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Abstract
Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection
of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler
markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make
automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully
convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the
segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of
the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more
precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two
contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly
available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used
to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the
mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is
87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset.
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Introduction

Melanoma is one of the most common types of cancer,
resulting from the uncontrolled distribution of the skin cell
called melanocytes [1]. According to the annual report of the
American Cancer Society in the USA, 96,480 cases are diag-
nosed as new melanoma cases, and the estimated mortality
rate is 7230 [2]. Compared with the report in 2017, the number
of cases increased by 9370 [3]. Since melanoma is known to
be the most lethal skin cancer, this increase is hazardous for
human life. Despite this adverse situation, early detection and
treatment significantly increase the chances of survival [4]. As
a conventional method, dermatologists perform a visual

examination for the detection of melanoma. This method is
time-consuming, requires a well-trained expert, and suffers
from inter-observer variation [5]. Besides, visual similarities
between the lesions, variations in lesion shapes, and disruptive
factors such as hair and markers are other main difficulties. At
this point, technological advances are running with the help of
dermatologists. Nowadays, skin lesion images can be obtain-
ed easily, thanks to the reach of standard cameras to mobile
phones. However, these devices suffer from many problems,
such as resolution and light. Much better quality and reliable
results can be achieved by the non-invasive imaging tool
dermoscopy [6]. Dermoscopy utilizes polarized light to pro-
vide an enlarged and illuminated view of the skin area for a
more accurate diagnosis of skin lesions [7]. Thus, more in-
depth details of the skin surface can be captured. Although
dermoscopy is very useful, it still has drawbacks caused by the
human factor. Making subjective decisions, being time-con-
suming, being irreproducible, requiring experience, and being
prone to error are the most important ones. According to these
studies, it is shown that inexperienced specialists have a suc-
cess rate of up to 84% in the diagnosis of melanoma [8]. There
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is a high need for computer-aided diagnosis (CAD) methods
to achieve higher success in early detection of melanoma,
where early diagnosis is essential, and to protect human
health. Fortunately, many problems can be solved successfully
thanks to the technology developed in recent years and to the
machine learning (ML) techniques advancing in this direction.
When the development and application areas of ML tech-
niques are examined, it is seen that they have been used ac-
tively in the solution of medical problems in recent years. This
situation is developed in order to provide a quick solution to
the time-consuming and specialist problems in the medical
field, and it is also used as an advisory system.

By analyzing the appearance of a skin lesion using ML
systems, the system can produce the result benign or melano-
ma. To achieve this judgment, pre-processing, segmentation,
post-processing, feature extraction, and classification steps are
applied. Although each step is essential, the segmentation step
stands out because it provides visual image information. An
unsuccessful segmentation approach plays a fundamental role
in the inaccuracy of the classification result. In the detection of
melanoma, the segmentation stage is the most challenging
stage due to misleading factors such as the color of the lesions,
edge information, hair, markers, bad frames, size, blood ves-
sels, and air bubbles.

The methods used for skin lesion segmentation are classi-
fied according to various characteristics in the literature [9].
Usually, this number of classes is specified as five, including
histogram thresholding methods, unsupervised clustering
methods, edge-based methods, active contour methods, and
supervised methods [1, 8]. These methods generally use
pixel-level features. The success of these low-level features
does not reach the desired level. The remarkable success of
the deep learning approach in recent years has enabled it to
enter almost every field. As it enters the area of skin lesion
segmentation, the course of studies in this area has changed
considerably. Therefore, in this study, skin lesion studies will
be examined in two parts: before convolutional neural net-
work (CNN) and after CNN.

The traditional methods used before the CNN architecture
were often based on manual selection of features. Generally,
the experience of the researcher affects the success of the
process. Since each researcher has a different approach and
experience, many approaches have been tried for skin lesion
segmentation. In the first studies, histogram-based studies and
thresholding methods were widely used [10–14]. Yüksel et al.
[12] have proposed a new approach for skin lesion segmenta-
tion using fuzzy type 2. Their method was very effective in
detecting the uncertainties in the edges of the lesions com-
pared with other studies of the period. Çelebi et al. [13] used
ensembles of thresholding methods to handle the wide variety
of dermoscopy images. Their main idea is to find a solution
with thresholding fusion to the variety of skin lesion images
that allow limited success for a single-threshold coefficient.

