apply mutation operator to either of the offspring and RETURN Step 7 
ELSEIF either of the offspring already exist in population THEN

Select the offspring not existing in the population to compare with the individuals. 
ELSE 

Select the offspring with the best objective value to compare with the individuals 
in population 

Step 8: Apply local search procedure  
Step 9: Update the population for the next generation 

END 
Step 10: Return the best solution  

Fig. 3. Pseudocode of proposed algorithm.
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production of the batch to which order j belongs completes. Eq. (16)
and Eq. (17) determine the delivery time of the first customer in the
first tour. Eq. (18) determines production starting time of the successive
orders in the same batch and also indicates the production starting time
of the first order in the successive batches. Eq. (19) guarantees that
processing of any order on succeeding machine can only start after its
processing completes on preceding machine. Eq. (20) ensures that
completion time of any order i on machine m equals to starting time of
order i plus its processing time on machine m (pim). Eq. (21) simply
calculates the tardiness value. Eqs. (22)–(24) represent the non-nega-
tivity and integrality restrictions on the variables.

5. Memetic algorithm

The integrated problem comprises of two well-known NP-hard
problems, namely permutation flow-shop scheduling and vehicle
routing. Finding a solution to the integrated problem is at least as hard
as finding a solution to any of the problems standalone. We, therefore,
develop a heuristic approach based on memetic algorithm to find good
or near-optimal solutions in a reasonable amount of time due to in-
tractability matter of the problem. Memetic algorithm which use a local
search procedure is an extension of genetic algorithm and was first
introduced by Moscato (1989). It has already been compared to clas-
sical evolutionary algorithms on numerous combinatorial optimization
problems and experimental results indicated that the memetic algo-
rithms found much better solutions than standard genetic algorithms
(Garg, 2010; Elbeltagi et al. ,2005). Details of the proposed MA are
given in Fig. 3.

5.1. Encoding schemes and evaluation

The chromosome is usually expressed in a string of variables, each
element of which is called a gene. The variable can be represented by
binary, real number, or other forms and its range is usually defined by
the problem specified (Tang et.al., 1996). In the algorithm, we use real
numbers on permutation encoding including all customer without tour
information and a solution vector is represented by a giant tour which
belongs to Travelling Salesman Problem (TSP) or Vehicle Routing
Problem (VRP) with infinite capacity. However, since the vehicle ca-
pacity is limited, it cannot be expected that the vehicle can serve all
customer in a single tour. As a result, it is also necessary to decide
which customer belongs to which batch. Decoding is a key step in
which information from a chromosome is read to build a feasible so-
lution. In decoding phase, we use different decoding strategies to create
a feasible solution considering capacity constraint to evaluate fitness
function value.

Prins (2004) shows that a chromosome can be converted into an
optimal VRP solution (subject to chromosome sequence) at any time,
thanks to its splitting procedure and we also find useful this strategy
when we consider the classical objective of VRP which take part of our
objective as a minimization of total trip time. The splitting procedure
can be seen in Fig. 4 and the readers are referred to works of Prins
(2004, 2009) for more detail.

Prins’ splitting algorithm is basically designed to minimize the total
trip time which arises in the classical VRP. However, objective here is to
minimize the total trip time and total tardiness. As Prins’ algorithm
disregard tardiness objective in nature, any solution with relatively
lower total trip time does not necessarily produce a low total trip time
plus total tardiness. This requires us to introduce other decoding
schemes which can search for different areas in solution space for di-
versification. For this purpose, we present other two decoding schemes,
namely direct shipping and random splitting. In direct shipping, as its
name suggests, the vehicle visits only one customer in each tour. In
random splitting, for a given giant tour, customer demands are col-
lected from first customers to onwards until vehicle capacity is ex-
ceeded. For this customer subset, the number of customer to be visited

is uniformly selected with a lower value of 1 and maximum value of the
number of customers in subset. This encoding scheme executes until the
last customer. Let’s reconsider the illustrative example given in Section
3.1 and assume a giant tour as follows:
(0 4 2 7 1 3 5 6 0). According to the giant tour, or-
ders 4 and 2 can be visited in the first tour without violating vehicle
capacity. If order 7 was included in the first tour, total amount of de-
mand would be 257, leading to violation of the capacity limit of 180.
Then, we need to decide how many customers will be visited in the first
tour. In this case, let’s select integer number of 2, meaning that custo-
mers 4 and 2 will be visited in the first tour. Remaining customers to be
assigned to subsequent tours will be determined according to this
procedure.

