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Artificial Neural Networks are commonly used to solve problems in many areas, such as classification,
pattern recognition, and image processing. The most challenging and critical phase of an Artificial
Neural Networks is related with its training process. The main challenge in the training process is finding
optimal network parameters (i.e. weight and biase). For this purpose, numerous heuristic algorithms
have been used. One of them is Artificial Algae Algorithm, which has a nature-inspired metaheuristic
optimization algorithm. This algorithm is capable of successfully solving a wide variety of numerical opti-
mization problems. In this study, Artificial Algae Algorithm is proposed for training Artificial Neural
Network. Ten classification datasets with different degrees of difficulty from the UCI database repository
were used to compare the proposed method performance with six well known swarm-based optimiza-
tion and backpropagation algorithms. The results of the study show that Artificial Algae Algorithm is a
reliable approach for training Artificial Neural Networks.
� 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Artificial Neural Network (ANN) is one of the most popular
study topics in machine learning and artificial intelligence. Over
the past two decades, ANN has been applied to a wide range of
fields such as classification, regression, prediction problems, pat-
tern recognition, robotics, and signal processing [1–9].

ANN must be trained to produce accurate output values for the
input data presented to it [10]. Training is the process of calculat-
ing the best weight and biase from the data presented to a network
system. The purpose of learning in ANN is minimizing the error
between the desired and calculated network outputs. Training is
done by fine-tuning the network weight and bias values. The train-
ing process for artificial neural networks directly affects the perfor-
mance of the network. In the literature, many deterministic
methods for the training of feedforward ANN have been proposed.
The deterministic methods do not involve randomness, and pro-
duce the same result when running with the same initial parame-
ters. Deterministic methods are mostly based on gradient.
Gradient-based methods benefit from the derivative of the objec-
tive function. These methods do not guarantee to find a global opti-
mum solution for problems where the objective function has local
optimum. The backpropagation algorithm and its variants are con-
sidered conventional examples of gradient-based methods [11]. In
general, the advantages of gradient-based methods are speed and
simplicity; and the disadvantages are the tendency to stick to local
optimum, high dependence on initial parameters, and early and
slow convergence [12–15]. As an alternative to gradient-based
approaches in the literature, metaheuristic algorithms have been
proposed to train ANNs. Metaheuristic algorithms begin with ran-
dom solutions to the training process and improve the solution
throughout the iterations to reduce the error. Metaheuristic algo-
rithms are more suitable for global optimization [16]. The advan-
tage of such methods is their high success in avoiding local
optimizations. However, it is usually much slower than determin-
istic approaches [17]. Metaheuristic methods have been used in
the training process of ANN, and it was suggested that these algo-
rithms were better than the gradient-based algorithm when the
problem was more complex and multidimensional [18]. Swarm
intelligence optimization algorithms are an essential part of meta-
heuristic methods, and have been used successfully in many real-
world problems and in the engineering field [19,20].

Swarm intelligence is the modelling of species that behave
intelligently in the form of swarms such as birds [21,22], wolves
[23], whales [24], fireflies [25], and bats [26]. Every agent (individ-
ual) in the swarm represents a possible solution. Each self-
organized agent sharing information between agents in the swarm
will try to move to the appropriate solution [16]. There are a lot of
studies in the literature using swarm intelligence for the training of
ANN such as Particle Swarm Optimization [27,28], Cuckoo Search
Algorithm [29], Bat Optimization Algorithm [30], Grey Wolf
Optimization [31], Whale Optimization Algorithm [15], Firefly
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algorithm [32], Grasshopper Optimization [33], and Dragonfly
Algorithm [34].

Although many algorithms have been proposed in the literature
for ANN training, new algorithms need to be developed to over-
come problems such as early convergence and being stuck to local
minimums. According to the No-Free-Lunch Theorem (NFL), an
optimization algorithm cannot achieve success in all of the opti-
mization problems [35–37]. Motivated by these reasons, in this
study, the Artificial Algae Algorithm, which is inspired by the fea-
tures and life behaviours of microalgae, was proposed for the
Multi-Layer Perceptron training process. MLP is a specific form of
ANN, and is often used to solve complex problems in the real-
world. AAA has three main sections, which are evolutionary pro-
cess, helical movement, and adaptation. The Artificial Algae Algo-
rithm (AAA) method can effectively achieve the convergence and
discovery of the optimal solution through its adaptation and evolu-
tion processes. Besides, the AAA helical motion mechanism per-
forms an effective search in the solution space. These processes
work together in harmony and provide a balanced exploration
and exploitation ability to the AAA algorithm [38]. With such effec-
tive processes, AAA has shown superior performance in optimiza-
tion problems of different dimensions and characteristics, and
has inspired it to be used for implementation to new optimization
problems [39–42].