Another remarkable study of threshold methods was per-
formed by Peruch et al. [14]. They proposed a five-step meth-
od that mimics the behavior of a dermatologist. Accordingly,
the methods include pre-processing, dimensionality reduction,
blurring, thresholding, and post-processing. In the same peri-
od, in addition to thresholding methods, clustering methods,
which work quite well in homogeneous regions, were also
used frequently [15–19]. Suer et al. [16] introduced
boundary-based clustering to reduce the number of neighbor-
hood searches. Their method targets the problem of the exces-
sive number of region queries fired in the clustering process.
Kockara et al. [18] used a graph spanner approach for the
clustering of melanoma. They represent skin images as graphs
to obtain a color pattern. Xie and Bovik [19] performed clus-
tering using an artificial neural network optimized by genetic
algorithms. The method they developed has attracted much
attention by producing higher scores for their periods than
other algorithms. In the same period, segmentation was per-
formed simply by determining the lesion region with edge
detection algorithms. However, undesirable lighting, artifacts
in the lesion, and fuzzy borders were a problem for edge
detectors. Abbas et al. [20] proposed a robust method to re-
move artifacts and detect lesion borders in dermoscopy im-
ages. Firstly, lesion artifacts were removed, then the least-
squares method was used to acquire edge points, then dynam-
ic programming is used to find optimal boundaries. Abbas
et al. [21] presented a partial solution to this problem with
the algorithm they developed. They remove the residues on
the lesion by first transforming the color space. Then, the
boundaries of the lesion are determined by using the improved
dynamic programming method. Region-based methods pro-
duce more successful results when the edges are irregular
[22–24]. Iyatomi et al. [22] proposed a four-step dermatolo-
gist-like lesion segmentation technique for skin lesions.
Accordingly, segmentation was performed with the region
growing algorithm. Celebi et al. [23] used the statistical region
merging (SRM) method for the detection of borders of mela-
noma. Their SRMmethod is a color image segmentation tech-
nique based on color information. Glaister et al. [24] classified
regions in the skin images based on the occurrence of repre-
sentative texture distribution. With the advancement of tech-
nology and the increase in methodological knowledge, the use
of semi-automatic methods has started to increase. In this di-
rection, progress has been made towards fully automatic de-
tection with the active counter method [25–27]. Erkol et al.
[25] proposed gradient vector flow (GVF) snakes to detect
edges of skin lesions. Mete and Sirakov [26] proposed a novel
active contour model for fast and accurate detection of skin
lesion boundaries. Their method collaborates with the
boundary-driven density-based algorithm. Ma and Tavares
[27] used a geometric deformable model based on color space
conversion. Recently, segmentation methods based on the
classification of manually extracted properties with classifiers
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have been used [28–30]. These methods are pixel-based
methods that perform the classification process automatically
and also work according to the extracted features depending
on the researcher’s experience. Wang et al. [28] proposed the
edge object value (EOV) threshold method. They used a neu-
ral network classifier to increase lesion ratio estimation and
the watershed segmentation algorithm. Winghton et al. [29]
examined two different approaches, the first using indepen-
dent pixel labeling using maximum a posteriori (MAP) esti-
mation and the second using conditional random fields
(CRFs). Sadri et al. [30] introduced a fixed-grid wavelet net-
work for segmentation of dermoscopic images. They used R,
G, and B values of images as the network input.

Following the introduction of the CNN architecture and
then achieving dazzling results for almost all image process-
ing problems, it has attracted the attention of skin lesion re-
searchers. Although the classification process is done auto-
matically in pre-CNN studies, the extracted features are based
on the researcher’s experience. The success of these manually
extracted features is not the same for each skin lesion dataset.
What is more, success in the same dataset with different light
conditions and different skin structures was rather low. In
order to solve these drawbacks, pre-CNN solutions have been
developed, which are very complex and have high processing
time. The CNN architecture automatically learns and classifies
the features. This feature is more successful than other algo-
rithms. Al-masni et al. [1] proposed a full-resolution CNN
(FrCN) for the segmentation of skin lesions. FrCn learns fea-
tures from full-resolution lesion images without the need for
pre-processing. Unver et al. [8] combined You Only Look
Once (YOLO) and GrabCut algorithms for effective segmen-
tation. Their model has achieved a 90% sensitivity rate on the
ISBI 2017 dataset. Alom et al. [31] proposed the NABLA-N
network combined with feature fusion methods in decoding
for melanoma segmentation. Li and Shen [5] proposed a
framework that consists of two fully convolutional residual
networks (FCRN) to address segmentation tasks, feature ex-
traction tasks, and classification tasks. They developed a le-
sion index calculation unit to refine network results. Huang
et al. [32] introduced an end-to-end object scale-oriented FCN
(OSO-FCNs) for lesion segmentation. Their method is based
on the fact that the scale of the lesion affects the segmentation
result considerably. Bi et al. [33] developed generative adver-
sarial networks (GANs) with stacked adversarial learning to
learn robust features from skin lesion images. Jiang et al. [34]
proposed developed GAN for great skin lesion feature repre-
sentation. They used atrous convolution and concatenating
residual layers as the generator. Liu et al. [35] proposed a deep
metric learning enhanced neural network (DMLEN) to in-
crease segmentation accuracy. The DMLENmethod produces
a MAE value of at least 3% lower than other methods. Khan
et al. [36] used the transfer learning approach with a deep
CNN (Resnet) for feature extraction. They used kurtosis-