Following the implementation of three decoding schemes, evalua-
tion process is applied to each solution to calculate its fitness value (or
objective value).

5.2. Population structure

The first step in the implementation of MA is generation of initial
population. A population comprises of a group of chromosomes and
each chromosome represents a solution for the problem. In many ap-
plications the initial population is generated randomly. In this study,
both random solutions and solutions produced according to specific
principles are included in initial population. The construction of initial
population with size of N can be described as follows: In initial popu-
lation, the first chromosome is generated by The saving algorithm of
Clarke and Wright (1964). Other chromosomes are created based on
route first-cluster second methods. Route mechanism is relied upon
well-known techniques involving nearest neighbor and random task.
Nearest Neighbor (NN), which is an approximate algorithm to solve
TSP, works in a fashion that vehicle visits the unvisited nearest cus-
tomer to its current customer location until all visitation of customers
are completed. Random Task (RT), which is first propounded by the
work of Prins (2009), is a slightly modified version of NN. In RT, the
vehicle randomly selects the candidate customer for its next visit among
the unvisited customers based on a threshold value of (0 1).
Based on the selection of , the vehicle can visit a restricted number of
unvisited customers. The higher the value of is chosen, the more likely
the relatively farther customers to vehicle’s current position can be
visited. Finally, other half of the initial population is randomly gener-
ated.

5.3. Selection and crossover

Following the population generation, we use binary tournament
mechanism in selection phase. First the number of individuals with a
size of tournament are randomly chosen from the population to apply
tournament mechanism. Then, the winner of tournament which has the
best fitness value is selected as a parent for recombination procedure. A
number of crossover operators were proposed in the literature. Here, we

set  and  (where is cost of path to node ,  is number of nodes) 

for to  do 

for to while subsequence/route  feasible 

          compute route cost (where   is cost of ) 

if then

end if 

end for 

end for 

return the batches

Fig. 4. Prins’ splitting algorithm.
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opt to choose order crossover (OX) procedure, which is developed by
Davis (1985) and consistent with permutation encoding for re-
combination phase. An example of OX procedure is shown as in Fig. 5.
First, we select two cutting points randomly. Then, genes between these
points in parent1 (parent2) are copied to offspring1 (offspring2). The re-
maining genes (i.e., out-of-cutting points) needed to form offspring1
(offspring2) are copied from parent2 (parent1) according to the order of
appearance. The resulting two offspring are generated as can be seen
from Fig. 5.

5.4. Mutation

To maintain diversity, mutation operator is used for escaping from
local optima in memetic algorithm. In proposed algorithm, mutation
operator is used based on swap and 2-opt swap procedures. In swap
procedure, two genes are randomly selected and these selected genes
are interchanged. In 2-opt swap procedure, two genes are randomly
selected. The genes out of cutting points are kept intact but in between,
the genes are reversed. For instance, let (1 2 6 7 4 3 5) be
the chromosome to which 2-opt swap applies. Let’s genes 6 and 3 are
selected as cutting points. After 2-opt is applied to the chromosome, the
resulting chromosome would be (1 2 3 4 7 6 5).

5.5. Local search

After the decision of what orders to be included in each batch is
made, delivery sequence among these batches is of importance in terms
of tardiness value. Although delivery sequence of batches does not
change the total trip time, the change in batch sequences can normally
yield different total tardiness value. We, thus, need to use local search
mechanism to improve fitness value of the newly selected offspring,
whereby randomly changing the sequence of batches for possible re-
duction in total tardiness. Let’s consider the illustrative example given
in Section 3.1. From Fig. 2(a) vehicle makes four delivery tours, in-
cluding 0–5–0 (tour 1), 0–1–6–0 (tour 2), 0–7–4–0 (tour 3) and 0–2–3–0
(tour 4). Let tour 1 and tour 4 are imposed to pairwise interchange (that
is, tour 4 is performed first and tour 1 is performed fourth). According
to this change, the resulting Gantt chart is shown as in Fig. 6. As can be
seen, total trip time remains unchanged (i.e., 610) but there exists a
substantial change in total tardiness value, which increased from 165 to
868. After pairwise interchange, new tardiness value of each customer
is calculated as ( =T 1011 , =T 38,6 =T 827 , =T 2254 and =T 4225 ). Since
this random pairwise interchange makes the total tardiness value worse
than the current one, this is not permitted.