This paper is organized as follows. Section 2 describes the
methodology by summarizing the MLP and mathematical models
of AAA. The AAA-based MLP training model is proposed in Sec-
tion 3. The general performance tests of the algorithms and the
analysis of the test results are carried out in Section 4. In Section 5,
the results obtained in this study are evaluated, and suggestions
are given for future studies.
2. Methodology

Various ANN models have been proposed in the literature. Con-
volutional Neural Network (CNN), Feedforward Neural Network
(FNN), Kohonen Self-Organizing Network (SOM), Radial Basis Func-
tion Network (RBFN), and Recurrent Neural Networks (RNN) are
popular neural network models [18,43–46]. Among these, the most
commonly used model is FNN. In this model, Neurons, which are
processing elements, are designed as layers. The information is
transmitted in one direction towards the output. Although there
are different neural network models, the learning process is simi-
lar. In this study, a multi-layer perceptron has been preferred for
the solution of classification problem.
2.1. Multi-layer perceptron

The MLP is a specialized form of supervised ANNs, and consists
of the connection of the process elements called neurons with each
other in a certain order. The most common connection method is
that all neurons in one layer are fully connected to all neurons in
the next layer. It has an input layer, at least one hidden layer,
and one output layer. It is useful in solving nonlinear problems.
The first layer, called the input layer, maps the problem’s input
to the neural network. The last layer, the output layer, shows the
output of the problem. The interior layers other than the input
layer and the output layer are called hidden layers. In the litera-
ture, the term ‘‘node” is used instead of the term ‘‘neuron” [10,47].

The critical parameters of MLP are values of weights and biases.
Weight and bias values determine the outputs of the network. MLP
training is the process of finding the optimum weight and bias val-
ues to obtain the desired output from system inputs. In other
words, the MLP training process is the creation of a network of
relationships of outputs corresponding to inputs.
2.2. Artificial algae algorithm

Artificial Algae Algorithm (AAA) is a meta-heuristic optimiza-
tion algorithm inspired by microalgae’s properties and living beha-
viour [38]. The coexisting algal cell group is called an algal colony.
Every colony represents a possible solution. The population con-
sists of algal colonies, and is expressed as follows:

Population ¼

x1;1 x1;2 � � � x1;D
x2;1 x2;2 � � � x2;D

..

. ..
. � � � ..

.

xPN;1 xPN;2 � � � xPN;D

266664
377775 ð1Þ

ithalgal colony Xið Þ ¼ xi;1; xi;2; . . . xi;D
� � ð2Þ

where xij is algal cell in the jth dimension of the ith algal colony, D
indicates the dimension of algal colonies, and PN indicates the num-
ber of algal colony in population.

Each algal colony is formed of a series of algal cells that are con-
sidered dimensions of a solution. Algal colony moves together
towards the appropriate environment with a nutrient source. The
algal colony tries to reach a better position by moving, adapting
itself and developing. Optimum solution is obtained when the col-
ony is positioned in the ideal position.

Each algal colony grows according to the nutrients and light it
receives during the search process. Initially, the size
(greatness-G) of all algal colonies is one. The growth kinetics (l)
of the algal colony is calculated by Eqs. (3) and (4).

lt
i ¼

lt
max � St

Kt
s þ St

ð3Þ

Gtþ1
i ¼ Gt

i þ lt
i G

t
i ð4Þ

where lt
max is the maximum specific growth rate at time t, Kt

s is the
substrate saturation constant at time t (it is accepted as half of G at
time t), and Gt

i is the size of ith algal colony at time t.
In AAA, there are three main sections, which are evolutionary

process, helical movement, and adaptation.

2.2.1. Evolutionary process
The algal colony that finds a good solution grows and develops.

If the algal colonies do not find a suitable solution, they cannot
develop, and die eventually. In the evolutionary process, the algal
colonies are sorted by their greatness (G). A randomly selected
one dimension of the smallest algal colony is killed, and the same
dimension of the largest algal colony is copied instead (Eqs. (5)–
(7)).

biggestt ¼ max Gt
i

� �
i ¼ 1;2; � � � PN ð5Þ

smallestt ¼ min Gt
i

� �
i ¼ 1;2; � � � PN ð6Þ

smallesttm ¼ biggesttmm ¼ 1;2; � � �D ð7Þ
where biggesttis the biggest algal colony in the population at time t,
and smallestt is the smallest one in the population at time t [38].