controlled principle component analysis to choose optimal
features.

In this study, we present an effective FCN architecture
that does not require any pre-processing for skin lesion
segmentation. The proposed architecture is an improved
FCN structure that is not affected by disturbing factors
such as hair, ruler markers, indistinct boundaries, and
illumination problems. It has two important contribu-
tions: 1) it is not affected by any disturbing factors and
is stable to the change of color and light information,
and 2) it is highly successful against the irregularity of
the lesion edges. In addition to RGB color space, S com-
ponent from HSV color space, I component from YIQ
color space, Cb component from YCbCr color space, and
Z component from XYZ color space are used to elimi-
nate the effect of disturbing factors. Segmentation is per-
formed without affecting the light, skin color, and lesion
color conditions. To protect the edge information, a more
intensive deconvolution technique is used in the decoder
section of the CNN architecture. The success of the pro-
posed method is tested using the IEEE International
Symposium on Biomedical Imaging (ISBI) 2017
Challenge [37] and PH2 datasets [38]. The results ob-
tained are more successful than other state-of-the-art
studies in the literature. One of the most important rea-
sons for this is that unique design is applied to skin
lesion problems. The novelty of the proposed method is
to support the residual structure of the FCN architecture
with spatial information. This situation, which creates a
more advanced residual system, enables more precise de-
tection of details on the edges of the lesion, and an
analysis independent of skin color can be performed.

The structure of this article is the following. In the
“Methodology” section, the definition of skin lesion problems
and the proposed method is presented. The dataset and exper-
imental results are reported in the “Experiments and
Experimental Results” section. Finally, the conclusion is giv-
en in the “Conclusion” section.

Methodology

Definition of Fundamental Skin Lesion Problems

Skin lesion segmentation is a challenging task due to the en-
vironment and structure of the lesion. These problems are very
challenging for CAD systems. Although these problems are
usually solved by pre-processing methods, it creates compu-
tational load for the whole system. In addition, when there is
not enough experience, these negative factors decrease the
success of the system. When the studies in the literature are
examined, an additional pre-processing process is generally
applied to remove these residues before the main
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segmentation algorithm. Pre-processing algorithms are gener-
ally used to solve a single problem. A pre-processing algo-
rithm is designed to eliminate hairs, a different pre-processing
algorithm is designed to eliminate the effect of markers, and a
different pre-processing algorithm is designed to react to non-
dominant lesions. Various pre-processing algorithms are avail-
able in the literature for many such problems. However, when
studies with a large dataset are available, all of the problems
mentioned are present and more. Figure 1a shows a brown
lesion that is quite distinct and easy to detect. Figure 1b shows
a lesion surrounded by hairs. Figure 1c shows a lesion that is
difficult to detect by black hair. Figure 1d shows the distorting
effect of different colored markers. Figure 1e shows white
acceptance on a highly indeterminate lesion. Figure 1f shows
a highly indistinct lesion. In Figure 1g, there is a lesion with
some areas not visible. Figure 1h shows an image of a lesion
with a black substance in the marginal region. When many
pre-processing algorithms are used to solve all these prob-
lems, process load and response time become unacceptable.
An algorithm created without considering these problems pro-
duces undesirable results even if it is a deep learning method.
The most appropriate solution for this problem is to solve
these problems by creating attention in the algorithm. This
proposed approach is a convenient approach that will reduce
both processing load and processing time.