5.6. Updating population

Diversity can only be sustained for future generations only if a po-
pulation in a particular generation consists of unique chromosomes. To
achieve this aim, we use an updating mechanism during the inclusion of
newly generated offspring into population. After crossover and

mutation operators are used to generate two new offspring, three pos-
sible situations can occur: (i) both of the offspring (ii) either one of the
offsprings or (iii) none of the offspring may already exist in population.
In case (i), one of the offspring is randomly selected and mutated. In
case (ii), the offspring not existing in the population is selected to
compare with the individuals. In case (iii), the offspring with the best
objective value is selected to compare with the individuals in popula-
tion. If selected offspring in each of three cases have better fitness value
than the chromosome with worst fitness value in the population, the
offspring is replaced with that chromosome and added into the popu-
lation.

6. Generation of test instances

In order to assess the performance of the heuristic over MILP re-
liably, the generation of test instance is of great importance. During the
design of test instances, we classify them into three groups, namely
small, medium, and large sized instances. Small sized instances contains
customer numbers of 5, 6, 7 and machine numbers of 2 and 3. Medium
sized instances involve customer numbers 10 to 15 with an increment of
1 and machine numbers of 3, 4, and 5. Large size instances cover cus-
tomer numbers 20 to 50 with an increment of 10 and machine numbers
of 4, 5, and 6. In order to see the impact of due dates on solution, three
levels are chosen as tight, medium, and wide. Another parameter which
is thought of having an impact on solution is the variability of pro-
cessing times on machines. Impact of the variability is measured by the
inclusion of a parameter µ. Two levels are chosen for parameter of µ as
0.1 and 0.3. For each combination, five test instances are generated.
We, therefore, generate × × × × =3 2 3 2 5 180 instances for small
sized groups, × × × × =6 3 3 2 5 540 instance for medium sized
groups, and × × × × =4 3 3 2 5 360 instances for large sized groups. In
total, + + =180 540 360 1080 test instances are generated. The para-
meters with their chosen levels are shown in a tabular form given in
Table 3.

We are inspired by the work of Ullrich (2013) during our test in-
stance generation procedure. First, we set a general value which will
be a base in generating all other parameters. Table 4 shows the instance
generation procedure. As seen in the first row, the demand size di of
order i is assumed to be uniformly distributed and represented by
UNIF ( /2, ). While generation of processing time pim of order i on
machine m, first unit processing time value for each order on each
machine is drawn from a discrete uniform distribution

+UNIF µ µ(1 , 1 ) then pim is calculated as demand size of order i
multiplied by unit processing time. As regards to vehicle capacity, we
reasonably assume that it cannot be lower than maximum demand size.
The upper limit for capacity is set half of the total demand size of all
customer orders. In generation of the travel time matrix, we first ran-
domly select x and y coordinates of each customer on a two-dimen-
sional plane and then calculate the Euclidian distances between each
pair of customers. The distances are assumed to be symmetric (i.e.,

= =t t i j N; , 0, ,ij ji ). We generate the customer locations in a
fashion that the maximum travelling time between each pair of custo-
mers does not exceed the threshold value of . In order to effectively
manage both production and distribution operations, balancing be-
tween processing and travelling times are significant. If processing
times are relatively larger than travelling times, machine scheduling
problems turns out to be trivial and the integrated problem boils down
to the vehicle routing problem. In practice, however, processing and
travelling times are well-fitted. While we use a coefficient +M N( 1)
as multiplier in production stage, we use +N( 1) where M and N de-
note the number of machines and orders respectively in distribution
stage. After calculation of , customers are randomly located in this
geographical region. Thus, triangle inequality are preserved. In the last
row, tight, medium and wide due date generations are calculated based
on related expressions.

Fig. 5. The OX procedure.
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7. Experimental results

Computational experiments are conducted on a workstation with
two four-core Intel Xeon E31245 at 3.30 GHz with 8 GB RAM. CPLEX
solver embedded to GAMS version of 24.2 is used as the MILP-solver.
The maximum computational time for CPLEX solver is set to 3 h (10800
sec.). This section is divided into three subsections.