2.2.2. Helical movement
At the beginning of each cycle, the energy is calculated in pro-

portion to the greatness of the algal colonies (i.e. normalizing their
greatness). In each cycle, the number of times each algal colony
moves helically is determined by its energy. The energy of the col-
ony is directly proportional to the nutrient concentration it
receives from the environment. During the helical movement, the
algal colony which finds a better solution suffers from energy loss



Fig. 1. Assigning a AAA search agent vector to an MLP.
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by half (e=2) of the initial energy loss parameter. The algal colony,
which does not find a better solution, suffers from energy loss as
much as the energy loss parameter (e). The frictional force is pro-
portional to the greatness of the algal colony. As the friction surface
of the algal colony grows, its movements are slower in the liquid.
Therefore, the local search capability of the method increases (i.e.
exploitation). The small algal colony has more global search capa-
bilities (i.e. exploration) due to its velocity in the liquid. The fric-
tion surface of the colony is calculated by Eq. (8).

s Xið Þ ¼ 2p
ffiffiffiffiffiffiffiffi
3Gi

4p
3

r !2

ð8Þ

where s Xið Þ is the friction surface of the ith algal colony.
The three dimensions (p,r and v) of an algal colony selected by

the tournament method for the helical movement is determined.
The step size of the movement is calculated by Eqs. (9)–(11).

xtþ1
ip ¼ xtip þ xtjp � xtip

� �
D� st Xið ÞÞp� ð9Þ

xtþ1
ir ¼ xtir þ xtjr � xtir

� �
D� st Xið ÞÞ cosa� ð10Þ

xtþ1
iv ¼ xtiv þ xtjv � xtiv

� �
D� st Xið ÞÞ sin h
� ð11Þ

where xtip, x
t
ir and xtiv are x, y and z coordinates of the ith algal colony

at time t, a; h 2 0;2p½ �, p 2 �1;1½ �, D is shear force, and s Xið Þ is the
friction surface area of the ith algal colony.

AAA has three parameters: shear force D, energy loss e, and
adaptation parameter Ap. In the present study, the shear force
value is 2, the energy loss value is 0.3, and the adaptation param-
eter is 0.2 [38].

2.2.3. Adaption
Adaptation is the step in which the colony, which survives but

cannot grow sufficiently, likes itself to be the best colony. Initially,
the starvation level of each algal colony is zero. In each helical
movement, the starvation level of the algal colony, which cannot
find a better solution, increases. The algal colony with the highest
starvation level is subjected to adaptation procedure after each
helical movement cycle (Eqs. (12) and (13)).

starvingt ¼ maxAt
i ð12Þ

starvingtþ1 ¼ starvingt þ biggestt � starvingt
� �

� rand ð13Þ

Where At
i indicates the starvation value of ith algal colony at

time t, and starvingt indicates the algal colony which has the high-
est starvation value at time t. The adaptation parameter (Ap) deter-
mines whether the adaptation process would be applied in time t
or not. Ap is a method-specific parameter that takes values in 0–
1 range .

3. Artificial algae algorithm for training Multi-Layer Perceptron

In the literature, heuristic algorithms in MLP training can be
used in three different methods. The first method is to use heuristic
algorithms to find the weight and bias values of MLP. The second
method is using heuristic algorithms to design an architecture suit-
able for MLP in a particular problem. The third method is the use of
a heuristic algorithm to adjust parameters such as learning speed
and momentum [48]. The first method aims is to find the appropri-
ate parameters (weights and biases) in a fixed MLP architecture
with a heuristic optimization algorithm. Many studies were con-
ducted with this method [12,15,31]. In the second method, the
heuristic optimization algorithm aims to obtain the most appropri-
ate MLP architecture for the problem to be solved. As an example
of this method, the PSO algorithmwas used to design the appropri-
ate network structure to solve two real-world problems [28].

This study aims to train MLP architecture with a single hidden
layer by using AAA according to the first method. There are two
critical points in the proposed approach.

1. Representation Strategy: Weight and bias values should be rep-
resented in appropriate form (algae colonies) into search agents
in AAA.

2. Fitness Function: A fitness function that uses the error in the
MLP, represented by algae colonies, must be defined.

In the literature, there are three methods for coding the weight
and bias values of MLP: vector coding,matrix coding, and binary cod-
ing [48,49]. In vector coding, each individual is encoded as a vector.
Each vector represents all the weights and biases of an MLP. In
matrix coding, each individual is represented as a matrix; and in
binary encoding, each individual is represented as binary bit
strings. Each of these strategies has advantages and disadvantages
over the selected problem [50]. In this study, the most preferred
vector coding strategy in the literature was employed. After repre-
senting algae colonies in vector form, a fitness function is required
to evaluate each of these colonies. The purpose of learning is to
train an MLP that can classify validation and test data accurately.
The training set has a crucial role in the learning process. This is
because each training sample is used to calculate the suitability
of the vector represented as the solution. The Mean Square Error
(MSE) was used to evaluate the accuracy of the network model
(Eq. (14)).