One of the most challenging parts of the segmentation
of skin lesion images is the uncertainty at the boundaries
of the lesion. While skin lesions are usually visible, some
lesions are challenging to react with the eye. Dermoscopy
is used for such lesions. Although dermoscopy images
allow us to see a lot of information about lesion easily,
it is difficult to obtain information about lesion bound-
aries. Figure 2a, b, c, and g shows images of the skin
lesion obtained by dermoscopy. Although the lesion cen-
ters are quite clear, there are problems with the lesion

boundaries. These problems are clearly understood when
Fig. 2d, e, f, and i are examined. When these images are
examined, it is seen that the edge information in ground
truth images is quite irregular. However, this irregularity
is not apparent in skin lesion images.

Another problem is understood when examining Fig. 2h
and j. In the appearance of a very prominent and predominant
skin lesion, the boundaries between the skin and the lesion are
rather obscure. These two fundamental problems constitute a
contradiction in itself. Edge estimation is made for the region
where there is no tissue difference with healthy skin. This
problem is the most fundamental problem to be overcome
for today’s CAD systems.

Proposed Method Overview

In this study, a single CNN architecture (called iFCN (im-
proved FCN)) with end-to-end training capability is proposed
for the solution of skin lesion segmentation problems. The
proposed architecture is capable of dealing with the two main
problems mentioned above at the same time. The iFCN archi-
tecture and layers are shown in Fig. 3. The proposedmethod is
inspired by the classical FCN architecture [39]. For semantic
segmentation, CNN architectures first extract image features
and then derive the target image from these features. When
divided into two parts, these parts are called encoder and de-
coder parts. In the section called encoder or subsampling,
image sizes are slowly decreasing depending on filter sizes.
The most important layers of this section are the convolution
layer, pooling layer, ReLU, dropout, and concatenate layer. In
terms of operation, the convolution layer is used to extract
features from the image. Although it is generally used in 3 ×
3 neighborhood size in the literature, the neighborhood size is
changed according to the application type. Convolution layer
is calculated as in Eq. 1.

a b c d

e f g h
Fig. 1 Undesirable residues and some problems of skin lesion images. a Brown lesion. b Black hairs. c Black hairs with the brown lesion. dMarkers. e
White residues on the lesion. f White residues on the lesion. g White and indistinct lesion. h Hard scene for lesion
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l ¼ f ∑

j
x jl−1⊗wij

l þ bil
 !

ð1Þ

where f represents activation function, w represents
weights of convolution operator, b represents bias, and x
represents the input matrix of the convolutional layer. In
the decoder section, the pooling layer has the most signif-
icant effect on reducing the size of the input image. This
layer dramatically reduces the image size according to the
selected neighborhood values. In this way, while

transferring the most important features in the image to
the next layers, it prevents the insignificant features from
creating unnecessary processing load. Although this pro-
cess is very efficient for CNN architectures used in classi-
fication tasks, it poses some problems for segmentation
architectures. Pooling layers with high neighborhood
values lead to the softening of the edge information. The
max-pooling operation is calculated as in Eq. 2.

Pjm ¼ max
k¼1

r
x j m−1ð Þnþk
� � ð2Þ

a b c

i

d e f

hg

j

Fig. 2 Indistinct boundaries. a, b,
c, g Lesion images. d, e, f, i
Ground truth images of a, b, c,
and g. h Boundaries of a skin
lesion. j Ground truth of h image

Fig. 3 The proposed iFCN architecture
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To solve the memorization problem, which is the biggest
problem of deep networks, the ReLU layer disrupts network
linearity. The output of the ReLU layer is calculated as in Eq. 3.

R ið Þ ¼ max 0; ið Þ ¼ i; if x≥0
0; if x < 0

�
ð3Þ

Another problem of deep networks is that neurons learn in
cooperation and proportion to each other. The dropout layer is
used to solve this problem. It excludes a certain amount of
parameters from each training iteration. The concatenate layer
is used for combining feature maps in residual architectures.

After the image feature maps are obtained in the decoder
section, the target image must be obtained at the same resolu-
tion. The deep features obtained from the encoder section are
processed and resized to the target image size in the decoder
section. In the decoder or up-sampling section, new pixels or
features are created from each pixel or feature point and trans-
ferred to the next layers. In this section, the feature map size
gradually increases as the layers progress. There are various
approaches in the literature for the up-sampling part, which is
very important for determining the boundaries of objects. The
best known of these approaches are the unpooling layer,
deconvolution layer, atrous convolution layer, and bilinear
interpolation [40, 41]. Details of the layers and parameters
of the iFCN architecture are shown in Table 1.