7.1. Effects of varying number of customers and machines on performance
of CPLEX

This section is devoted to interpreting the overall performance of

CPLEX with respect to different number of customers and machines.
Table 5 reports the computational results obtained by CPLEX. First and
second column represent the customer (N ) and machine number (M),
respectively. Third column (Objective_value) shows the best feasible
solution found by CPLEX until the time limit of 10,800 sec. The fourth
column (Lower_bound) represents the lower bound value provided by
CPLEX and is found by relaxing the integer/binary decision variables.
Therefore, a lower bound does not guarantee feasibility unless lower
bound and upper bound found are the same. The fifth column (%GAP)
represents the percentage gap value and is calculated as

× Objective value Lower bound Objective value100 ( _ _ )/( _ ). The value of 0
for %GAP means that optimal solution is found for a particular test

Fig. 6. Effect of batch exchanging for tardiness.

Table 3
Test instances structure.

Instance Type Number of customers Number of machines ddi µ

Small sized 5, 6, 7 2, 3 tight, medium, wide 0.1, 0.3
Medium sized 10, 11, 12, 13, 14, 15 3, 4, 5 tight, medium, wide 0.1, 0.3
Large sized 20, 30, 40, 50 4, 5, 6 tight, medium, wide 0.1, 0.3

Table 4
Generation of test instances.

Parameter Equations

di =( )UNIF , 1002
pim + =UNIF µ µ d µ(1 , 1 ) 0.1, 0.3i
Q ( )UNIF maxd ,i

di
2

= +
+

M N
N

3 ( 1)
2( 1)

X Y( , )0 0
= =( )a,a a maxtij

2 2

2

2
X Y( , )i i UNIF a(0, )

ddi = + + ( )tight p t UNIF 0,m im oi 4 = + + = + + +( )medium p t UNIF M N N0, [( 1) ( 1)]m im oi 3 = + + ( )wide p t UNIF 0,m im oi 2
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instance. The sixth column (# of optimal) shows the number of solutions
found to optimality among 30 instances for each combination of cus-
tomer and machine. The last column (CPU in sec.) represents CPU time
in sec. When CPU time is found to be lower than maximum time limit of
10,800 sec., this indicates that solution to optimality is found for that
instance.

It is seen from Table 5 that CPLEX can provide optimal solutions for
all small sized instances in quite short times. In medium sized instances,
increasing number of customer leads to a dramatic decrease in the
number of optimal solutions and a substantial increase in CPU times. As
regards to large sized instances, CPLEX cannot reach optimal solution in
any instances within the given time limit. In addition to this, the GAP
value has increased dramatically. Another finding from Table 5 is that
increasing number of machines has no impact on %GAP, and CPU times
but expectedly leads to an increase in objective value.

7.2. Effect of variability on processing times: Comparison of CPLEX and MA
results

In this chapter, we discuss the relative performances of CPLEX and
MA under two different processing time variability factors. Before
proceeding results, we give details about the selection of parameter
values of the heuristic.

The heuristic algorithm is coded using C# programming language.
The performance of the algorithm is fine-tuned, whereby best levels of
parameters are determined based on pilot runs. Based on pilot runs,
best values of crossover and mutation rates are set to 0.90 and 0.10.
Population size consists of 30 chromosomes. Maximum number of
iteration is selected as a function of customer number (N ). This number
is chosen ×n 50, ×n 100, ×n 200 for small sized, medium sized, and
large sized instances, respectively.

Table 6 presents the comparative results of MA and CPLEX results.
The first column µ( ) denotes the variability coefficient of processing
times. As indicated in Section 6, processing time pim is calculated as

= +p UNIF µ µ d(1 , 1 )im i. Hence, an increase in µ also increases the
variability in processing times. The values of 0.1 and 0.3 are selected to

Table 5
Computational results obtained by CPLEX.

N M Objective_value Lower_bound %GAP # of
optimal

CPU in sec.

Small 5 2 519.47 519.47 0.00 30/30 0.39
3 623.93 623.93 0.00 30/30 0.32

6 2 460.27 460.27 0.00 30/30 3.08
3 786.40 786.40 0.00 30/30 3.54

7 2 617.47 617.47 0.00 30/30 49.28
3 775.17 775.17 0.00 30/30 33.60

Medium 10 3 1187.67 868.14 23.69 15/30 7118.17
4 1120.67 618.42 37.66 6/30 9004.55
5 1477.23 713.17 40.79 7/30 8595.79

11 3 1268.37 556.88 45.54 3/30 10350.61
4 1432.90 695.20 42.39 4/30 10213.25
5 1439.80 889.14 29.05 10/30 7528.41