MSE ¼ 1
m

Xm
i¼1

y� by� �2 ð14Þ

where y indicates actual output, by indicates the predicted output,
and m indicates the number of samples in the training dataset.

In the proposed model based on AAA, each algae colony repre-
sents a candidate solution (i.e. MLP), which is represented as a vec-
tor. The candidate solution vector consists of three parts. The first
part shows the bias values of the nodes, the second part shows the
weight values from the input layer to the hidden layer, and the
third part shows the weight values from the hidden layer to the
output layer. The length of the vectors is the total weight and bias
number in the network.

The vector representation of the MLP with n input nodes, h hid-
den nodes, and m output nodes is shown in Fig. 1. The blue arrows
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indicate the bias values, the red arrows indicate the weights from
the input to the hidden layer, and the green arrows indicate the
weights from the hidden layer to the output layer.

The calculation of vector length equation is shown in Eq. (15).

VectorLength ¼ n� hð Þ þ h�mð Þ þ hþm ð15Þ

where n indicates the number of input nodes, h indicates the num-
ber of hidden nodes, and m indicates the number of output nodes.

The Mean Square Error (MSE) function was used to determine
the fitness values of the generated vectors. The MSE is based on
the square of the different calculations between actual and pre-
dicted values. The steps of the proposed method are as follows:

1. Initialization: Initially, the algae colonies are randomly created.
Each algae colony represents the weight and bias of a network.

2. Assessment of fitness: The performance of the MLP produced is
used as a fitness function (i.e. MSE). In this step, the parameters
of individuals are transferred to MLP, and the performance of
MLP is evaluated on the training data. The resulting MSE value
is considered as the fitness value of the individual.

3. Update: The positions of algae colonies are updated according
to the equations in AAA.

4. Cycle: The steps are repeated until the maximum iteration
count reached or specific error rate is obtained. Eventually,
the MLP generated from the parameters of the individual with
the Minimum MSE value is tested on the test data.

As a result, AAA offers weight and bias values to the MLP and
takes the error that occurs in the network as a return. AAA updates
weights and biases for iterations to minimize the average error (i.e.
Fig. 2. The flow chart of
MSE) of the network. The flow chart of using AAA for MLP training
is given in Fig. 2.

4. Result and discussion

In this section, the performance of the proposed method is eval-
uated using ten classification datasets from UCI. These datasets are
Australian, Blood, Breast cancer, Chess, Diabetes, Ionosphere, Liver,
Parkinson’s, Tic-tac-toe, and Vertebral [51]. In Table 1, details of
datasets are presented with number of classes, number of attri-
butes, training and test sample counts.

For the verification, the results are compared to six swarm-
based algorithms and one gradient-based algorithm. These meth-
ods are Particle Swarm Optimization (PSO) [21], Grey Wolf Opti-
mizer (GWO) [23], Cuckoo Search Algorithm (CS) [22], Whale
Optimization Algorithm (WOA) [24], Bat Optimization Algorithm
(BAT) [26], Firefly Algorithm (FFA) [25], and Backpropagation Algo-
rithm (BP) [11]. The results were compared according to statistical
tests, the capability of escaping local minimums, the best and aver-
age classification accuracy standard deviation values, convergence
speeds, and training times.

4.1. Experimental setup

In this study, all datasets were divided for training and testing
by 66% and 33%, respectively. All datasets were normalized using
[0, 1] min-max normalization.

For all experiments and algorithms, the EvoloPy was used,
which is an open-source nature-inspired optimization algorithm
toolbox in Python [52]. The default parameters of EvoloPy were
used as the initial parameters of the algorithms. All experiments
using AAA for MLP.



Table 1
Classification Datasets.

Datasets Class Attributes Training Samples Test Samples

Australian 2 14 455 235
Blood 2 4 493 255
Breast cancer 2 8 461 238
Chess 2 36 2109 1087
Diabetes 2 8 506 262
Ionosphere 2 33 231 120
Liver 2 6 79 41
Parkinson’s 2 22 128 67
Tic-tac-toe 2 9 632 326
Vertebral 2 6 204 106
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were executed for 30 individual runs with random initial parame-
ters. The number of individuals in the population was determined
as 40. The algorithms were run for 10,000 fitness calculations. The
weights of the network were real numbers in �1, 1 range.