The iFCN architecture offers two important contributions
to skin lesion segmentation. The first is to determine the center
of the lesion without being affected by environmental factors
in the lesion images. Figure 1 shows various skin lesion prob-
lems, and the pre-processing algorithms used to solve these
problems have been mentioned previously. These problems
are usually caused by image or skin problems. The proposed
architecture can detect the lesion area without the need for
additional pre-processing. For this purpose, the elemental
powers of different color spaces are utilized. Each color space
provides different image representations based on information
such as light information in the image and color intensity
information. But the information in some channels of these
color spaces is equal to or quite close to each other. For this
purpose, the efficiency of color spaces for skin lesion segmen-
tation is investigated. Figure 4 shows the R, G, and B compo-
nents of the RGB color space, the S component from the HSV
color space, I component from the YIQ color space, the C
component from the YCbCr color space, and the Z component
from the XYZ color space.

As can be seen from Fig. 4, component R is generally used
for the detection of hair and dark markers. Lesion areas are
mostly absent in component R. Component G is useful for
fluctuation in lesion specimens, and component B is useful
for locating the lesion. Component S clearly shows the lesion
after hair removal. Component I is useful for locating dark
markers on lesion images. The Cb component reveals parts

of the lesion that are not visible in more specific numbers. The
Z component contains all the edge details of the lesion. When
all these components are applied to the architecture at the
same time, the iFCN architecture can automatically learn

Table 1 Layers and parameters of iFCN

Layer Filter size, maps

Encoder Conv_1 3 × 3, 3-64

Relu_1 -

Conv_2 3 × 3, 64-64

Relu_2 -

Pool_1 2 × 2

Concat_1 -

Conv_3 3 × 3, 64-128

Relu_3 -

Conv_4 3 × 3, 128-128

Relu_4 -

Pool_2 2 × 2

Concat_2 -

Conv_5 3 × 3, 128-256

Relu_5 -

Conv_6 3 × 3, 256-256

Relu_6 -

Conv_7 3 × 3, 256-256

Relu_7 -

Pool_3 2 × 2

Conv_8 3 × 3, 256-512

Relu_8 -

Conv_9 3 × 3, 512-512

Relu_9 -

Conv_10 3 × 3, 512-512

Relu_10 -

Pool_4 2 × 2

Conv_11 3 × 3, 512-512

Relu_11 -

Conv_12 3 × 3, 512–512

Relu_12 -

Conv_13 3 × 3, 512-512

Relu_13 -

Pool_5 2 × 2

FCL_1 1 × 1, 4096-4096

Dropout_
1

0.5

FCL_2 1 × 1, 4096-4096

Dropout_
2

0.5

Decoder Deconv_1 16 × 16, 2-2

Deconv_2 16 × 16, 2-2

Deconv_3 16 × 16, 2-2

Softmax -
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about their contributions. Besides, it can add new meanings to
these components. The addition of these components to the
architecture is shown in Fig. 5. The R, G, and B components

are applied as standard to the input of the architecture. I and B
components are applied to the first concatenate layer to learn
the basic features. S and Z components are applied to the

a

b

c

d

e

f

g

h

Fig. 4 Color space effect on
lesion images. a Original images.
b R component from RGB. c G
component from RGB. d B
component from RGB. e S
component from HSV. f I
component from YIQ. g Cb
component from YCbCr. h Z
component from XYZ
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second concatenate layer. In this way, unwanted factors are
learned as the basic features, and the next layer of mid-level
and high-level features are learned. A difference in size occurs
when combining the color components S, I, B, and Z in the
concatenate layers. To compensate for this image size differ-
ence, a subsampling is used after each color component layer.

Another contribution of the iFCN architecture is the ability
to represent details on the edges of skin lesions vigorously. A
straightforward but practical approach is used for this. It is
known that target images are created from feature maps in

the decoder section. The design in this section affects the
resolution of the objects in the target image. At the end of
the encoder part, the magnification of the features represented
by a minimal number of features at a time causes loss of
details. For this reason, the up-sampling process is applied
gradually to these features. Figure 6 shows the gradual up-
sampling of the features and their effect on the object details.
Figure 6a shows only the lesion after an up-sampling layer.
The margin information of this lesion is rather uncertain.
Figure 6b shows the results of two up-sampling layers.
Lesion details are more apparent. Figure 6c shows the results
obtained when three up-sampling layers are used. As it is seen,
if the up-sampling process is made softer, the details are
preserved.