12 3 1626.27 511.09 57.19 1/30 10757.46
4 1734.00 827.65 40.10 6/30 8773.78
5 1712.97 813.51 44.08 4/30 9687.43

13 3 1820.80 689.39 49.84 2/30 10081.33
4 1656.23 564.42 59.33 0/30 10800.00
5 1937.47 698.93 55.86 2/30 10081.28

14 3 2120.63 744.11 53.09 0/30 10800.00
4 2035.13 872.34 46.70 6/30 9414.67
5 1931.73 743.75 53.02 0/30 10800.00

15 3 2035.40 633.04 57.13 4/30 9978.09
4 2307.00 507.97 70.48 0/30 10800.00
5 2385.27 947.18 48.63 2/30 10083.67

Large 20 4 3473.60 717.75 72.69 0/30 10800.00
5 3690.90 720.00 73.26 0/30 10800.00
6 3573.47 622.96 73.06 0/30 10800.00

30 4 7078.117 879.28 78.86 0/30 10800.00
5 7661.13 556.58 85.93 0/30 10800.00
6 10129.17 1167.07 84.00 0/30 10800.00

40 4 17671.10 585.24 93.58 0/30 10800.00
5 17614.63 629.87 93.53 0/30 10800.00
6 19638.07 640.37 96.08 0/30 10800.00

50 4 30396.30 1235.38 94.94 0/30 10800.00
5 32186.60 646.03 97.67 0/30 10800.00
6 30076.97 1126.43 95.24 0/30 10800.00

Table 6
Comparative results of the MA and CPLEX under different µ values.

MA CPLEX

µ N % GAP_best % GAP_worst GAP_avg. CPU in sec. % GAP # optimal CPU in sec.

0.1 5 0.00 0.29 0.16 0.22 0.00 30/30 0.52
6 0.07 0.93 0.45 0.23 0.00 30/30 3.85
7 0.62 1.87 1.26 0.25 0.00 30/30 44.44
10 3.39 7.88 5.52 0.80 0.01 15/45 8187.65
11 4.16 9.50 6.75 0.93 0.06 11/45 9154.68
12 5.69 9.59 7.56 1.15 0.07 6/45 9720.72
13 6.77 11.89 9.06 1.23 0.06 2/45 10320.79
14 7.95 13.54 10.61 1.48 0.13 3/45 10100.31
15 11.63 15.70 13.80 1.73 0.10 3/45 10297.29
20 10.73 18.05 14.39 6.40 0.45 0/45 10800.00
30 7.88 11.80 9.60 14.27 9.19 0/45 10800.00
40 0.01 0.17 0.10 25.22 69.70 0/45 10800.00
50 0.00 0.00 0.00 35.99 146.70 0/45 10800.00

0.3 5 0.03 0.07 0.04 0.23 0.00 30/30 0.20
6 0.18 0.90 0.48 0.23 0.00 30/30 2.77
7 0.56 2.34 1.36 0.25 0.00 30/30 38.44
10 3.88 7.42 5.73 0.82 0.00 13/45 8291.36
11 4.80 9.54 7.21 0.98 0.03 6/45 9573.51
12 8.00 11.53 9.70 1.17 0.04 5/45 9758.39
13 9.51 15.06 11.90 1.25 0.26 2/45 10320.78
14 10.96 15.99 13.15 1.49 0.27 3/45 10576.18
15 14.93 19.25 17.00 1.76 0.54 3/45 10277.26
20 14.81 21.05 18.05 5.22 0.39 0/45 10800.00
30 12.60 17.73 14.90 12.39 9.44 0/45 10800.00
40 0.39 1.32 0.60 21.75 46.09 0/45 10800.00
50 0.00 0.00 0.00 30.68 132.69 0/45 10800.00
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see the effect of this parameter. The second column represents the
number of customer. The heuristic algorithm is run three times for each
instance. Third (% GAP_best), fourth (% GAP_worst) and fifth (% GA-
P_avg.) columns give the average percentage gap values of MA against
CPLEX. While sixth and ninth columns CPU times provided by heuristic
algorithm and CPLEX, eight column represents the number of solutions
to optimality found by CPLEX.%GAP_best, %GAP_worst, and % GAP_avg.
represent the best, worst, and average solution provided by the

heuristic among three runs for a given instance. These values are ac-
cordingly calculated as × Heuristicsolution CPLEXsolution100 ( )/
CPLEXsolution( ) if solution found by heuristic is worse (higher) than the
solution by CPLEX. Finally, %GAP is calculated as ×100
CPLEXsolution Heuristicsolution Heuristicsolution( )/( ) if solution found
by CPLEX is worse (higher) than the solution by heuristic.

