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Abstract
In the recent years, there has been a lot of interest in studying the global behavior of, the socalled, max-type difference
equations; see, for example, [1–17]. The study of max type difference equations has also attracted some attention recently.
We study the behaviour of the solutions of the following system of difference equation with the max operator:paper deals
with the behaviour of the solutions of the max type system of difference equations,

xn+1 = max
{

A
xn−1

,
yn

xn

}
; yn+1 = max

{
A

yn−1
,

xn

yn

}
, (1)

where the parametr A and initial conditions x−1,x0,y−1,y0 are positive reel numbers.

Keywords: Difference equations, Periodicity, Max type difference equations
AMS 2010 codes: 39A10.

1 Introduction

Recently, there has been a great concern in studying nonlinear difference equations since many models de-
scribing real life situations in population biology, economics, probability theory, genetics, psychology, sociology
etc. are represented by these equations. See for example [1–28].

Definition 1. Let I be an interval of reel numbers and let f : Is+1→ I be a continuously differentiable function
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where s is a non-negative integer. Consider the difference equation

xn+1 = f (xn,xn−1, ...,xn−s) for n = 0,1, ..., (2)

with the initial values x−s, ...,x0 ∈ I. A point x called an equilibrium point of equation 2. if x = f (x, ...,x).

Definition 2. A positive semi sycle of a solution {xn}∞

n = −s of 2 consist of a string of terms {xl,xl+1, ...,xm}
all greater than or equal to equilibrium x with l ≥ −s and m ≤ ∞ such that either l = −s or l > s and xl−1 < x
and either m = ∞ or m < ∞ and xm+1 < x.

Definition 3. A negative semisycle of a solution {xn}∞

n = −s of 2 consist of a string of terms {xl,xl+1, ...,xm}
all less than or equal to equilibrium x with l ≥−s and m≤∞ such that either l =−s or l >−s and xl−1 ≥ x and
either m = ∞ or m≤ ∞ and xm+1 ≥ x.

2 Main Results

In some cases of parameter A and initial conditions, the solution of the system of max type difference
equation has been studied. Let x and y be the unique positive equilibrium of 1, then clearly,

x = max
{

A
x
,
y
x

}
;y = max

{
A
y
,
x
y

}
.

The parameter A is the greatest value in all initial conditions that we select, so

x =
A
x
⇒ x2 = A⇒ x =±

√
A; y =

A
y
⇒ y2 = A⇒ y =±

√
A,

we can obtain x =
√

A and y =
√

A.

Lemma 1. Assume that, A and x0,x−1,y0,y−1 are positive integer sequence for 1
A > x0 > x−1 > y0 > y−1,A > x0 > y0 > x−1 > y−1,A > y0 > x0 > x−1 > y−1,
Then the following statements are true:
n≥ 0 for xn and n≥ 1 for yn

a) Every positive semi-cycle consist two term.

b) Every negative semi-cycle consist two term.

c) Every positive semi-cycle of length two is followed by a negative semi-cycle of length two.

d) Every negative semi-cycle of length two is followed by a positive semi-cycle of length two.

Proof. A > x0 > x−1 > y0 > y−1,A > x0 > y0 > x−1 > y−1,A > y0 > x0 > x−1 > y−1 The solution xn and yn can
be obtained as follows:
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{
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x−1

,
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=
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x2 = max
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x3 = max
{
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}
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x4 = max
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.

.

.

Hence we obtained. x1 < x,x2 < x,x3 > x,x4 > x,x5 < x,x6 < x,x7 > x,x8 > x, ...
y1 > y,y2 < y,y3 < y,y4 > y,y5 > y,y6 < y,y7 < y,y8 > y, ...
Hence, the solution n≥ 0 for xn and n≥ 1 for yn, every positive semi-cycle consists of two terms, every negative
semi-cycle consists of two terms.

Lemma 2. Assume that, A and x0,x−1,y0,y−1 are positive integer sequence for 1
A > x0 > y0 > y−1 > x−1,A > y0 > x0 > y−1 > x−1,A > y0 > y−1 > x0 > x−1,
Then the following statements are true:
n≥ 1 for xn and n≥ 0 for yn

a) Every positive semi-cycle consist two term.

b) Every negative semi-cycle consist two term.

c) Every positive semi-cycle of length two is followed by a negative semi-cycle of length two.

d) Every negative semi-cycle of length two is followed by a positive semi-cycle of length two.

Proof. Lemma 2 proof’s can be obtained similarly Lemma 1.

Lemma 3. Assume that, A and x0,x−1,y0,y−1 are positive integer sequence for 1
A > x−1 > y−1 > x0 > y0,A > y−1 > x−1 > x0 > y0,A > y−1 > x0 > x−1 > y0,
Then the following statements are true:
n≥ 0 for xn and n≥ 1 for yn

a) Every positive semi-cycle consist two term.

b) Every negative semi-cycle consist two term.
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c) Every positive semi-cycle of length two is followed by a negative semi-cycle of length two.

d) Every negative semi-cycle of length two is followed by a positive semi-cycle of length two.

Proof. Lemma 3 proof’s can be obtained similarly Lemma 1.

Theorem 4. Let (xn,yn) be a solution of 1 for
A > x0 > x−1 > y0 > y−1,A > x0 > y0 > x−1 > y−1,A > y0 > x0 > x−1 > y−1.
Then for n = 0,1, ... we have,

xn =

{
A
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}
,
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}
.

Proof. We obtain,
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Thus,

xn =

{
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,
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}
,

yn =

{
A
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}
,

the solutions are shown to be 4-peirod.
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Theorem 5. Let (xn,yn) be a solution of 1 for
A > x0 > y0 > y−1 > x−1,A > y0 > x0 > y−1 > x−1,A > y0 > y−1 > x0 > x−1
Then for n = 0,1, ... we have,

xn =

{
A

x−1
,

A
x0
,x−1,x0, ...

}
,

yn =

{
A

y−1
,
y−1

x−1
,y−1,

Ax−1

y−1
, ...

}
.

Proof. Proof of the Theorem 5 can be obtain similar way to the Theorem 4.

Theorem 6. Let (xn,yn) be a solution of 1 for
A > x−1 > y−1 > x0 > y0,A > y−1 > x−1 > x0 > y0,A > y−1 > x0 > x−1 > y0
Then for n = 0,1, ... we have,

xn =

{
A

x−1
,

A
x0
,x−1,x0, ...

}
,

yn =

{
x0

y0
,

A
y0
,
Ay0

x0
,y0, ...

}
.

Proof. Proof of the Theorem 6 can be obtain similar way to the Theorem 4.

Example 7. If the initial conditions are selected follows for Lemma 1 A > x0 > x−1 > y0 > y−1:
A = 36;x[−1] = 25;x[0] = 30;y[−1] = 15;y[0] = 20;
The graph of the solution is given below:

xn = {1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,
1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,
25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,
1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,
1.44,1.66667,25.,21.6,1.44, ...}.

yn = {2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,
15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,
25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,1.66667,25.,21.6,1.44,
15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,15.,20.,2.4,1.8,
15.,20.,2.4, ...}.
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Fig. 1 xn graph solution.

Fig. 2 yn graph solution.
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