Experiments and Experimental Results

Data

The segmentation performance of the proposed iFCN ar-
chitecture is tested using two well-known and public
datasets. The first of these is ISBI 2017 data called
“Skin Lesion Analysis Towards Melanoma Detection”
[37]. The ISBI 2017 dataset includes 2000 training im-
ages, 150 validation images, and 600 test images. It con-
sists of 8-bit RGB lesion images of different sizes such as
540 × 722, 2048 × 1536, 1503 × 1129, and 4499 × 6748.
Lesions in the ISBI dataset are labeled as benign, mela-
noma, and seborrheic keratosis. Also, each image in the
dataset is annotated by expert dermatologists, and ground
truth images are created. The other dataset is the skin
lesion dataset called PH2 [38]. It was created at the

Features 
from 

Encoder 
Part

a b c
Fig. 6 The up-sampling effect. a One up-sampling. b Two up-sampling. c
Three up-sampling

S from HSV 
color Space

I from YIQ 
color Space

. . . . .
CNN architecture

Pooling

Pooling

Components of 
Color Spaces

Subsampling

. . . . .

Concatenate 
Layer 

Fig. 5 Adding color components to the iFCN architecture

Table 2 Data distribution of ISBI 2017 and PH2 datasets

Dataset

ISBI 2017 PH2

Training Benign nevi 1372 -

Melanoma 374 -

Seborrheic keratosis 251 -

Total 2000 -

Validation Benign nevi 78 -

Melanoma 30 -

Seborrheic keratosis 42 -

Total 150 -

Test Benign nevi 393 160

Melanoma 117 40

Seborrheic keratosis 90 -

Total 600 200
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Hospital Pedro Hispano with the help of the research
group Universidade do Porto, Técnico Lisboa in
Matosinhos, Portugal. The PH2 dataset consists of 200
skin lesions in total. Eighty of them include atypical nevi
cases, 80 of them include common nevi cases, and 40 of
them include melanoma cases. Images in the PH2 dataset
were captured under the same conditions, and the size of
al l images in this dataset was 768 × 560 pixels.
Segmentation masks of this dataset were drawn by expert
dermatologists. In this study, the PH2 dataset is used only
for testing. Class information and distribution of data for
both datasets are shown in Table 2.

Experimental Results

iFCN is trained on a computer with Intel Core i7-7700K CPU
(4.2 GHz), 32-GB DDR4 RAM, and NVIDIA GeForce GTX
1080 graphic card.

To evaluate the success of the proposed iFCN method
fairly, the same evaluation metrics are used as other stud-
ies in the literature. For this purpose, the sensitivity pa-
rameter is first calculated as in Eq. 4. The sensitivity
parameter represents the ratio of accurately assigned le-
sion pixels in the image. The specificity parameter show-
ing the false labeling rate of non-lesion pixels is

Fig. 7 Training and validation curves of the iFCN architecture

Table 3 Comparison of
segmentation performance for the
ISBI 2017 dataset

Methods Sensitivity % Specificity % Accuracy % Dice % Jaccard %

U-Net 67.15 97.24 90.14 76.27 61.64

SegNet 80.05 95.37 91.76 82.09 69.63

FCN 79.98 96.66 92.72 83.83 72.17

Jianu et al. [42] 72 89 81 - -

eVida [43] 86.9 92.3 88.4 76 66.5

Li et al. [5] 82 97.8 93.2 84.7 76.2

Unver and Ayan [8] 90.82 92.68 93.39 84.26 74.81

FrCN [1] 85.40 96.69 94.03 87.08 77.11

iFCN 85.44 98.08 95.30 88.64 78.34
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calculated as in Eq. 5. The accuracy parameter is calcu-
lated as in Eq. 6. The accuracy parameter shows the
success rate of the whole segmentation. The Dice coef-
ficient is used to measure how effectively a segmentation
process works. It only examines the relationship between
the segmented field and the ground truth. The Dice co-
efficient is calculated as in Eq. 7. The Jaccard index
calculates the intersection over union between index seg-
mentation results and ground truth. Thus, it can be un-
derstood whether the proposed method shifts the lesion
center or affects the image axes. The Jaccard index is
calculated as in Eq. 8.