Findings from Table 6 can be summarized as follows. The heuristic
can find solution to optimality for most of the small sized instances
generated. For medium sized instances, relative performance of heur-
istic algorithm over CPLEX worsens. This is because CPLEX is still
capable of finding optimal solutions within time limit of 3 h for some of
the instances. The likelihood of finding optimal solution for the heur-
istic diminishes due to enlarged solution space. The situation reverses
the for large sized instances, though. The solution performance of the
heuristic overwhelmingly outperforms CPLEX. In particular, %GAP
value dramatically increases to 69.70 and 146.70 when =µ 0.1 and
customer numbers are 40 and 50. Similar results occur when =µ 0.3.
Another remark worth emphasizing is associated with different values
of µ. When value of µ is increased from 0.1 to 0.3, performance of both
heuristic and CPLEX degrades. This means that increased variability in
processing times also leads to an increase in complexity of the problem.
Finally, it is clear that the heuristic can provide solutions less than a
minute even for the largest size of instance. But, solution time of CPLEX
is computationally forbidden and is not amenable for practical pur-
poses.

Table 7
Comparative results of the MA and CPLEX under different due date levels.

MA CPLEX

ddi N % GAP_best % GAP_worst GAP_avg. CPU in sec. % GAP # optimal CPU in sec.

wide 5 0.00 0.00 0.00 0.28 0.00 20/20 0.23
6 0.08 0.23 0.14 0.23 0.00 20/20 1.71
7 0.65 2.05 1.22 0.25 0.00 20/20 27.71
10 2.31 6.79 4.47 0.75 0.00 18/30 5430.47
11 3.02 7.95 5.27 0.88 0.07 14/30 7260.08
12 5.34 11.07 8.03 1.05 0.10 9/30 8011.44
13 6.37 13.64 9.54 1.17 0.05 4/30 9362.25
14 6.97 13.47 9.82 1.36 0.00 6/30 9414.67
15 14.52 20.19 17.24 1.60 0.13 6/30 9261.74
20 17.39 29.53 23.69 5.21 0.44 0/30 10800.00
30 19.85 29.29 24.12 12.80 10.08 0/30 10800.00
40 0.59 1.96 0.90 22.53 97.54 0/30 10800.00
50 0.00 0.00 0.00 32.31 296.70 0/30 10800.00

medium 5 0.00 0.06 0.02 0.22 0.00 20/20 0.38
6 0.27 0.89 0.65 0.23 0.00 20/20 3.14
7 0.40 2.18 1.22 0.25 0.00 20/20 19.60
10 4.02 8.15 5.91 0.84 0.01 6/30 9133.94
11 5.81 12.59 9.44 0.97 0.00 3/30 10032.17
12 9.05 12.66 10.84 1.21 0.02 2/30 10407.18
13 10.82 16.20 13.23 1.26 0.20 0/30 10800.00
14 14.30 21.02 17.53 1.52 0.11 0/30 10800.00
15 16.46 21.07 19.11 1.78 0.48 0/30 10800.00
20 12.80 17.62 15.18 6.14 0.75 0/30 10800.00
30 8.49 11.47 9.64 13.30 9.89 0/30 10800.00
40 0.00 0.00 0.00 24.30 55.86 0/30 10800.00
50 0.00 0.00 0.00 33.69 82.30 0/30 10800.00

tight 5 0.04 0.48 0.28 0.21 0.00 20/20 0.46
6 0.02 1.62 0.61 0.23 0.00 20/20 5.08
7 0.72 2.08 1.48 0.25 0.00 20/20 77.01
10 4.57 8.00 6.49 0.85 0.00 4/30 10154.10
11 4.61 8.01 6.23 1.01 0.06 0/30 10800.00
12 6.15 7.95 7.02 1.23 0.04 0/30 10800.00
13 7.23 10.60 8.67 1.30 0.23 0/30 10800.00
14 7.10 9.80 8.30 1.56 0.49 0/30 10800.00
15 8.85 11.16 9.84 1.85 0.36 0/30 10800.00
20 8.10 11.50 9.80 6.09 0.08 0/30 10800.00
30 2.38 3.52 3.00 13.87 7.98 0/30 10800.00
40 0.01 0.27 0.15 23.61 20.29 0/30 10800.00
50 0.00 0.00 0.00 34.00 40.09 0/30 10800.00
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Fig. 7. Convergence of MA.
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7.3. Effect of due dates: Comparison of CPLEX and MA results