There are different suggestions to set the number of nodes in
the hidden layer [15,48,53]. However, there is no certainty about
which of the proposed approaches is superior. In this study, the
number of nodes in the hidden layer was chosen as 2� nþ 1, n
representing the number of nodes in the input layer. With this
method, the MLP structure for each dataset was built as shown
in Table 2.

4.2. Experimental result

The results were interpreted by means of average classification
success, best classification success, standard deviation value, con-
vergence curve, and Wilcoxon signed-rank test of 30 independent
runs. Table 3 shows the Average Classification Success (ACS), Best
Classification Success (BCS), and Standard Deviation Values
(SDV). The values in the table are the average result of 30 indepen-
dent runs of the methods on datasets allocated for testing.

According to the results given in Table 3, the AAA was success-
ful in terms of average classification success in seven of ten data-
sets (Blood, Breast Cancer, Diabetes, Liver, Parkinson’s, Tic-tac-
toe, and Vertebral). GWO and BP achieved high success in the clas-
sification of the two datasets and one dataset, respectively. GWO,
BAT, and BP achieved the highest average classification success in
two datasets (Chess and Ionosphere), one dataset (Parkinson’s)
and one dataset (Australian), respectively. PSO, WOA, BAT, CS,
and FFA did not achieve the highest average classification success
in any dataset. When evaluated in terms of the best classification
success results, AAA achieved the best classification success results
in five datasets (Breast Cancer, Diabetes, Ionosphere, Liver, and
Parkinson’s). PSO, CS, GWO, and BP yielded the best classification
success results in four datasets (Breast Cancer, Diabetes, Liver,
and Tic-tac-toe), two datasets (Breast Cancer and Vertebral), one
Table 2
The Parameters of MLP for datasets.

Datasets Network Structure Vector Length

Australian 14-29-1 465
Blood 4-9-1 55
Breast Cancer 8-17-1 171
Chess 36-73-1 2775
Diabetes 8-17-1 171
Ionosphere 33-67-1 2346
Liver 6-13-1 105
Parkinson’s 22-45-1 1081
Tic-tac-toe 9-19-1 210
Vertebral 6-13-1 105
dataset (Chess) and two datasets (Australian and Blood), respec-
tively. WOA and BAT were never successful in the best classifica-
tion success results of any dataset. The standard deviation of the
classification success of 30 runs of the AAA seems stable compared
to the results of other algorithms. In particular, although the PSO
achieved the best classification success in four datasets, it did not
achieve the average classification success. AAA even achieved the
best average classification success in Vertebral and Blood datasets,
although it did not yield the best classification success. These
results show that the AAA achieved the best average classification
success in most datasets, and is therefore a stable algorithm.

According to the results in Table 3, the average classification
success of algorithms is very close to each other. Whether the dif-
ferences in the classification success are significant can be decided
by non-parametric statistical tests. For this purpose, the results in
Table 3 were calculated by Wilcoxon signed-rank test. The purpose
of this test is to determine whether there is a significant difference
between the results obtained from different classification algo-
rithms in the same datasets. The test is carried out between 30
independent results of two algorithms. In this test, H0 and H1
hypotheses are used. The H0 (Null hypothesis) hypothesis is ‘‘There
is no significant difference between the results of the first algo-
rithm and the second algorithm” and the H1 (Alternative hypoth-
esis) hypothesis is the opposite of H0. At the end of the test, the
H0 hypothesis is accepted or rejected. The degree to which the
hypothesis is rejected is determined by the level of significance.
In this study, the level of significance was set at 0.05.

The calculated p-Value represents the probability that the Null
Hypothesis is rejected. A p value of less than 0.05 indicates a signif-
icant difference between the two algorithms; and p value higher
than 0.05 indicates that the difference between the two algorithms
is insignificant. The critical point in the results tables of the Wil-
coxon signed-rank test is W value. If W value is 1, the AAA algo-
rithm is successful, and if it is 2, the other algorithm is
successful. In cases where the W value is 0, there is no statistical
difference between the algorithms. R + is the sum of the ranks cor-
responding to the positive differences between the first algorithm
and the second algorithm, and R � is the sum of the ranks corre-
sponding to the negative differences between the first algorithm
and the second algorithm. T is the smaller one of the sums
(T = min (R+, R � )). Table 4 shows the result of the Wilcoxon
signed-ranks test between AAA and other algorithms. In the last
row of each statistical test results in Table 4, the total number of
W values are given in the structure (1/0/2). In this line, it can be
seen how many datasets the AAA (marked with ‘1’) and the com-
pared algorithm (marked with ‘2’) are more successful in total. If
there is no statistically significant difference between the two
compared algorithms, it is marked with ‘0’.