Sen ¼ TP

TPþ FN
ð4Þ

Spe ¼ TN

TNþ FP
ð5Þ

Acc ¼ TPþ TN

TPþ FNþ TNþ FP
ð6Þ

Dice ¼ 2TP

2TPð Þ þ FPþ FN
ð7Þ

Jaccard ¼ TP

TPþ FNþ FP
ð8Þ

where TP (true positive) represents correctly labeled lesion
pixels, TN (true negative) represents correctly labeled non-
lesion pixels, and FP (false positive) represents incorrectly la-
beled non-lesion pixels. In FP case, non-lesion pixels are labeled
as lesions. FN (false negative) represents incorrectly labeled le-
sion pixels. In FN cases, lesion pixels are labeled as non-lesion.

The end-to-end iFCN architecture is trained for segmenta-
tion tasks with standard gradient descent with a 0.005 learning
rate. The momentum of it is 0.9, and the L2 regularization
factor is 0.005. The proposed model is trained with 35 epochs,
and the batch size is 8. The number of iterations per epoch is
390, and the total number of iterations is 13,650. The main
FCN architecture (backbone) at the center of the proposed
method is a transfer learning-based FCN. In other words, it
has been learned with low-level features (edges, Gabor, etc.)
by training with a well-known dataset. Therefore, 35-epoch
training with skin lesion images is quite sufficient. The learn-
ing rate is halved after every 10 epochs. Validation results are
obtained every 400 iterations. The ISBI 2017 dataset training
data is used for network training. All 2000 skin lesion images
are used for training the iFCN architecture. The training lasts
approximately 20 h. Only the specified epoch number is se-
lected as the stop criterion.

The training and validation curves of the iFCN architecture
are shown in Fig. 7. The blue curve at the top of Fig. 7 shows
the accuracy during training. The black dots on this curve
indicate validation accuracy. The red curve at the bottom of
Fig. 7 shows the loss during training. The black dots on this
curve indicate validation loss. As can be followed from the
curve of Fig. 7, as the training process continues, the accuracy
rate increases and the loss decreases accordingly. Preservation
of the ratio between training and validation curves and the
continuation of the increase is indicative that the network is
not caught in the memorization problem. At the end of the
training process, the training accuracy is 98.93% and the val-
idation accuracy is 96.29%. At the end of the training, the
training loss is 4.86% and the validation loss is 8.2%.

The test results of the iFCN architecture are calculated by
the ISBI 2017 test dataset and the PH2 dataset images.
Accordingly, 600 images in the ISBI 2017 datasets are used
in the first test phase. Table 3 shows the test results for the
ISBI 2017 dataset. Also, Table 3 lists the results of the most
common algorithms for segmentation, the results of state-of-
the-art methods in the literature, and the results of the iFCN
architecture.

As shown in Table 3, the most successful segmentation
results in the ISBI 2017 test data are obtained by the iFCN
architecture. The proposed iFCNmethod performs better than

Table 4 Comparison of
segmentation performance for the
PH2 dataset

Methods Sensitivity % Specificity % Accuracy % Dice % Jaccard %

U-Net 81.63 97.76 92.55 87.61 77.95

SegNet 86.53 96.61 93.36 89.36 80.77

FCN 90.30 94.02 92.82 89.03 80.22

Unver and Ayan [8] 83.63 94.02 92.99 88.13 79.54

FrCN [1] 93.72 95.65 95.08 91.77 84.79

iFCN 96.88 95.31 96.92 93.02 87.1

Table 5 Performance of the training time and test time

Methods Training time per epoch Test time per image

U-Net 486.8 s 8.1 s

SegNet 464.8 s 8.3 s

FCN 465.6 s 9.7 s

FrCN [1] 395.2 s 7.6 s

iFCN 432.3 s 8 s
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other techniques in the scope of sensitivity, specificity, accu-
racy, Dice, and Jaccard metrics. These metrics also show that
the iFCN method matches a high resemblance to the back-
ground images. As shown in Table 3 for the ISBI 2017 test
data, the obtained performance results with the proposed
iFCN method are 85.44% sensitivity, 98.08% sensitivity,
95.30% accuracy, 88.64% Dice, and 78.34% Jaccard, respec-
tively. The iFCN method has significant difference of 5.46%
and 0.04% in sensitivity, 1.42% and 1.18% in specificity,
2.58% and 1.27% in accuracy, 4.81% and 1.56% in Dice,

6.17% and 1.23% in Jaccard than FCN and FrCN [1] respec-
tively. In Table 3, the iFCN method obtained the highest per-
formance in all metrics except for sensitivity. The iFCN meth-
od shows that the usability and consistency of the method is
quite high in accordance with the obtained results.