Another important parameter that should be investigated to see its
effect on results provided by both CPLEX and the heuristic algorithm is
due dates of the customers. As tardiness values are calculated based on
due dates of customers, it is worthwhile to observe the changes in ob-
jective value with varying levels of due dates. We, thus, choose three
different levels of due dates, labeled wide, medium, and tight while
generating instances. While wide due date designates a longer latest
time for delivery to customer, tight due date represents shorter latest
time. The calculation formula for each these levels can be seen in
Table 4.

In Table 7, all column labels are exactly the same in Table 6, ex-
cluding first column, which now represents due date level. It is seen
From Table 7 that when due date level is changed from wide to medium
and from medium to tight number of solution found to optimality no-
tably decreases and solution times rapidly increases. Since tardiness
value is positive difference between arrival time and due date for any
customer and total tardiness contributes to objective function, non-zero
tardiness values for any customer lead to more space search for CPLEX.
As regards to relative performances of the heuristic and CPLEX on so-
lution quality following remarks can be stated. For small sized instances
under all due date levels, %Gap_best is very close to zero, indicating the
favorable performance of the heuristic. For medium sized instances,
when due date level is changed from wide to medium, the relative
performance of the heuristic over CPLEX slightly worsens. Conversely,
when due date level is changed from medium to tight the relative
performance of the heuristic against CPLEX rises up again more re-
markably. For large sized instances, When due date is changed from
wide to medium and medium to tight, the %Gap_best value decreases,
indicating that relative performance of the heuristic over CPLEX in-
creases. In terms of computational time, the heuristic finds solutions in
quite shorter times as compared to CPLEX.

7.4. Convergence of MA

The success of any algorithm is frequently measured how rapidly it
converges. This sub section is to show the convergence speed of the
heuristic developed. Fig. 7 demonstrates convergence behavior for a big
sized instance involving customer number of 50. As maximum iteration
number is calculated as × =50 200 10, 000, Fig. 7 draws the average
objective values of all chromosomes (in y-axis) against each iteration
(in x -axis). It is obvious that the developed heuristic can rapidly con-
verges around iteration 1000, after which small improvements also are
observed until the end of maximum iteration number.

8. Conclusions and future directions

In this paper, we studied a joint production scheduling and dis-
tribution planning problem where a manufacturer has committed to
processing customer orders on a permutation flow-shop environment
and subsequently delivering them to the customers by a single capaci-
tated vehicle. As each customer place its order with a pre-determined
due date, tardiness may occur for an order which is delivered to des-
tined customer after due date. Owing to its limited capacity, vehicle
makes as many order deliveries as possible to reduce the total trip time.
This, however, leads some orders to become tardy. The objective
function is therefore to minimize the total trip time plus total tardiness.
In order to cope with high complexity of the problem, we assume that
production and distribution sequence of a batch composing of several
orders are the same.

We formulate the problem as a mixed integer linear programming
(MILP). Inherent complexity of the problem does not allow mathema-
tical formulation for providing optimal solution even in test instances
with a moderate number of customers. We, therefore, present a
Memetic Algorithm (MA) which is capable of providing good or near-

optimal solutions in acceptable amount of time. Our experimental
studies rely on comparative results of MA and CPLEX solver, whereby
pointing out the impact of variability in processing times and expansion
of due dates.

Based on experimental study, the following remarks can be stated.
The increasing variability in processing time has a negative impact on
solution quality and number of optimal solutions provided by MA and
CPLEX. Likewise, tighter due date also deteriorates the solution quali-
ties provided both of the methods. The number of machines is observed
to have no effect on the problem complexity. The last, but not the least,
remark is that MA finds good quality solutions and outperforms the
CPLEX results. In particular, it can find better solutions than the ones
provided by CPLEX in quite shorter computational times. It is also seen
that MA converges quite rapidly.

This study can be extended in several points in order to shed lights
on future studies. The sensitivity analysis can be done to see the effect
of varying vehicle capacity on the problem. The impact of multiple
vehicles with homogenous/heterogeneous capacity can be studied.
Other metaheuristic combined with effective local search methods
seems worthwhile to study in the future research.
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