When Table 4 is analysed, AAA is statistically more successful
than other algorithms in six datasets (Blood, Breast Cancer, Dia-
betes, Liver, Tic-tac-toe, and Vertebral). BP is more successful than



Table 3
Average experimental results of 30 runs.

Data AAA PSO WOA BAT CS GWO FFA BP

Australian ACS
SDV
BCS

0.848
0.006
0.860

0.817
0.021
0.851

0.794
0.049
0.834

0.837
0.005
0.843

0.839
0.013
0.864

0.838
0.005
0.843

0.827
0.010
0.838

0.857
0.016
0.877

Blood ACS
SDV
BCS

0.748
0.003
0.757

0.743
0.004
0.749

0.741
0.004
0.745

0.741
0.003
0.745

0.745
0.004
0.753

0.740
0.003
0.741

0.741
0.004
0.745

0.663
0.205
0.784

Breast Cancer ACS
SDV
BCS

0.981
0.003
0.987

0.968
0.008
0.987

0.965
0.006
0.971

0.971
0.004
0.975

0.970
0.008
0.987

0.973
0.003
0.979

0.966
0.005
0.971

0.892
0.101
0.970

Chess ACS
SDV
BCS

0.710
0.018
0.767

0.678
0.037
0.744

0.662
0.089
0.822

0.736
0.094
0.828

0.715
0.024
0.752

0.939
0.003
0.944

0.697
0.020
0.723

0.690
0.047
0.725

Diabetes ACS
SDV
BCS

0.753
0.007
0.771

0.747
0.016
0.771

0.692
0.026
0.718

0.746
0.006
0.752

0.739
0.014
0.767

0.747
0.003
0.752

0.742
0.006
0.752

0.596
0.140
0.690

Ionosphere ACS
SDV
BCS

0.867
0.022
0.925

0.791
0.046
0.875

0.599
0.046
0.658

0.841
0.054
0.892

0.809
0.040
0.892

0.897
0.012
0.908

0.819
0.029
0.850

0.751
0.038
0.783

Liver ACS
SDV
BCS

0.760
0.011
0.780

0.750
0.015
0.780

0.616
0.027
0.653

0.736
0.021
0.754

0.714
0.026
0.763

0.742
0.017
0.754

0.726
0.011

0.746

0.552
0.071
0.737

Parkinson’s ACS
SDV
BCS

0.860
0.017
0.896

0.790
0.045
0.881

0.721
0.059
0.791

0.860
0.009
0.866

0.812
0.036
0.866

0.858
0.009
0.866

0.804
0.026
0.836

0.778
0.148
0.865

Tic-tac-toe ACS
SDV
BCS

0.713
0.013
0.739

0.688
0.027
0.755

0.646
0.018
0.663

0.692
0.009
0.702

0.675
0.022
0.718

0.697
0.014
0.712

0.693
0.018
0.715

0.583
0.046
0.625

Vertebral ACS
SDV
BCS

0.881
0.006
0.896

0.869
0.016
0.906

0.740
0.026
0.783

0.854
0.019
0.877

0.835
0.035
0.906

0.869
0.010
0.877

0.855
0.020
0.868

0.717
0.146
0.811

Table 4
Wilcoxon Signed Rank test results of AAA and the other algorithm.

AAA – PSO AAA – WOA AAA – BAT AAA – CS

p-Value T W p-Value T W p-Value T W p-Value T W

Australian 3.1779E-06 459 1 1.7235E-06 465 1 1.7718E-05 344 1 1.3772E-03 388 1
Blood 1.0671E-05 446 1 8.9272E-06 325 1 9.8221E-06 325 1 1.6391E-02 349 1
Breast Cancer 4.6640E-06 455 1 1.3475E-06 465 1 1.2293E-06 465 1 1.0027E-05 447 1
Chess 8.9415E-04 394 1 2.1816E-02 344 1 7.3520E-02 145.5 0 2.1336E-01 172 0
Diabetes 4.1669E-04 270 1 1.7170E-06 465 1 1.1426E-03 263.5 1 3.3088E-04 407 1
Ionosphere 3.1485E-06 433 1 1.7019E-06 465 1 1.8348E-02 306.5 1 1.6352E-05 442 1
Liver 1.5609E-02 350 1 1.7019E-06 465 1 1.7148E-05 300 1 1.9018E-06 464 1
Parkinson’s 2.8526E-06 460 1 1.6437E-06 465 1 3.4479E-01 168.5 0 1.6126E-05 442 1
Tic-tac-toe 1.8902E-04 414 1 1.7181E-06 465 1 2.5339E-06 435 1 3.8799E-06 457 1
Vertebral 7.5079E-04 396 1 1.6699E-06 465 1 1.4818E-06 465 1 4.5941E-06 455 1
1/0/2 10/0/0 10/0/0 8/2/0 9/1/0