Second experiments with the PH2 dataset test images are
performed to prove the robustness of the iFCN architecture.
The PH2 dataset test images are not used during the training
and validation phase. The PH2 dataset test results are shown in
Table 4. While considering the metric results of the proposed

cbaFig. 8 The segmentation results
of the proposed iFCN
architecture. a Ground truth
images. b iFCN results. c Plotting
the proposed method and ground
truth on the lesion
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iFCN method, it has provided an important performance ad-
vantage to the other studies in the literature. Although the
FrCN [1] method is the most marginal study in the literature
in terms of performance, the proposed iFCN method for the
PH2 dataset test data obtained difference of 3.16% in sensi-
tivity, 1.84% in accuracy, 1.25% in Dice, and 2.31% in the
Jaccard index. According to the specificity of the FrCN [1]
method, it showed 0.34% rate increase. Shortly, the iFCN
method has 96.88% sensitivity, 95.31% specificity, 96.92%
accuracy, 93.02% Dice, and 87.1% Jaccard metric values.

As can be seen from Tables 3 and 4, the proposed method
produced more successful results in both datasets than other
state-of-the-art methods. When the results produced together
for two datasets are evaluated, it is seen that the proposed
method is more robust than the other methods.

In addition, training and test time performances in the seg-
mentation process are given in Table 5. When training times
per epoch were analyzed, FrCN has the shortest time with
395.2 s. Then, the proposed iFCN method obtained second
better performance with 432.3 s. There is a difference of 37.1 s
per epoch as a training time difference. Test times per image is
more valuable rather than training time per epoch. In the anal-
ysis of dermoscopic images, the test time should be less than
10 s. FrCN [1] achieved the highest performance with 7.6 s in
terms of test time per image in Table 5. The proposed iFCN
method has 8 s per image in test time. The difference between
FrCN [1] and iFCN, 0.4 s, is not a big difference. Also, metric
performance has a major priority. In summary, the proposed
iFCN method has outperformed most studies in the literature
due to metric performance in ISBI 2017 and PH2 datasets.
When it was evaluated in terms of time, it showed remarkable
performance.

Figure 8 illustrates the segmentation results of the proposed
iFCN method. Besides, ground truth drawings are added to
these images for comparison. Blue lines represent ground
truth information, and green lines represent the results of the
proposed method. In Fig. 8, the images in the first three lines
were selected from the test images of the PH2 dataset, while
the images in the last three lines were selected from the ISBI
2017 dataset test images. When all the images in Fig. 8 are
examined, it is seen that the edges of the skin lesion are
followed quite successfully by using the proposed method.

Conclusion

In this study, an effective segmentation method for skin lesion
segmentation is presented. Since the FCN architecture pro-
duces results that are very close to the current studies in the
literature, this architecture has been developed to create a ro-
bust CNN architecture. Unlike other state-of-the-art methods
in the literature, the iFCN method includes specific solutions
to skin lesion segmentation problems. For this purpose, a

solution that can cope with undesirable residues (hair, ruler
markers, etc.), indistinct boundaries, variable contrast, shape
differences, and color differences in the lesion images is pro-
posed. The ISBI 2017 and PH2 datasets, which are well
known in the literature, are used to prove the robustness of
our method. Thanks to the residual structure of the FCN ar-
chitecture with proposed spatial information (iFCN), which
creates a more advanced residual system and more precise
detection of details on the edges of the lesion, and an analysis
independent of the lightening conditions is performed. The
results show that our method is more successful than the
known methods in the literature, U-Net, classical FCN, and
SegNet architectures. Also, it is more successful than the state-
of-the-art methods proposed for skin lesion segmentation in
the literature. The accuracy of the proposed method is approx-
imately 1–2% higher than the most successful method in the
literature. In future studies, it will be studied on a watershed
network that is not affected by the color changes occurring at
the edges of the lesion. The basis of decreasing the value depth
towards the lesion edges will be taught to the CNN
architecture.
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