AAA – GWO AAA – FFA AAA – BP
p-Value T W p-Value T W p-Value T W

Australian 8.2918E-06 398 1 2.4813E-06 435 1 1.9608E-03 82 2
Blood 1.1897E-06 465 1 2.9261E-06 406 1 1.0897E-06 465 1
Breast Cancer 1.9182E-06 435 1 1.5224E-06 465 1 1.7279E-06 465 1
Chess 1.7300E-06 0 2 8.9682E-02 277.5 0 1.0639E-01 311 0
Diabetes 4.1669E-04 293 1 1.8040E-05 344 1 1.7257E-06 465 1
Ionosphere 1.3820E-04 36 2 2.7441E-06 460 1 1.7289E-06 465 1
Liver 1.6262E-05 300 1 1.5760E-06 465 1 1.4656E-06 465 1
Parkinson’s 2.1344E-01 178 0 3.6072E-06 406 1 2.0477E-02 345 1
Tic-tac-toe 8.0817E-05 424 1 1.6228E-04 368.5 1 1.7344E-06 465 1
Vertebral 1.4101E-05 276 1 1.4346E-06 465 1 1.7344E-06 465 1
1/0/2 7/1/2 9/1/0 8/1/1
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AAA in the Australian dataset, and the most successful algorithm in
Chess and Ionosphere datasets is GWO. In the Parkinson’s dataset,
while AAA and BAT have the best average classification success,
there is no statistically significant difference with the results of
GWO. In the Chess dataset, the GWO has obvious classification suc-
cess compared to other algorithms. On the other hand, when the
results of AAA in the Chess dataset are compared with BAT, CS,
FFA, and BP, there is no statistically significant difference between



Table 5
The results of the Average Ranking and the Friedman test.

Data AAA PSO WOA BAT CS GWO FFA BP

Australian 2 7 8 5 3 4 6 1
Blood 1 3 5 5 2 7 5 8
Breast Cancer 1 5 7 3 4 2 6 8
Chess 4 7 8 2 3 1 5 6
Diabetes 1 2.5 7 4 6 2.5 5 8
Ionosphere 2 6 8 3 5 1 4 7
Liver 1 2 7 4 6 3 5 8
Parkinson’s 1.5 6 8 1.5 4 3 5 7
Tic-tac-toe 1 5 7 4 6 2 3 8
Vertebral 1 2.5 7 5 6 2.5 4 8
Average Ranking Results
Mean Rank 1.55 4.60 7.20 3.65 4.50 2.80 4.80 6.90
Final Rank 1 4 8 3 5 2 6 7
Friedman Test Results
Mean Rank 1.50 4.50 7.20 3.60 4.50 2.90 4.90 6.90
Final Rank 1 4.5 8 3 4.5 2 6 7
p-Value 3.9259e�07
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the results. As a result, the best values of AAA in six datasets are
statistically significant. In two datasets, the best results are shared
with different algorithms.

The Friedman test is a nonparametric statistical test used in the
analysis of experimental results. The Friedman test evaluates the
results of more than two classifiers [54]. Another method used to
compare more than two algorithms is the Average Ranking
method. Friedman test and Average Ranking are also applied for
evaluating the algorithms with a significance level of 0.05. The
results of the Friedman test and the Average ranking of the algo-
rithms are given in Table 5.

As shown in Table 5, the p-Value obtained from the Friedman
test is less than 0.05. Therefore, there is a significant difference
between the results obtained. In addition, considering both the
Average ranking and Friedman test ranking values, it is clear that
AAA is more successful than other algorithms. In addition, the
Average Ranking and the Friedman test final rank results are lar-
gely similar.

The average convergence curve of the 30 independent runs of
six datasets is shown in Fig. 3. In the six datasets selected for the
average convergence curve, AAA, GWO, and BP are more successful
than the other algorithm in the three (Breast Cancer, Liver, and Tic-
tac-toe), two (Chess and Ionosphere), and one (Australian) dataset
(s), respectively. In four datasets (Blood, Diabetes, Parkinson’s, and
Vertebral), where the average convergence curves are not given in
Fig. 3, AAA achieved successful results. These convergence curves
are similar to the convergence curves of the other datasets where
AAA was successful.

Convergence curves are an essential indicator in terms of exam-
ining the behaviour of the algorithm against the problems. When
the convergence curves are analysed, the WOA and BP usually
reach a local minimum due to early convergence. For this reason,
these two algorithms cannot show any improvement in terms of
reducing errors in later parts of the iterations. Although BP
achieved the best classification success in the Australian dataset,
its development towards the end of iteration decreased consider-
ably. The GWO continued its development until the end of the iter-
ations better than other algorithms, without reaching any local
minimum in Chess and Ionosphere datasets. PSO, BAT, CS, FFA,
and AAA algorithms improved by reducing the error to the end
of iteration without reaching any local minimum. Therefore, it
can be foreseen that they can show more improvements when
the number of iterations is increased. When convergence curves
are generally evaluated in terms of AAA, it can search for solutions
without reaching local minimums thanks to its exploration capa-
bility. Additionally, with its exploitation ability, it can develop
the solution in the later iterations.
4.3. Discussion and analysis of the result

In this experimental study, the MLP training method was com-
paredwithAAAwith seven successfulmethodsmentioned in the lit-
erature. The results obtained were analysed in detail from different
perspectives. Firstly, the average classification success, the best clas-
sificationsuccess, and the standarddeviationvalueof thealgorithms
achieved in 30 independent runs were examined and interpreted.
AAA achieved the highest average classification success in six of
ten datasets, and the highest average classification success in six of
ten datasets. Also, the low standard deviation indicated that AAA is
a stable algorithm for training MLP. The low standard deviation of
the AAA in 30 independent runs indicates that it runs independently
of the initial parameters and avoids stuck in minimum values.

Secondly, the average classification success results obtained by
the compared algorithms were quite close to each other. The Wil-
coxon signed-rank statistical test with a 95% level of significance
determined whether there was a significant difference between
the results. AAA was statistically more successful than all other
algorithms in six of the seven datasets, where it achieved the high-
est average classification success. Average ranking and the Fried-
man test were used to analyse the average classification success
results obtained by all algorithms on all datasets. The results of
both ranking methods showed that AAA is more successful than
other algorithms. On the other hand, when the results were evalu-
ated in terms of the vector length formed depending on the num-
ber of attributes of the datasets, it did not achieve the best results
in datasets with a high number of attributes such as Chess and
Ionosphere. The main reason for this is that AAA changes only
three dimensions of the individual due to the helical movement
in each iteration. For this reason, it causes a lack of exploration
in high dimensional datasets.

Finally, convergence curves show how algorithms reduce MSE
values in datasets throughout iterations. In a small number of iter-
ations, algorithms reducing the MSE value is efficient. Algorithms
with exploitation capability, converges faster than others. How-
ever, faster convergence characteristics increases the probability
of stuck into local minima. Therefore, early convergence algo-
rithms may not reduce the error to the desired value.

In the case of algorithms with high exploration capabilities, con-
vergence is partially slower. However, it is less likely to find local
minimums and more global search capability. The convergence
curves show that AAA improves the best solution throughout the
iteration. In this study, the maximum iteration number was 250.
Considering that AAA continuously reduces its error during itera-
tions, the increase in the number of iterations will increase the suc-
cess of AAA.



Fig. 3. MSE convergence curves of the algorithms (Australian, Breast Cancer, Chess, Ionosphere, Liver, Tic-tac-toe).
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5. Conclusion

In the literature, many mathematical and heuristic strategies
have been proposed for training ANN. However, existing algo-
rithms are still not able to eliminate the tendency of the local min-
imum. In this study, the recently proposed artificial algae
algorithm was proposed for training ANN. The success of the pro-
posed method was confirmed using ten public datasets. The results
were compared with six different population-based metaheuristic
optimization algorithms and backpropagation algorithm.
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The standard deviation value of AAA in 30 independent runs
was low, and the average classification success was high, indicating
that it works independently from the initial parameters and avoids
being stuck in local minimums. The consistency of the convergence
curve of AAA in the datasets increases the confidence in the pro-
posed method. The results obtained from the experimental study
were analysed by Wilcoxon signed-rank, Friedman test, and Aver-
age Ranking Methods. As a result of the analysis, AAA was found to
be more successful than other algorithms. In this study, AAA was
proven to be a reliable alternative to ANN training.

In future studies, the AAA algorithm can be used to determine
the number of hidden layers, and the number of nodes in the hid-
den layer. AAA can be applied in the optimization of convolutional
neural network parameters, and can be used to find the number of
layers of the convolutional neural networks, and to optimize the
kernel values. Besides, AAA can be strengthened by modifications
that can be effective in high-dimensional optimization problems,
and its contribution to the analysis of high-dimensional datasets
can be increased.
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